碳材料的拉曼光谱(石墨烯,碳管等)

合集下载

实用干货丨解析常见碳材料的拉曼光谱`

实用干货丨解析常见碳材料的拉曼光谱`
TO
1550 1540 1530 1520
0.8 1.0
G+ G-
Semiconducting
1.2 1.4 1.6 1.8 2.0 2.2 2.4
Diameter (nm)
Metallic tubes: G-→LO & G+→TO Semiconducting tubes: G- →TO & G+ →LO
G- diameter dependence → TO circumferential
做计算 找华算
Raman Shift (cm-1)
1600 1590 1580 1570 1560 1550 1540 1530
TO LO
ቤተ መጻሕፍቲ ባይዱG+ G-
Metallic
1600 1590
LO
1580 1570 1560
c. Illustration of the relationship between angles and the chiralities of
the adjacent edges.
做计算 找华算
当两相邻边缘的夹角是30°,90° 时,两边缘有不同的手性,一个是 armchair,一个是zigzag。
做计算 找华算
2D-BAND
层 数 依 赖 性
激发光能量依赖性
1. e excitation
2. e-phonon scattering
3. Phonon with opposite momentum 4. E-hole recombination
做计算 找华算
石墨的拉曼光谱
不同点不同偏振方向的 拉曼光谱 (a)完美石墨晶体 (b)有缺陷的石墨

碳纳米管和石墨烯简介

碳纳米管和石墨烯简介

碳纳米管的应用
纳米金属催化剂 载体,利用碳纳米管的 高比表面及良好的吸 氢能力,成功制备了 负载 Pt纳米粒子的高 效加 氢催化剂。
碳纳米管的应用
无碳纳米管(左)和有碳纳米管(右) 情况下的大肠杆菌对比照片 一项最新研究表明,单壁碳纳米管能够严重破坏大 肠杆菌等细菌的细胞壁,从而将其杀灭。将有助于解 决细菌抗药性这一日益突现的问题。
石墨烯的应用
超级电容器:
超级电容器是一个高效储存和传递 能量的体系,它具有功率密度大,容量 大,使用寿命长,经济环保等优点,被 广泛应用于各种电源供应场所。石墨烯 拥有高的比表面积和高的电导率,不像 多孑L碳材料电极要依赖孔的分布,这使 它成为最有潜力的电极材料。以石墨烯 为电极材料制备的超级电容器功率密度 为10kW/kg,能量密度为28.5Wh /kg,最大比电容为205F/g,而且 经过1200次循环充放电测试后还保留 90%的比电容,拥有较长的循环寿命。 石墨烯在超级电容器方面的潜在应用受 到更多的研究者关注。
A brief introduction of
应化0902
张一恒
碳纳米管
碳纳米管是在1991年1月由日本筑波NEC实验室 的物理学家饭岛澄男使用高分辨率分析电镜从电弧法生产 的碳纤维中发现的。它是一种管状的碳分子,管上每个碳 原子采取SP2杂化,相互之间以碳-碳σ键结合起来,形成 由六边形组成的蜂窝状结构作为碳纳米管的骨架。每个碳 原子上未参与杂化的一对p电子相互之间形成跨越整个碳 纳米管的共轭π电子云。按照管子的层数不同,分为单壁 碳纳米管和多壁碳纳米管。管子的半径方向非常细,只有 纳米尺度,几万根碳纳米管并起来也只有一根头发丝宽, 碳纳米管的名称也因此而来。而在轴向则可长达数十到数 百微米。 碳纳米管不总是笔直的,局部可能出现凹凸的现 象,这是由于在六边形结构中混杂了五边形和七边形。出 现五边形的地方,由于张力的关系导致碳纳米管向外凸出。 如果五边形恰好出现在碳纳米管的顶端,就形成碳纳米管 的封口。出现七边形的地方碳纳米管则向内凹进。

碳纳米管的制备和表征研究

碳纳米管的制备和表征研究

碳纳米管的制备和表征研究碳纳米管是一种非常重要的纳米材料,由于其具有优异的物理和化学性质,能够广泛应用于电子、化学、生物和医学等领域,成为了当今最热门的研究课题之一。

本文将介绍碳纳米管的制备和表征研究,旨在尽可能全面深入地介绍它的相关研究进展。

一、碳纳米管的制备方法碳纳米管的制备方法主要有以下几种:1. 等离子体增强化学气相沉积法该方法先用金属作为催化剂,在氧化镁或氧化铝的载体上制备成催化剂阵列,通过引入碳源和氢气,使用等离子体的方式来生成碳纳米管。

2. 化学气相沉积法该方法将催化剂和碳源同时放置在反应器内,不用外加能量,通过化学反应来制备碳纳米管。

3. 化学还原-热解法该方法先用催化剂将氧化石墨烯还原为石墨烯,然后利用热解技术进行碳化反应,制备碳纳米管。

以上三种方法是主流的制备碳纳米管的方法,但随着研究的深入,其它方法,如水热合成法、溶液-液相界面法等也逐渐被应用于制备碳纳米管。

二、碳纳米管表征技术为了对制备的碳纳米管进行表征和刻画,研究人员开发出了各种表征技术来研究其结构和性质,下面我们来介绍一些常用的表征技术:1. 透射电子显微镜(TEM)透射电子显微镜是最常用的碳纳米管表征技术之一,通过它可以直观的获得碳纳米管的观察图像。

2. 扫描电子显微镜(SEM)与TEM不同,扫描电子显微镜可以观察到碳纳米管的表面形貌,并能够获得表面形貌的三维结构图像。

3. 拉曼光谱(Raman)拉曼光谱具有非常高的灵敏性和分辨率,能够通过对碳纳米管的拉曼光谱图像进行功率谱分析,可以获得碳纳米管的结构、相互作用和物理特性等信息。

4. X射线粉末衍射(XRD)利用X射线的衍射实验,可以得到碳纳米管的晶格结构,晶格常数以及结晶度等信息。

5. 热重分析(TGA)热重分析可以帮助我们展现出材料在温度变化下的失重信息,从而推断出碳纳米管的热稳定性和热分解温度等相关信息。

以上技术对于制备和表征碳纳米管都有非常大的帮助,不同的表征方法可以从不同角度来对碳纳米管进行综合分析,有助于我们更好地了解碳纳米管的结构和性质。

石墨烯拉曼特征峰

石墨烯拉曼特征峰

石墨烯拉曼特征峰
石墨烯是由单层碳原子组成的二维晶体,具有独特的电子结构和物理
特性,因此被广泛应用于电子器件、光电器件和生物传感器等领域。

而石墨烯拉曼特征峰则是研究石墨烯材料的重要手段之一。

石墨烯的拉曼光谱主要包含G和2D两个特征峰。

G峰是由于石墨烯
中C-C键的拉伸振动引起的。

它的位置在约1580 cm^-1左右,强度比较强,是拉曼光谱中的主要峰。

2D峰则是由于两个非等价的C-C
键的拉伸振动引起的,它的位置在约2700 cm^-1左右。

因为2D峰
对石墨烯的层数和缺陷有不同的响应,所以它是石墨烯质量和缺陷的
重要指标。

除了G和2D峰之外,石墨烯还有一些其他的拉曼特征峰。

例如D峰、D’峰和D+G峰。

D峰是由于石墨烯中的结构缺陷(如碳原子缺失)引起的,它的位置在约1350 cm^-1左右,强度比较弱。

因为D峰和2D峰响应的石墨烯缺陷类型不同,所以它们可以相互补充,提高石墨烯缺陷的检测精度。

D’峰是由于石墨烯中的压缩应力或光学声子引起的,它的位置在约1620 cm^-1左右,强度比较弱。

D+G峰则是D
峰和G峰的叠加,它的位置在约2930 cm^-1左右。

D+G峰的强度
与石墨烯中的缺陷密切相关,因此它也可以用来检测石墨烯质量和缺陷。

总的来说,石墨烯拉曼特征峰是研究和表征石墨烯材料的重要工具之一。

不同的特征峰对应不同的物理现象,因此在石墨烯的应用和制备中都有相应的应用价值。

未来随着石墨烯在材料科学和纳米科技中的应用不断扩大,对其拉曼特征峰的研究也会变得更加深入和广泛。

碳材料的拉曼光谱 从纳米管到金刚石

碳材料的拉曼光谱 从纳米管到金刚石

碳材料的拉曼光谱从纳米管到金刚石碳材料是一类重要的材料,包括石墨、纳米管、石墨烯、金刚石等。

这些材料具有不同的结构和性质,因此需要不同的表征方法。

拉曼光谱是一种非常有用的表征方法,可以用来研究碳材料的结构和性质。

1. 石墨的拉曼光谱石墨是一种由碳原子组成的层状结构材料,具有良好的导电性和热导性。

石墨的拉曼光谱主要包括G带和D带两个峰。

G带是由于石墨中的sp2杂化碳原子振动引起的,其峰位在1580 cm-1左右。

D带是由于石墨中的sp3杂化碳原子振动引起的,其峰位在1350 cm-1左右。

G带和D带的强度比值(I(G)/I(D))可以用来评估石墨的结晶度和缺陷程度。

石墨的拉曼光谱还可以用来研究石墨的层间距离和层数等结构参数。

2. 纳米管的拉曼光谱纳米管是一种由碳原子组成的管状结构材料,具有良好的机械性能和导电性能。

纳米管的拉曼光谱主要包括G带、D带和2D带三个峰。

G带和D带的峰位和石墨中的相同,但是2D带的峰位在2700 cm-1左右。

2D带是由于纳米管中的双重共振引起的,其强度比值(I(2D)/I(G))可以用来评估纳米管的直径和手性。

纳米管的拉曼光谱还可以用来研究纳米管的结构和缺陷等性质。

3. 石墨烯的拉曼光谱石墨烯是一种由碳原子组成的单层平面结构材料,具有良好的导电性和机械性能。

石墨烯的拉曼光谱主要包括G带和2D带两个峰。

G带的峰位和石墨中的相同,但是2D带的峰位在2700 cm-1左右。

2D带的强度比值(I(2D)/I(G))可以用来评估石墨烯的层数和手性。

石墨烯的拉曼光谱还可以用来研究石墨烯的缺陷和应变等性质。

4. 金刚石的拉曼光谱金刚石是一种由碳原子组成的三维晶体结构材料,具有良好的硬度和热导性。

金刚石的拉曼光谱主要包括一个单峰,峰位在1332 cm-1左右。

这个峰是由于金刚石中的sp3杂化碳原子振动引起的。

金刚石的拉曼光谱可以用来研究金刚石的结构和缺陷等性质。

总之,拉曼光谱是一种非常有用的表征方法,可以用来研究碳材料的结构和性质。

拉曼光谱简介-以碳材料为例

拉曼光谱简介-以碳材料为例
Shi et al. Nature Mater. (2016) 15, 634-639 20
Allotropes of Carbon
Hirsch A. Nature Mater. 9, 871 (2010) 21
碳的同素异形体的拉曼峰位
Casari et al. Nanoscale 2016
22
ID/IG计算中使用强度还是峰面积(目的): 缺陷的多种类型,不同的官能团… 掺杂、复合碳材料的拉曼: 峰位移动、峰宽变化 GO还原为rGO的拉曼光谱的强度变化: 还原的方法决定
13
拉曼光谱的作用
• 如何处理拉曼数据?(提问的艺术) 分峰拟合(峰位及其移动、峰宽、峰强…)
Gaussian, Lorentzian Adapted from HORIBA 14
4
拉曼光谱仪工作原理
偏振片
• 偏振拉曼光谱中对偏振片的要求:激光能量不变
5
拉曼光谱的强度,峰形和分辨率
• 拉曼光谱的强度:面积积分(IG/ID比) • 峰形: Gaussian, Lorentzian, and Voigt (本征峰宽) • 分辨率:并不是数据点之间的间隔!(瑞利散射)
Gaussian, Lorentzian
18
Fine structure of LLCC-band
Each peak corresponds to polyyne with specific length.
Shi et al. Nature Mater. (2016) 15, 634-639 19
共振拉曼光谱
利用不同的激光能量来分别共振激发不同长度的碳 链(能级不同),从而得到碳链的长度分布。
• 变温,变压(结构变化) • 磁场,电场…

拉曼光谱检测

拉曼光谱检测

拉曼光谱检测浅谈拉曼光谱检测浅谈拉曼光谱检测⼀、拉曼光谱简介拉曼技术在⼀个世纪⾥发展成为⼀门较成熟的科学,取决于它产⽣的机制和光谱表征的特性。

拉曼光谱(Raman spectra),是⼀种散射光谱。

拉曼光谱分析法是基于印度光谱中发现了当光与分⼦相互作科学家C.V.拉曼(Raman)于1928年⾸先在CCL4⽤后,⼀部分光的波长会发⽣改变(颜⾊发⽣变化),通过对于这些颜⾊发⽣变化的散射光的研究,可以得到分⼦结构的信息,因此这种效应命名为Raman效应。

拉曼光谱是由物质分⼦对光源的散射产⽣的,与分⼦的振动与转动能级的变化有关,来源于分⼦极化度的变化,是由有对称电荷分布的键的对称振动引起的。

如-C=C-、-N=N-及-S-S-等,这些键振动时偶极矩不发⽣变化。

因此,拉曼光谱常⽤于研究⾮极性基团与⾻架的对称振动。

拉曼光谱是由物质分⼦对光源的散射产⽣的,与分⼦的振动与转动能级的变化有关,来源于分⼦极化度的变化,是由有对称电荷分布的键的对称振动引起的。

如-C=C-、-N=N-及-S-S-等,这些键振动时偶极矩不发⽣变化。

因此,拉曼光谱常⽤于研究⾮极性基团与⾻架的对称振动。

当⽤波长⽐试样粒径⼩得多的单⾊光照射⽓体、液体或透明试样时,⼤部分的光会按原来的⽅向透射,⽽⼀⼩部分则按不同的⾓度散射开来,产⽣散射光。

在垂直⽅向观察时,除了与原⼊射光有相同频率的瑞利散射外,还有⼀系列对称分布着若⼲条很弱的与⼊射光频率发⽣位移的拉曼谱线,这种现象称为拉曼效应。

由于拉曼谱线的数⽬,位移的⼤⼩,谱线的长度直接与试样分⼦振动或转动能级有关。

因此,对拉曼光谱的研究,也可以得到有关分⼦振动或转动的信息。

⽬前拉曼光谱分析技术已⼴泛应⽤于物质的鉴定,分⼦结构的研究谱线特征。

⼆、拉曼光谱的原理及其特点(1)拉曼光谱的原理拉曼效应的振动能级图拉曼散射是光照射到物质上发⽣的⾮弹性散射所产⽣的。

当⼀束光照射到物质上时,光⼦和物质发⽣弹性散射和⾮弹性散射,弹性散射的散射光波长与激光波长相同。

拉曼光谱在类石墨烯二维材料上的表征

拉曼光谱在类石墨烯二维材料上的表征

拉曼光谱在类⽯墨烯⼆维材料上的表征拉曼光谱在类⽯墨烯⼆维材料上的表征摘要类⽯墨烯⼆维材料具有⽆限类似碳六环的⼆维原⼦晶体结构,因其独特的结构与性质引起了科学家们的⼴泛关注。

拉曼光谱是⼀种快速⽽⼜简洁的表征物质结构的⽅法。

本⽂结合了先前研究者的⼀些⼯作,总结了拉曼光谱技术在类⽯墨烯⼆维材料表征中的⼀些应⽤。

主要阐述了拉曼光谱在表征类⽯墨烯材料如MnS2层结构,以及对于缺陷态与掺杂类型表征上的应⽤。

⼀、前⾔类⽯墨烯⼆维材料是指⼀个维度上维持纳⽶尺度,⼀个或⼏个原⼦层厚度,⽽在⼆维平⾯内具有⽆限类似碳六环组成的⼆维(2D)周期蜂窝状点阵结构,具有许多独特的性质。

因为⼆维材料如⽯墨烯等具有很有⾮常优异的特性,⽐如吸收2.3%的⽩光光谱,⾼表⾯积⽐,⾼的杨⽒模量,优异的导热导电性,故这类⼆维材料可以应⽤在光电学[1,2]、⾃旋电⼦学、催化剂、化学传感器[2,3]、⼤容量电容器、晶体管、太阳能电池、锂电⼦电池、DNA测序[4-6]等很多领域。

拉曼光谱是⼀种快速⽆损的表征材料晶体结构、电⼦能带结构、声⼦能量⾊散和电—声⼦耦合的重要技术⼿段[7,8],具有较⾼的分辨率,是富勒烯、⼆硫化钼、⾦刚⽯等研究中最受欢迎的表征技术之⼀,在类⽯墨烯材料的发展历程中起了⾄关重要的作⽤。

本⽂将通过先前出现有关类⽯墨烯⼆维材料研究中的拉曼光谱表征,分析拉曼光谱在类⽯墨烯⼆维材料研究中的作⽤。

⼆、拉曼光谱表征类⽯墨烯⼆维材料层状结构1. 从拉曼散射的演化分析MoS2材料块体结构到单层结构的变化[9]随着多种超薄MoS2为基础的装置的快速发展,研究MoS2薄层的独特性质以及单层简便的检测⽅法成为迫切的需求。

拉曼光谱是⼀种快速⽆损的表征⼯具,已经⽤于研究MoS2的不同晶体结构[10-14 ]。

⾮共振情况下,四个⼀阶的拉曼活性模式32cm-1(E2g),286cm-1(E1g),383cm-1(E2g)和408cm-1(A1g)在MoS2块材中可以看到。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档