等腰三角形经典模型

合集下载

(完整版)等腰直角三角形中的常用模型

(完整版)等腰直角三角形中的常用模型

等腰直角三角形中的常用模型模型一:一条直线(不与三角形的边重合)过等腰直角三角形的直角顶点(1)以原等腰直角三角形的两直角边为对应斜边,必定可以构造一对全等的直角三角形:例1.如图:Rt ΔABC 中,∠BAC =90º,AB =AC ,点D 是BC 上任意一点,过B 作BE ⊥AD 于点E ,过C 作CF ⊥AD 于点F 。

(1)求证:BE-CF=EF ;(2)若D 在BC 的延长线上(如图(2)),(1)中的结论还成立吗?若不成立,请写出新的结论并证明。

1.如图1,等腰Rt △ABC 中,AB=CB ,∠ABC =90º,点P 在线段BC 上(不与B 、C 重合),以AP 为腰长作等腰直角△P AQ ,QE ⊥AB 于E ,连CQ 交AB 于M 。

(1)求证:M 为BE 的中点(2)若PC=2PB ,求MBPC的值(2)以原等腰直角三角形的两直角边为对应直角边,必定可以构造一对全等的直角三角形:3、如图:Rt ΔABC 中,∠BAC =90º,AB =AC ,点D 是BC 上任意一点,过B 作BE ⊥AD 于点E ,交AC 于点G ,过C 作CF ⊥AC 交AD 的延长线与于点F 。

(1)求证:BG=AF ;(2)若D 在BC 的延长线上(如图(2)),(1)中的结论还成立吗?若不成立,请写出新的结论并证明。

变式1:如图,在R t △ABC 中,∠ACB =45º,∠BAC =90º,AB=AC ,点D 是AB 的中点,AF ⊥CD 于H 交BC 于F ,BE ∥AC 交AF 的延长线于E ,求证:BC 垂直且平分DE .G G B ACD E F (2)(1)FE D C B AF DAA(2)FEDC A A B C DE F (1)(2)(3)(1)DD EEC C EC A AAB变式2:等腰Rt △ABC 中,AC=AB ,∠BAC =90°,点D 是AC 的中点,AF ⊥BD于点E ,交BC 于点F ,连接DF ,求证:∠1=∠2。

等腰三角形的五个模型

等腰三角形的五个模型

等腰三角形1.(1)已知:等腰三角形的一个内角为140°,那么另外两个角的度数为:__________ (2)等腰三角形有一个内角是70,那么它的顶角为:__________(3)等腰三角形的周长为30,其中一边长为14,那么底边的长:__________(4)等腰三角形,它的两条边长分别为2和4,那么它的周长为:2.如图,在△ABC 中,∠ABC 和∠ACB 的平分线交于点O,过点O 作EF ∥BC,交AB于E,交AC 于F,AB=9,AC=8.求:(1)图中有几个等腰三角形,(2)AEF 的周长。

并说明理由。

模型一:角平分线+平行线→等腰三角形3、如图,已知BO 平分CBA ∠,CO 平分ACB ∠,MN BC ∥,且过点O ,若12AB =,14AC =,则AMN △的周长是. 4、如图2,△ABC 中,AB =AC ,在AC 上取点P ,过点P 作EF ⊥BC ,交BA 的延长线于点E ,垂足为点F .求证:AE =AP .5、如图3,在△ABC 中,∠BAC ,∠BCA 的平分线相交于点O ,过点O 作DE ∥AC ,分别交AB ,BC 于点D ,E .试猜想线段AD ,CE ,DE 的数量关系,并说明你的猜想理由.6、如图4,△ABC 中,AD 平分∠BAC ,E ,F 分别在BD ,AD 上,且DE =CD ,EF =AC .求证:EF ∥AB .模型二 角平分线+垂线→等腰三角形 当一个三角形中出现角平分线和垂线时,我们就可以寻找到等腰三角形.1、如图5中,若AD 平分∠BAC ,AD ⊥DC ,则△AEC 是等腰三角形.CA B E DO 图3图4 B F C D E A 图2 FB AC P E E 图5 A B CD2、如图6,已知等腰R t△ABC 中,AB =AC ,∠BAC =90°,BF 平分∠ABC ,CD ⊥BD 交BF 的延长线于D .求证:BF =2CD .模型三 作倍角的平分线→等腰三角形 当一个三角形中出现一个角是另一个角的2倍时,我们就可以作倍角的平分线寻找到等腰三角形.1、如图7中,若∠ABC =2∠C ,如果作BD 平分∠ABC ,则△DBC 是等腰三角形.2、如图8,△ABC 中,∠ACB =2∠B ,BC =2AC .求证:∠A =90°.模型四 “以角平分线为轴翻折”构造全等三角形 如图,在ABC △中,AD 平分BAC ∠,AB=AC+CD ,求:B C ∠:∠的值.模型五 “角平分线 + 垂线”构造全等三角形或等腰三角形1.根据角平分线的性质作垂线:自角的平分线上任意一点向角的两边作垂线,得到两个全等的直角三角形;2.根据等腰三角形的“三线合一”性质作垂线:自角的一边上任意一点作角平分线的垂线,使之与另一边相交,则截的一个等腰三角形.如图4,在四边形ABCD 中,BC BA >,AD DC =,BD 平分ABC ∠.求证:180A C ︒+=∠∠.图6 B F D C A C B 图7 D A 图8 C B A A B C D A B C D(图4)。

关于两个等腰三角形的三个重要的几何模型之间的异同以及当三角形为等腰直角三角形时的特殊证法

关于两个等腰三角形的三个重要的几何模型之间的异同以及当三角形为等腰直角三角形时的特殊证法

关于两个等腰三角形的三个重要的几何模型之间的异同以及当三角形为等腰直角三角形时的特殊证法------手拉手、婆罗摩笈多模型、脚拉脚初中阶段,关于两个等腰三角形的问题,十分常见.我们可以归纳为大三类,为了介绍方便,分别取名为“手拉手模型、婆罗摩笈多模型、脚拉脚模型”.1.1 手拉手模型:两个等腰三角形的顶角顶点重合,且顶角相等.按逆时针顺序,把位置相同的底角顶点相连.简记为:共顶点,同顶角,左手拉左手.如图,两个等腰三角形△ABE 和△ACD ,∠BAE=∠CAD ,且AB=AE ,AC=AD ,连接BD ,CE.结论:(1)△ABD ≌△AEC ;(2)∠α+∠BOC=180°(位置相同的底角顶点相连,所成夹角等于顶角) ;(3)OA 平分∠BOC(第三边的交点与顶点连线平分第三边的夹角).证明:(1)由AB=AE ,AC=AD ,∠BAD=∠CAE ,易得△ABD ≌△AEC.(2) 因为△ABD ≌△AEC ,所以∠CEA=∠DBA ,又∠EOA+∠OEA=∠EAB+∠DBA ,所以∠OEA=∠α.(3)第3问的证明很巧妙,只需过A 点作BD ,CE 的垂线段.因为△ABD ≌△AEC ,所以对应边的高也相等.再由角平分线的判定,从而得到OA 平分∠BOC.1.2 手拉手模型的特殊情况:当两个等腰三角形是等腰直角三角形时,而且隐藏在正方形中,如下:变式1.如图,两个正方形ABCD 与DEFG ,连结CE AG ,,二者相交于点H .问:(1)CDE ADG ∆≅∆是否成立?(2)AG 是否与CE 相等?(3)AG 与CE 之间的夹角为多少度?(4)HD 是否平分AHE ∠?解析:(1)由,,,DC DA ADG CDE DG DE =∠=∠=得.)(≌△△SAS CDE ADG 由.CE AG CDE ADG =∴≌△△(2) 设AG 与CD 相较于点P ,由GAD ECD CDE ADG ∠=∠∴≌△△又.90H CE AG CDA CHA APD GAD CPG ECD 于点⊥∴︒=∠=∠∴∠+∠=∠+∠(3) 过D 点作AG DM ⊥于M 点,EC DN ⊥于N 点DN DM CDE ADG =∴≌△△HD ∴平分.AHE ∠2.1婆罗摩笈多模型:两个等腰三角形的顶角顶点重合,且顶角互补。

等腰三角形八大几何模型与九类题型(模型梳理与题型分类讲解)(人教版)(学生版)25学年八年级数学上册

等腰三角形八大几何模型与九类题型(模型梳理与题型分类讲解)(人教版)(学生版)25学年八年级数学上册

专题13.15等腰三角形八大几何模型与九类题型(模型梳理与题型分类讲解)第一部分【模型归纳与题型目录】模型1:角平分线+平行线→等腰三角形AB AC DCB ACB CDAB =⇒⎭⎬⎫∠=∠//模型2:角平分线+垂线→等腰三角形AB AC CAD BAD BCAD ABC =⇒⎭⎬⎫∠=∠⊥∆中,在模型3:三角形一个外角等于其中一个内角2倍⇔等腰三角形ABAC B DAC ABC DAC ABC =⇒∠=∠∆∠∆2外角,为中,在模型4:直角三角形中一锐角平分线+斜边上高线→等腰三角形CE CD CBD ABD AB CH ACB ABC =⇒⎭⎬⎫∠=∠⊥=∠∆,900中,在模型5:等边三角形中含定角问题60=∠⇒=∆AFE CE BD AC BC E D ABC 上的两个动点、是、中,在等边模型6:等边三角形中含“手拉手”AEBD AE BD DCE ABC =⇒∆∆、中,连接和等边在等边模型7:倍半角+角平分线→等腰三角形DC DB CBD ABD ACB ABC ACB ABC =⇒⎭⎬⎫∠=∠∠=∠=∠∆2900中,在模型8:倍长中线构造等腰三角形题型目录【题型1】角平分线+平行线→等腰三角形 (3)【题型2】角平分线+垂线(中线)→等腰三角形 (4)【题型3】三角形一个外角等于其中一个内角2倍⇔等腰三角形 (4)【题型4】直角三角形中一锐角平分线+斜边上高线→等腰三角形 (5)【题型5】等边三角形中含定角问题 (6)【题型6】等边三角形中含“手拉手” (7)【题型7】倍半角+角平分线→等腰三角形 (8)【题型8】倍长中线构造等腰三角形 (9)【题型9】拓展延伸 (9)第二部分【题型展示与方法点拨】【题型1】角平分线+平行线→等腰三角形【例1】(2024九年级下·浙江·专题练习)如图,在ABC V 中,AD 平分BAC ∠,AD BD ⊥于点D ,DE AC ∥交AB 于点E ,若8AB =,则DE =.【变式1】(2024·湖南娄底·模拟预测)如图,在ABC V 中,AD 平分CAB ∠,ED AB ∥.若ED CD =,15EAD ∠=︒,则ADB ∠等于()A .75︒B .60︒C .45︒D .90︒【变式2】(23-24八年级上·天津滨海新·期中)如图,在ABC V 中,ACB ∠的平分线交AB 于点E ,CF 平分ACD ∠,且EF BC ∥交AC 于点G ,若5cm CG =,则EF =cm .【题型2】角平分线+垂线→等腰三角形【例2】(23-24八年级上·福建龙岩·阶段练习)如图,在ABC V 中,CD 平分ACB ∠,CD BD ⊥,垂足为D ,180A CBD ∠+∠=︒,若5BD =,则AB 的长为()A .7B .8C .9D .10【变式1】(23-24八年级上·黑龙江哈尔滨·期中)如图,D 为ABC V 内一点,CD 平分ACB ∠,BE CD ⊥,垂足为D ,交AC 于点E ,A ABE ∠=∠,11AC =,7BC =,则BD 的长为()A .1B .1.5C .2D .2.5【变式2】(23-24八年级上·四川宜宾·期末)如图,CE 平分ACB ∠且CE DB ⊥于E ,DAB DBA ∠=∠,若14AC =,CDB △的周长为20,则DB 的长为.【题型3】三角形一个外角等于其中一个内角2倍⇔等腰三角形【例3】(23-24八年级上·吉林长春·期中)如图,在1ABA △中,1AB A B =,20B ∠=︒.在1A B 上取一点C ,延长1AA 到点2A ,使121A A AC =,连结2A C ;在2A C 上取一点D ,延长12AA 到点3A ,使232A A A D =,连结3A D ;……,按此操作进行下去,在以点5A 为顶角顶点的等腰三角形的底角的度数为()A .20︒B .10︒C .5︒D .2.5︒【变式1】(23-24八年级上·江苏盐城·期中)如图,在ABC V 中,BD BC =,AE AC =,100ACB ∠=︒,则DCE ∠的大小为.【变式2】(23-24八年级上·全国·单元测试)如图,在ABC V 中,AB AC =,36A ∠= ,BD 平分ABC ∠交AC 于点D ,DE AB ∥交BC 于点E ,EF BD ∥交CD 于点F ,则图中等腰三角形共有()A .5个B .6个C .7个D .8个【题型4】直角三角形中一锐角平分线+斜边上高线→等腰三角形【例4】(21-22八年级上·黑龙江哈尔滨·期中)如图,在ABC V 中,90BAC ∠=︒,30C ∠=︒,高AD 与角平分线BE 相交于点F .(1)求证:AEF △是等边三角形;(2)若2AE =,求AD 的长度.【变式1】(24-25八年级上·全国·假期作业)如图,在ABC V 中,90ACB ∠=︒,CD 是AB 边上的高,AE 是BAC ∠的角平分线,AE 与CD 交于点F ,求证:CEF △是等腰三角形.【变式2】(22-23八年级下·湖南永州·期末)如图,ABC V 中,90BAC AD BC ABC ∠=︒⊥∠,,的平分线BE 交AD 于点F ,AG 平分DAC ∠.给出下列结论:①BAD C ∠=∠;②AEF AFE ∠=∠;③EBC C ∠=∠;④AG EF ⊥;⑤AB GB =.正确结论有()个.A .2B .3C .4D .5【题型5】等边三角形中含定角问题【例5】(2024七年级下·上海·专题练习)如图,等边ABC V 中,=AD CE ,BD 和AE 相交于F ,BG AE ⊥垂足为G ,求FBG ∠的度数.【变式1】(23-24八年级下·河南郑州·期末)已知:如图,点D ,E 分别是等边三角形ABC 的两边AB AC ,上的点,且=AD CE .(1)求证:ADC CEB △≌△;(2)求BPC ∠的度数.【变式2】(2024·浙江杭州·二模)如图,ABC V 是等边三角形,D ,E 分别是AC ,BC 边上的点,且=AD CE ,连接BD ,AE 相交于点F ,则下列说法正确的是()①ABD CAE ≌ ;②60BFE ∠=︒;A .①B .②C .①②D .都错【题型6】等边三角形中含“手拉手”【例6】(23-24八年级下·陕西西安·阶段练习)如图所示,A 、C 、B 三点共线,DAC △与EBC 都是等边三角形,AE BD 、相交于点P ,且分别与CD CE 、交于点M ,N .(1)求证:ACE DCBV V ≌(2)求APD ∠的度数【变式1】(2024·重庆南岸·模拟预测)如图,,ABC CDE △△都是等边三角形,将CDE 绕点C 旋转,使得点,,A D E 在同一直线上,连接BE .若1,4BE AE ==,则CE 的长是.【变式2】(23-24八年级上·福建南平·期末)如图,ABC V 和ADC △都是等边三角形,点E ,F 分别在边BC 和CD 上,且60EAF ∠=︒,若AEF △的周长最小时,则BAE ∠的大小是.【题型7】倍半角→等腰三角形【例7】(22-23八年级上·北京·期中)如图,在ABC V 中,90ABC ∠=︒,D 为AB 上一个动点.(1)已知2A BCD ∠=∠,求证:2AD AC AB +=.下面是两位同学分享的思路:小快同学:从求证目标出发,倍长AB 到E ,即2AE AB =,又AE AD DE =+,则只需证DE AC =.小乐同学:从已知条件角的关系出发,发现若将BCD △关于直线BC 对称得到BCF V ,则可证ACF △为等腰三角形.请你选择一种思路,完成证明(2)已知AB BD AC +=,ACD α∠=,请直接写出A ∠的大小(用含α式子表示).【变式1】(23-24八年级上·黑龙江哈尔滨·期末)如图,ABC V 中,2C B ∠=∠,,AD AE 分别为ABC V 的高,角平分线,下列四个结论:①AC CD BD +=;②AC CD AB +=;③AC CE AB +=;④2B DAE ∠=∠.其中所有正确结论的序号是.【题型8】倍长中线构造等腰三角形模型【例8】(23-24八年级上·湖北武汉·期中)如图,A 是ABC 的中线,E 是A 上一点,BE 交AC 于F ,若EF AF =,8BE =,5CF =,则EF 的长度为()A .1.5B .2C .2.5D .3【变式】(22-23八年级上·湖北武汉·期中)如图,在ABC V 中,D 是BC 的中点,E 是AD 上一点,BE AC =,BE 的延长线交AC 于点F ,若60ACB ∠=︒,44DAC ∠=︒,则求FBC ∠的度数为.第三部分【拓展延伸】【题型9】拓展延伸【例1】(23-24八年级上·北京·期末)如图,ABC V 中,BF CF 、分别平分ABC ∠和ACB ∠,过点F 作DE BC ∥交AB 于点D ,交AC 于点E ,那么下列结论:①DFB DBF ∠=∠;②EFC 为等腰三角形;③ADE V 的周长等于BFC △的周长;④1902BFC A ∠∠=+ .其中正确的是【例2】(23-24八年级上·上海普陀·期末)【图形新发现】小普同学发现:如果一个三角形的一条角平分线与一条中线互相垂直,那么这个三角形的某两条边必有倍半关系.如图1,已知在ABC V 中,BD 是ABC V 的角平分线,AE 是ABC V 的中线,AE BD ⊥,垂足为点F .(1)根据图1,写出ABC V 中小普同学所发现的结论,并给出证明;【图形再探究】现将小普同学所研究的三角形称为“线垂”三角形,并将被这条内角平分线所平分的内角叫做“分角”.下面我们跟着小普同学再探究:(2)在如图1中,“线垂”三角形ABC 是否可以是直角三角形?如果可以,求DBC ∠的度数;如果不可以,请说明理由;(3)已知线段MN ,是否存在一点P ,使得以MN 为一边的“线垂”三角形PMN 为等腰三角形?如果存在,请在图2中用直尺和圆规做出PMN ∠为“分角”的“线垂”等腰三角形PMN (不写作法,仅保留作图痕迹,在图中清楚地标注出点P ),并用文字语言归纳表述成一条与“线垂”等腰三角形的边或角有关的真命题;如果不存在,请说明理由.。

《等腰直角三角形中的常用模型》

《等腰直角三角形中的常用模型》

等腰直角三角形中的常用模型一【知识精析】1、等腰直角三角形的特征:①边、角方面的特征:两直角边相等,两锐角相等(都是45º) ②边之间的关系:已知任意一边长,可得到其它两边长。

2、等腰直角三角形与全等三角形:以等腰直角三角形为背景的几何问题中,常常包含全等三角形,发现并证明其中的全等三角形往往是解题的关键突破口。

熟悉以下基本模型,对解决等腰直角三角形问题很有好处。

模型一:一条直线(不与三角形的边重合)过等腰直角三角形的直角顶点(1)以原等腰直角三角形的两直角边为对应斜边,必定可以构造一对全等的直角三角形:例1.如图:Rt ΔABC 中,∠BAC =90º,AB =AC ,点D 是BC 上任意一点,过B 作BE ⊥AD 于点E ,过C 作CF ⊥AD 于点F 。

(1)求证:BE-CF=EF ;(2)若D 在BC 的延长线上(如图(2)),(1)中的结论还成立吗?若不成立,请写出新的结论并证明。

如图1,等腰Rt △ABC 中,AB=CB ,∠ABC =90º,点P 在线段BC 上(不与B 、C 重合),以AP 为腰长作等腰直角△PAQ ,QE ⊥AB 于E ,连CQ 交AB 于M 。

(1)求证:M 为BE 的中点(2)若PC=2PB ,求MBPC的值(3)(1)(2)F ED C B AA B C DE F (1)(2)以原等腰直角三角形的两直角边为对应直角边,必定可以构造一对全等的直角三角形:3、如图:Rt ΔABC 中,∠BAC =90º,AB =AC ,点D 是BC 上任意一点,过B 作BE ⊥AD 于点E ,交AC 于点G ,过C 作CF ⊥AC 交AD 的延长线与于点F 。

(1)求证:BG=AF ;(2)若D 在BC 的延长线上(如图(2)),(1)中的结论还成立吗?若不成立,请写出新的结论并证明。

变式1:如图,在R t △ABC 中,∠ACB =45º,∠BAC =90º,AB=AC ,点D 是AB 的中点,AF ⊥CD于H 交BC 于F ,BE ∥AC 交AF 的延长线于E ,求证:BC 垂直且平分DE .变式2:等腰Rt △ABC 中,AC=AB ,∠BAC =90°,点D 是AC 的中点,AF ⊥BD 于点E ,交BC于点F ,连接DF ,求证:∠1=∠2。

等腰三角形中的分类讨论模型(解析版)--常见几何模型全归纳之模型解读

等腰三角形中的分类讨论模型(解析版)--常见几何模型全归纳之模型解读

等腰三角形中的分类讨论模型模型1、等腰三角形中的分类讨论:【知识储备】凡是涉及等腰三角形边、角、周长、面积等问题,优先考虑分类讨论,再利用等腰三角形的性质与三角形三边关系解题即可。

1)无图需分类讨论①已知边长度无法确定是底边还是腰时要分类讨论;②已知角度数无法确定是顶角还是底角时要分类讨论;③遇高线需分高在△内和△外两类讨论;④中线把等腰△周长分成两部分需分类讨论。

2)“两定一动”等腰三角形存在性问题:即:如图:已知A,B两点是定点,找一点C构成等腰△ABC方法:两圆一线具体图解:①当AB=AC时,以点A为圆心,AB长为半径作⊙A,点C在⊙A上(B,C除外)②当AB=BC时,以点B为圆心,AB长为半径作⊙B,点C在⊙B上(A,E除外)③当AC=BC时,作AB的中垂线,点C在该中垂线上(D除外)1(2023秋·河北张家口·八年级统考期末)△ABC是等腰三角形,AB=5,AC=7,则△ABC的周长为()A.12B.12或17C.14或19D.17或19【答案】D【分析】根据等腰三角形的定义分两种情况:当腰为5与腰为7时,即可得到答案.【详解】解:当△ABC的腰为5时,△ABC的周长5+5+7=17;当△ABC的腰为7时,△ABC的周长5+7+7=19.故选:D.【点睛】本题主要考查等腰三角形的定义,掌握等腰三角形的定义是解题的关键.2(2023春·四川巴中·七年级统考期末)等腰三角形的周长为32cm,一边长为8cm,则其它两边长是()A.8cm,16cmB.12cm,12cmC.8cm,16cm或12cm,12cmD.12cm,8cm【答案】B【分析】根据等腰三角形的性质和构成三角形的条件即可得.【详解】解:∵等腰三角形的周长为32cm,一边长为8cm,∴①当底边长为8cm时,其它两边长是32-82=12(cm),②当腰长为8cm时,其它两边长是8cm或32-2×8=16(cm),8+8=16,此时三边不能构成三角形,综上,其它两边长是12cm,12cm,故选:B.【点睛】本题考查了等腰三角形,构成三角形的条件,解题的关键是掌握这些知识点.3(2023秋·广东八年级课时练习)若△ABC是等腰三角形,∠A=36°,则∠C的度数是()A.72°或108°B.36°或72°C.108°或36°D.36°或72°或108°【答案】D【分析】根据等腰三角形性质分情况讨论即可得到答案.【详解】解:∵△ABC是等腰三角形,∠A=36°,∴当∠A是顶角时,∠C=∠B=180°-36°2=72°;当∠A是底角时,①当∠B=∠A=36°时,则∠C=180°-2×36°=108°;②∠C=∠A=36°;综上所述,∠C的度数是36°或72°或108°,故选:D.【点睛】本题考查利用等腰三角形性质求角度,根据等腰三角形性质分类讨论是解决问题的关键.4(2022秋·江苏南通·八年级启东市长江中学校考阶段练习)等腰三角形一腰上的高与另一腰的夹角为60°,那么这个等腰三角形的顶角的度数为.【答案】30°或150°【分析】根据题意画出图形,分别从锐角三角形与钝角三角形分析求解即可求出答案.【详解】根据题意得:AB=AC,BD⊥AC,如图(1)所示,∠ABD=60°,则∠A=30°,即顶角为30°;如图(2)所示,∠ABD=60°,则∠DAB=30°,∴∠BAC=150°,即顶角为150°;故答案为:30°或150°.【点睛】本题考查等腰三角形的性质,注意掌握分类讨论思想和数形结合思想的应用是解题的关键.5(2023秋·江苏·八年级专题练习)在如图所示的网格中,在格点上找一点P,使△ABP为等腰三角形,则点P有()A.6个B.7个C.8个D.9个【答案】C【分析】分三种情况讨论:以AB为腰,点A为顶角顶点;以AB为腰,点B为顶角顶点;以AB为底.【详解】解:如图:如图,以AB为腰,点A为顶角顶点的等腰三角形有5个;以AB为腰,点B为顶角顶点的等腰三角形有3个;不存在以AB为底的等腰△ABP,所以合计8个.故选:C.【点睛】本题考查等腰三角形的定义,网格图中确定线段长度;在等腰三角形腰、底边待定的情况下,分类讨论是解题的关键.6(2023·重庆市八年级期中)如图1,一副直角三角板△ABC和△DEF,∠BAC=∠EDF=90°,∠B=45°,∠F=30°,点B、D、C、F在同一直线上,点A在DE上.如图2,△ABC固定不动,将△EDF绕点D逆时针旋转α(0°<α<135°)得△E′DF',当直线E′F′与直线AC、BC所围成的三角形为等腰三角形时,α的大小为.【答案】7.5°或75°或97.5°或120°【分析】设直线E′F′与直线AC、BC分别交于点P、Q,根据△CPQ为等腰三角形,分三种情况:①当∠PCQ为顶角时,∠CPQ=∠CQP,如图1,可求得α=7.5°;如图2,△CPQ为等腰三角形中,∠PCQ为顶角,可求得α=∠EDE′=90°+7.5°=97.5°;②当∠CPQ为顶角时,∠CQP=∠PCQ=45°,可得∠CPQ =90°,如图3,进而求得α=90°-15°=75°;③如图4,当∠CQP为顶角时,∠CPQ=∠PCQ=45°,可得∠CQP=90°,进而求得α=∠EDE′=∠EDQ+∠QDE′=90°+30°=120°.【详解】解:设直线E′F′与直线AC、BC分别交于点P、Q,∵△CPQ为等腰三角形,∴∠PCQ为顶角或∠CPQ为顶角或∠CQP为顶角,①当∠PCQ为顶角时,∠CPQ=∠CQP,如图1,∵∠BAC=∠EDF=90°,∠B=45°,∠F=30°,∴∠E′DF′=90°,∠ACB=45°,∠E′F′D=30°,∵∠CPQ+∠CQP=∠ACB=45°,∴∠CQP=22.5°,∵∠E′F′D=∠CQP+∠F′DQ,∴∠F′DQ=∠E′F′D-∠CQP=30°-22.5°=7.5°,∴α=7.5°;如图2,∵△CPQ为等腰三角形中,∠PCQ为顶角,∴∠CPQ=∠CQP=67.5°,∵∠E′DF′=90°,∠F′=30°,∴∠E′=60°,∴∠E′DQ=∠CQP-∠E′=67.5°-60°=7.5°,∴α=∠EDE′=90°+7.5°=97.5°;②当∠CPQ为顶角时,∠CQP=∠PCQ=45°,∴∠CPQ=90°,如图3,∵∠DE′F′=∠CQP+∠QDE′,∴∠QDE′=∠DE′F′-∠CQP=60°-45°=15°,∴α=90°-15°=75°;③如图4,当∠CQP为顶角时,∠CPQ=∠PCQ=45°,∴∠CQP=90°,∴∠QDF′=90°-∠DF′E′=60°,∴∠QDE′=∠E′DF′-∠QDF′=30°,∴α=∠EDE′=∠EDQ+∠QDE′=90°+30°=120°;综上所述,α的大小为7.5°或75°或97.5°或120°.故答案为:7.5°或75°或97.5°或120°.【点睛】本题考查了等腰三角形性质,直角三角形性质,旋转的性质,三角形内角和定理等,解题关键是运用数形结合思想和分类讨论思想思考解决问题.7(2022秋·江苏徐州·八年级校考期中)如图,∠AOB=70°,点C是边OB上的一个定点,点P在角的另一边OA上运动,当△COP是等腰三角形,∠OCP=°.【答案】40或70或55【分析】分三种情况讨论:①当OC=PC,②当PO=PC,③当OP=OC,根据等腰三角形的性质以及三角形内角和定理即可得到结论.【详解】解:如图,①当OC=PC时,∴∠COP=∠CPO=70°∴∠OCP=180°-∠OPC-∠COP=40°.②当PO=PC时,∠OCP=∠COP=70°;③当OP=OC时,∠OCP=180°-∠AOB2=55°;综上所述,∠OCP的度数为70°或40°或55°.故答案为:70或40或55.【点睛】本题考查了等腰三角形的性质以及三角形内角和定理,进行分类讨论是解题的关键.8(2023·安徽阜阳·八年级统考期末)在平面直角坐标系中,若点A0,4,B3,0,则AB=5.请在x轴上找一点C,使ΔABC是以AB为腰的等腰三角形,点C的坐标为.【答案】-3,0、-2,0或8,0【分析】分两种情况求解:①AB=AC,②AB=BC.【详解】解:①当AB=AC时,∵AO⊥BC,∴OC=BO=3,∴C(-3,0);②当AB=BC=5时,若点C在B点左侧,CO=BC-BO=2,此时点C的坐标为(-2,0);若点C在B点右侧,CO=BO+BC=8,此时点C的坐标为(8,0).综上所述,满足条件的点C有3个.故答案为:-3,0、-2,0或8,0.【点睛】本题考查了等腰三角形的性质、坐标与图形性质以及分类讨论,做题时需注意两点,一是注意点C 必须位于x轴上,二是注意不能漏解,应分AB=AC与AB=BC两种情况分别解答,难度适中.9(2023·江苏苏州·八年级校考期中)如图,△ABC中,∠ACB=90°,AB=5cm,BC=4cm,若点P从点A出发,以每秒2cm的速度沿折线A-B-C-A运动,设运动时间为t秒(t>0).(1)若点P 在BC 上,且满足PA =PB ,求此时t 的值;(2)若点P 恰好在∠ABC 的角平分线上,求此时t 的值:(3)在运动过程中,当t 为何值时,△ACP 为等腰三角形.【答案】(1)6516(2)316或52(3)54或32或95或3【分析】(1)设PB =PA =xcm ,则PC =4-x cm ,利用勾股定理求出AC =3cm ,在Rt △ACP 中,依据AC 2+PC 2=AP 2,列方程求解即可得到t 的值.(2)如图所示,当点P 在AC 上时,过P 作PD ⊥AB 于D ,设PD =PC =ycm ,则AP =3-y cm ,在Rt △ADP 中,依据AD 2+PD 2=AP 2,列方程求解即可得到t 的值.当点P 与点B 重合时,点P 也在∠ABC 的角平分线上,此时,t =AB 2=52.(3)分四种情况:当P 在AB 上且AP =CP 时,当P 在AB 上且AP =CA =3cm 时,当P 在AB 上且AC =PC 时,当P 在BC上且AC =PC =3cm 时,分别依据等腰三角形的性质即可得到t 的值.【详解】(1)解:如图,设PB =PA =xcm ,则PC =4-x cm ,∵∠ACB =90°,AB =5cm ,BC =4cm ,∴AC =AB 2-BC 2=3cm ,在Rt △ACP 中,由勾股定理得AC 2+PC 2=AP 2,∴32+4-x 2=x 2,解得x =258,∴BP =258,∴t =AB +BP 2=5+2582=6516;(2)解:如图所示,当点P 在AC 上时,过P 作PD ⊥AB 于D ,∵BP 平分∠ABC ,∠C =90°,PD ⊥AB ∴PD =PC ,∠DBP =∠CBP ,在△BCP 与△BDP 中,∠BDP =∠BCP∠DBP =∠CBP BP =BP,∴△BDP ≌△BCP AAS∴BC =BD =4cm ,∴AD =5-4=1cm ,设PD =PC =ycm ,则AP =3-y cm ,在Rt △ADP 中,由勾股定理得AD 2+PD 2=AP 2,∴12+y2=3-y2,解得y=43,∴CP=43,∴t=AB+BC+CP2=5+4+432=316,当点P与点B重合时,点P也在∠ABC的角平分线上,此时,t=AB2=52.综上所述,点P恰好在∠ABC的角平分线上,t的值为316或52.(3)解:分四种情况:①如图,当P在AB上且AP=CP时,∴∠A=∠ACP,∵∠A+∠B=90°,∠ACP+∠BCP=90°,∴∠B=∠BCP,∴CP=BP=AP,∴P是AB的中点,即AP=12AB=52cm,∴t=AP2=54.②如图,当P在AB上且AP=CA=3cm时,∴t=AP2=32.③如图,当P在AB上且AC=PC时,过C作CD⊥AB于D,∵S△ABC=12AC⋅BC=12AB⋅CD,∴CD=AC⋅BCAB=125cm,在Rt△ACD中,由勾股定理得AD=AC2-CD2=32-1252=95cm,∴AP=2AD=185cm,∴t=AP2=95.④如图,当P在BC上且AC=PC=3cm时,则BP=4-3=1cm,∴t=AB+BP2=62=3.综上所述,当t的值为54或32或95或3时,△ACP为等腰三角形.【点睛】本题属于三角形综合题,考查了角平分线的性质,等腰三角形的性质以及勾股定理的综合运用.画出图形,利用分类讨论的思想是解第(3)题的关键.10(2022春·四川成都·八年级校考期中)如图,在平面直角坐标系内,点O为坐标原点,经过A-2,6的直线交x轴正半轴于点B,交y轴于点C,OB=OC,直线AD交x轴负半轴于点D,若△ABD的面积为27(1)求直线AB的表达式和点D的坐标;(2)横坐标为m的点P在线段AB上(不与点A、B重合),过点P 作x轴的平行线交AD于点E,设PE的长为y y≠0,求y与m之间的函数关系式并直接写出相应的m 取值范围;(3)在(2)的条件下,在x轴上是否存在点F,使△PEF为等腰直角三角形?若存在求出点F的坐标;若不存在,请说明理由.【答案】(1)y=-x+4,D-5,0(2)y=32m+3,-2<m<4(3)存在,点F的坐标为25,0或-165,0或-87,0【分析】(1)据直线AB交x轴正半轴于点B,交y轴于点C,OB=OC,设直线AB解析式为y=-x+n,把A的坐标代入求得n的值,从而求得B的坐标,再根据三角形的面积建立方程求出BD的值,求出OD 的值,从而求出D点的坐标;(2)直接根据待定系数法求出AD的解析式,先根据B、A的坐标求出直线AB的解析式,将P点的横坐标代入直线AB的解析式,求出P的纵坐标,将P的纵坐标代入直线AD的解析式就可以求出E的横坐标,根据线段的和差关系就可以求出结论;(3)要使△PEF为等腰直角三角形,分三种情况分别以点P、E、F为直角顶点,据等腰直角三角形的性质求出(2)中m的值,就可以求出F点的坐标.【详解】(1)解:∵OB=OC,∴设直线AB的解析式为y=-x+n,∵直线AB经过A-2,6,∴2+n=6,∴n=4,∴直线AB的解析式为y=-x+4,∴B4,0,∴OB=4,∵△ABD的面积为27,A-2,6,∴S△ABD=12×BD×6=27,∴BD=9,∴OD=5,∴D-5,0,∴直线AB的解析式为y=-x+4,D-5,0(2)解:设直线AD的解析式为y=ax+b,∵A-2,6,D-5,0∴-2a+b=6-5a+b=0,解得a=2b=10.∴直线AD的解析式为y=2x+10;∵点P在AB上,且横坐标为m,∴P m,-m+4,∵PE∥x轴,∴E的纵坐标为-m+4,代入y=2x+10得,-m+4=2x+10,解得x=-m-62,∴E-m-62,-m+4,∴PE的长y=m--m-62=3m2+3;即y=32m+3,-2<m<4;(3)解:在x轴上存在点F,使△PEF为等腰直角三角形,①当∠FPE=90°时,如图①,有PF=PE,PF=-m+4,PE=32m+3,∴-m+4=32m+3,解得m=25,此时F25,0;②当∠PEF=90°时,如图②,有EP=EF,EF的长等于点E的纵坐标,∴EF=-m+4,∴-m+4=32m+3,解得:m=25,∴点E的横坐标为x=-m-62=-165,∴F-165,0;③当∠PFE=90°时,如图③,有FP=FE,∴∠FPE=∠FEP.∵∠FPE+∠EFP+∠FEP=180°,∴∠FPE=∠FEP=45°.作FR⊥PE,点R为垂足,∴∠PFR=180°-∠FPE-∠PRF=45°,∴∠PFR=∠RPF,∴FR=PR.同理FR=ER,∴FR= 12PE.∵点R与点E的纵坐标相同,∴FR=-m+4,∴-m+4=1232m+3,解得:m=107,∴PR=FR=-m+4=-107+4=187,∴点F的横坐标为107-187=-87,∴F-87,0.综上,在x轴上存在点F使△PEF为等腰直角三角形,点F的坐标为25,0或-165,0或-87,0.【点睛】本题考查了等腰直角三角形的性质,三角形的面积公式的运用,待定系数法求一次函数的解析式的运用,解答本题时求出函数的解析式是关键.课后专项训练1(2023春·四川成都·七年级统考期末)等腰三角形的两边长分别为4cm和9cm,则这个三角形的周长为()A.22cmB.17cm或13cmC.13cmD.17cm或22cm【答案】A【分析】分4cm是腰长与底边长两种情况讨论求解.【详解】解:①4cm是腰长时,三角形的三边分别为4cm、4cm、9cm,因为4+4<9,故不能组成三角形;②4cm是底边长时,三角形的三边分别为4cm、9cm、9cm,能组成三角形,周长=4+9+9=22cm,综上所述,这个等腰三角形的周长是22cm.故选:A.【点睛】本题考查了等腰三角形的定义和三角形三边关系的应用,难点在于分情况讨论并利用三角形的三边关系判断是否能组成三角形.2(2023·浙江·八年级课堂例题)如图,P是射线ON上一动点,∠AON=30°,当△AOP为等腰三角形时,∠OAP的度数一定不可能是()A.120°B.75°C.60°D.30°【答案】C【分析】分AO=AP、AO=OP和OP=AP三种情况,利用等腰三角形的性质结合三角形的内角和定理解答即可.【详解】解:若△AOP为等腰三角形则有AO=AP、AO=OP和OP=AP三种情况,①当AO=AP时,则有∠O=∠APO=30°,故∠A=120°;②当AO=OP时,则∠A=∠APO=12180°-30°=75°;③当OP=AP时,则∠A=∠AON=30°,综上可知:∠A不可能为60°;故选:C.【点睛】本题考查了等腰三角形的性质和三角形的内角和定理,正确分类、熟练掌握等腰三角形的性质是解题的关键.3(2023·福建龙岩·八年级校考期中)在平面直角坐标系xOy中,点A2,0,B0,2,若点C在x轴上,且△ABC为等腰三角形,则满足条件的点C的个数为()A.1B.2C.3D.4【答案】D【分析】分为AB=AC、BC=BA,CB=CA三种情况画图判断即可.【详解】解:如图所示:当AB=AC时,符合条件的点有2个;当BC=BA时,符合条件的点有1个;当CB=CA,即当点C在AB的垂直平分线上时,符合条件的点有一个.故符合条件的点C共有4个.故选:D.【点睛】本题考查了等腰三角形的定义,线段垂直平分线的性质,熟练掌握线段垂直平分线的性质是解题的关键.4(2023·江苏八年级期中)如图,在正方形网格中,每个小正方形的边长都为1,点A、B都是格点(小正方形的顶点叫做格点),若△ABC为等腰三角形,且△ABC的面积为1,则满足条件的格点C有()A.0个B.2个C.4个D.8个【答案】C【分析】根据等腰三角形的性质和三角形的面积解答即可.【详解】解:如图所示:∵△ABC为等腰三角形,且△ABC的面积为1,∴满足条件的格点C有4个,故选C.【点睛】本题考查了等腰三角形的判定;熟练掌握等腰三角形的性质和三角形的面积是解决问题的关键5(2023·山东日照·八年级统考期末)如图,由8个全等的小长方形拼成一个大正方形,线段AB的端点都在小长方形的顶点上,若点C是某个小长方形的顶点,连接CA,CB,那么满足△ABC是等腰三角形的点C的个数是()A.3B.4C.5D.6【答案】D【分析】根据等腰三角形的判定即可得到结论.【详解】解:如图所示,使△ABP为等腰三角形的点P的个数是6,故选:D.【点睛】本题考查了等腰三角形的判定,正确的找出符合条件的点P是解题的关键.6(2022·山东青岛·统考二模)在平面直角坐标系中,O为坐标原点,点A的坐标为1,3,若M为x 轴上一点,且使得△MOA为等腰三角形,则满足条件的点M有()A.2个B.3个C.4个D.5个【答案】A【分析】分别以O、A为圆心,以OA长为半径作圆,与x轴交点即为所求点M,再作线段OA的垂直平分线,与坐标轴的交点也是所求的点M,作出图形,利用数形结合求解即可.【详解】解:如图,满足条件的点M的个数为2.故选A.【点睛】本题考查了坐标与图形的性质及等腰三角形的判定;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.7(2022·安徽淮北·九年级阶段练习)如图,在△ABC中,∠C=90°,BC=8,AC=6.若点P为直线BC上一点,且△ABP为等腰三角形,则符合条件的点P有( ).A.1个B.2个C.3个D.4个【答案】D【分析】根据勾股定理求出AB,分为三种情况:①AB=AP,②AB=BP,③AP=BP,得出即可.【详解】解:在△ABC中,∠B=90°,BC=8,AC=6,由勾股定理的:AC=AC2+BC2=62+82=10,如图,以点A为圆心,以10为半径画圆,交直线BC于两点,即点B和点P1;以点B为圆心,以10为半径画圆,交直线BC于两点,即点P2和P3;作线段AB的垂直平分线交直线BC与一点,即点P4;即共4个点,故选:D【点睛】本题考查了等腰三角形的判定和勾股定理的应用,关键要用分类讨论的思想.8(2022·黑龙江·哈尔滨八年级阶段练习)如图,在平面直角坐标系中,点A的坐标为1,1,在x轴上确定点P,使△AOP为等腰三角形,则符合条件的点P有()A.2个B.3个C.4个D.5个【答案】C【分析】先计算OA的长,再以OA为腰或底分别讨论,进而得出答案.【详解】解:如图,OA=12+12=2,当AO=OP1,AO=OP3时,P1(-2,0),P3(2,0),当AP2=OP2时,P2(1,0),当AO=AP4时,P4(2,0),故符合条件的点有4个.故选:C.【点睛】本题以平面直角坐标系为载体,主要考查了勾股定理和等腰三角形的定义,属于常考题型,全面分类、掌握解答的方法是关键.9(2022·四川广元·八年级期末)如图,在Rt△ABC中,∠ACB=90°,∠CAB=36°,以C为原点,C所在直线为y轴,BC所在直线为x轴建立平面直角坐标系,在坐标轴上取一点M使△MAB为等腰三角形,符合条件的M点有()A.6个B.7个C.8个D.9个【答案】C【分析】根据等腰三角形的判定,“在同一三角形中,有两条边相等的三角形是等腰三角形(简称:在同一三角形中,等边对等角)”分三种情况解答即可.【详解】解:如图,①以A为圆心,AB为半径画圆,交直线AC有二点M1,M2,交BC有一点M3,(此时AB=AM);②以B为圆心,BA为半径画圆,交直线BC有二点M5,M4,交AC有一点M6(此时BM=BA).③AB的垂直平分线交AC一点M7(MA=MB),交直线BC于点M8;∴符合条件的点有8个.故选:C.【点睛】本题考查了等腰三角形的判定;构造等腰三角形时本着截取相同的线段就能作出等腰三角形来,思考要全面,做到不重不漏.10(2023春·山东泰安·七年级统考期末)等腰三角形的一角为30°,则其顶角的大小是.【答案】120°或30°【分析】等腰三角形的一个内角是30°,则该角可能是底角,也可能是顶角,注意讨论即可.【详解】解:分两种情况:当30°的角是底角时,180°-30°×2=120°,则顶角度数为120°;当30°的角是顶角时,则顶角为30°;故答案为:120°或30°.【点睛】本题考查等腰三角形的性质,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.11(2023·四川凉山·八年级校考期中)等腰三角形一腰上的高与另一腰的夹角是36°,则底角是.【答案】27°或63°【分析】等腰三角形的高相对于三角形有三种位置关系:三角形的内部、三角形的边上、三角形的外部,根据条件可知第二种高在三角形的边上这种情况不成立,因而应分两种情况进行讨论即可得解.【详解】解:①当高在三角形内部时,如图:∵BD⊥AC,∴∠ADB=90°,∵∠ABD=36°,∴∠A=90°-∠ABD=54°,∴∠ABC=∠C=12180°-54°=63°;②当高在三角形外部时,如图:∵BD ⊥AC ,∴∠ADB =90°,∵∠ABD =36°,∴∠DAB =90°-36°=54°,∴∠ABC =∠C =12∠DAB =12×54°=27°.∴综上所述,底角是27°或63°.故答案是:27°或63°.【点睛】本题主要考查了与三角形的高有关的计算、直角三角形两锐角互余、三角形外角的性质三角形的分类以及等腰三角形的性质,熟记三角形的高相对于三角形的三种位置关系是解题的关键.12(2023春·四川达州·八年级校考阶段练习)我们规定:等腰三角形的顶角与一个底角度数的比值叫作等腰三角形的“特征值”,记作k .若k =2,则该等腰三角形的顶角为度.【答案】90【分析】根据等腰三角形的性质和三角形的内角和即可得到结论.【详解】解:∵k =2,∴设顶角=2α,则底角=α,∴α+α+2α=180°,∴α=45°,∴该等腰三角形的顶角为90°,故答案为:90.【点睛】本题考查了等腰三角形的性质,掌握等腰三角形的两底角相等是解题的关键.13(2023春·四川达州·八年级校考阶段练习)如果等腰三角形一腰上的中线将其周长分别为12和9两部分,那么这个等腰三角形的腰和底的长分别是.【答案】6,9或8,5【分析】根据等腰三角形一腰上的中线将其周长分别为12和9两部分得到底和要的差是12-9=3,再根据周长列式求解即可得到答案;【详解】解:∵等腰三角形一腰上的中线将其周长分别为12和9两部分,∴腰与底的差为:12-9=3,①当底边比腰长时,设腰为x ,则底为x +3,由题意可得,x +3+2x =12+9,解得:x =6,x +3=6+3=9,②当腰比底边长时,设腰为x ,则底为x -3,由题意可得,x -3+2x =12+9,解得:x =8,x -3=8-3=5,故答案为:6,9或8,5.【点睛】本题主要考查三角形中线有关计算,解题的关键是得到腰长与底边之差再分类讨论.14(2022·黑龙江哈尔滨·八年级期末)在平面直角坐标系xOy 中,已知A (1,2),在y 轴确定点P ,使△AOP 为等腰三角形,则符合条件的点P 有个.【答案】4.【分析】根据等腰三角形的判定得出可能OA 为底,可能OA 为腰两种情况,依此即可得出答案.【详解】①以A 为圆心,以OA 为半径作圆,此时交y 轴于1个点(O 除外);②以O 为圆心,以OA 为半径作圆,此时交y 轴于2个点;③作线段AO 的垂直平分线,此时交y 轴于1个点;共1+2+1=4.故答案为:4.【点睛】本题考查了等腰三角形的判定的应用,有两边相等的三角形是等腰三角形,注意要进行分类讨论.15(2022秋·江苏盐城·八年级校考阶段练习)如图,△ABC 中,∠ACB =90°,AB =10cm ,AC =8cm ,若点P 从点A 出发,以每秒1cm 的速度沿折线A -C -B -A 运动,设运动时间为t 秒t >0 ,当点P 在边AB 上,当t =s 时,△BCP 是等腰三角形.【答案】19或20或21.2【分析】利用等腰三角形的性质,依次画图,分类讨论即可.【详解】∵∠ACB =90°,AB =10cm ,AC =8cm ,∴由勾股定理得:BC =AB 2-AC 2=102-82=36=6(cm ),当P 在BA 上时,①当BC =BP =6cm 时,如图,∴t =8+6+6 ÷1=20s ;②当BC =CP =6cm 时,过CD ⊥PB 于点D ,如图,∴BD =DP =12BP ,∵S △ABC =12AC ∙BC =12AB ∙CD ,∴CD =AC ∙BC AB=6×810=4.8,在Rt △CBD 中,由勾股定理得:BD =BC 2-CD 2=62-4.82=3.6cm ,∴BP =2BD =2×3.6=7.2cm ,∴t =8+6+7.2 ÷1=21.2s ,③当BP =CP ,如图,∵∠ACB =90°,BP =CP ∴CP =BP =12AB =5cm ∴t =8+6+5 ÷1=19s 综上可知:t 的值为:19或20或21.2.,故答案为:19或20或21.2.【点睛】此题考查了等腰三角形的判定与性质、角平分线的性质、勾股定理,解题时需要作辅助线构造直角三角形以及等腰三角形,熟练掌握等腰三角形的判定与性质,进行分类讨论是解题的关键.16(2022秋·江苏扬州·八年级统考阶段练习)如图,在Rt △ABC 中,∠ACB =90°,AB =5cm ,AC =3cm ,动点P 从点B 出发,沿射线BC 以1cm/s 的速度运动,设运动时间为ts ,当t =s 时,△ABP 是以AB 为腰的等腰三角形.【答案】5或8【分析】△ABP 是以AB 为腰的等腰三角形时,分两种情况:①当AB =BP 时;②当AB =AP 时,分别求出BP 的长度,继而可求得t 值.【详解】解:在Rt △ABC 中,∠ACB =90°,AB =5cm ,AC =3cm ,∴BC =AB 2-AC 2=52-32=4cm ,①当AB =BP 时,如图1,则t =5;②当AB =AP 时,BP =2BC =8cm ,t =8故答案为:5或8.【点睛】本题考查了勾股定理以及等腰三角形的知识,解答本题的关键是掌握等腰三角形的性质,以及分情况讨论,注意不要漏解.17(2022·河南平顶山·八年级期末)如图,△ABC 中,∠C =90°,BC =6,∠ABC 的平分线与线段AC 交于点D ,且有AD =BD ,点E 是线段AB 上的动点(与A 、B 不重合),连接DE ,当△BDE 是等腰三角形时,则BE 的长为.【答案】4或43##43或4【分析】现根据已知条件得出∠CBD=∠ABD=∠BAD=30°,再根据BC=6,分别求出AB、AC、BD、AD、CD的长,然后分类讨论即可.【详解】解:∵△ABC中BD平分∠ABC,∴∠CBD=∠ABD,∵BD=AD,∴∠ABD=∠BAD,∴∠CBD=∠ABD=∠BAD,∵∠ACB=90°,∴∠CBD+∠ABD+∠BAD=90°,∴∠CBD=∠ABD=∠BAD=30°,∵BC=6,∴AB=2BC=12,AC=AB2-BC2=122-62=63,∵∠CBD=30°,且BC=6,∴BD=2CD,∵BD2=CD2+BC2,即(2CD)2=CD2+62,∴CD=23,BD=2CD=2×23=43=AD;(1)当BE=BD=43时,如图:(2)当BE=DE,如图:∵BE=DE,∴∠EDB=∠ABD=30°,∴∠AED=∠EDB+∠ABD=60°,∴∠ADE=180°-∠AED-∠A=180°-60°-30°=90°,∴△ADE为直角三角形,又∵∠A=30°且AD=43,∴DE=4,∴BE=4;(3)当BD=DE,时,点E与A重合,不符合题意;综上所述,BE为4或43.故答案为:4或43.【点睛】本题考查了等腰三角形的性质,直角三角形的性质和判定,勾股定理的应用,30°直角三角形的性质的应用,按三种不同的情况进行讨论是解题的关键.18(2023·上虞市初二月考)在如图所示的三角形中,∠A=30°,点P和点Q分别是边AC和BC上的两个动点,分别连接BP和PQ,把△ABC分割成三个三角形△ABP,△BPQ,△PQC,若分割成的这三个三角形都是等腰三角形,则∠C有可能的值有个.【答案】7【分析】①当AB=AP,BQ=PQ,CP=CQ时;②当AB=AP,BP=BQ,PQ=QC时;③当APB,PB =BQ,PQ=CQ时;④AP=PB,PB=PQ,PQ=QC时;根据等腰三角形的性质和三角形的内角和即可得到结论.【解析】解:如图所示,共有9种情况,∠C的度数有7个,分别为80°,40°,35°,20°,25°,100°,50°.①当AB=AP,BQ=PQ,CP=CQ时;②当AB=AP,BP=BQ,PQ=QC时,③当AP=AB,PQ=CQ,PB=PQ时.④当AP=AB,PQ=PC,BQ=PQ时,⑤当AP=BP,CP=CQ,QB=PQ时,⑥当AP=PB,PB=BQ,PQ=CQ时;⑦AP=PB,PB=PQ,PQ=QC时.⑧AP=PB,QB=PQ,PQ=CC时.⑨BP=AB,PQ=BQ,PQ=PC时.【点睛】本题考查了等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键.19(2022·浙江·八年级专题练习)已知:如图,线段AC和射线AB有公共端点A.求作:点P,使点P在射线AB上,且ΔACP为等腰三角形.(利用无刻度的直尺和圆规作出所有符合条件的点P,不写作法,保留作图痕迹)【答案】见解析.【分析】分别作出①AP=CP;②AP=AC;③AC=CP即可.【详解】如图所示,点P1、P2、P3即为所求.【点睛】本题考查尺规作图-作等腰三角形.特别注意△ACP是等腰三角形的三种情况,避免漏答案.20(2022·山东·周村二中八年级期中)在同一平面内,若点P与△ABC三个顶点中的任意两个顶点连接形成的三角形都是等腰三角形,则称点P是△ABC的巧妙点.(1)如图,求作△ABC的巧妙点P(尺规作图,不写作法,保留作图痕迹).(2)如图,在△ABC中,∠A=80°,AB=AC,若点P是△ABC的巧妙点,则符合条件的点P一共有几个?请直接写出每种情况下∠BPC的度数.(3)等边三角形的巧妙点的个数有()A.2个B.6个C.10个D.12个【答案】(1)见解析;(2)6个;∠BPC的度数为40°或160°或140°或80°;(3)C.【分析】(1)根据线段垂直平分线的性质,作AB、AC的垂直平分线,交点P即为所求;(2)分别以点B、C为圆心,BC为半径画圆,以点A、B为圆心画圆,作出BC、AB的垂直平分线,交于P5,图中P1、P2、P3、P4、P5、P6即为所求,根据等腰三角形的性质分别求出∠BPC的度数即可得答案;(3)根据(2)中作图方法画出图形,即可得答案.【详解】(1)点P为所求,(2)如图:分别以点B、C为圆心,BC为半径画圆,以点A、B为圆心画圆,作出BC、AB的垂直平分线,交于P5,图中P1、P2、P3、P4、P5、P6即为所求,共6个,∵∠BAC=80°,AB=AC,P1P6是BC的垂直平分线,∠BAC=40°,∴∠ABC=∠ACB=50°,∠BP1A=∠CP1A,∠BAP5=12∵AP1=AB,∴∠P1BA=∠BP1A,∴∠BAP5=2∠P1BA=40°∴∠P1BA=20°,∴∠BP1C=2∠P1BA=40°,∵AP2=AC,BP2=BC,∴∠AP2C=∠ACP2,∠BP2C=∠BCP2,∴∠AP2C+∠BP2C=∠ACP2+∠BCP2,∴∠BP2A=∠BCA=50°,∴∠ABP2=∠ABC=50°,∴∠P2BC=100°,(180°-∠P2BC)=40°,同理可得:∠BP3C=40°,∴∠BP2C=12∵∠BAP5=40°,AP5=BP5,∴∠ABP5=∠BAP5=40°∵∠ABP5=∠BAP5=40°,∴∠P5BC=∠ABC-∠ABP5=10°,∵BP5=CP5,∴∠BPC=180°-2∠P5BC=160°,∵AC=AP4,∠CAP4=40°,∴∠APC=70°,∴∠BPC=2∠APC=140°,∵AC=CP6,∴∠AP6C=∠CAP6=40°,∴∠BP6C=2∠AP6C=80°.综上所述:∠BPC的度数40°或80°或140°或160°.(3)如图所示,分别以等边三角形的三条边作其对应边的垂直平分线,再分别以等边三角形的三个顶点为圆心,等边三角形的边长为半径画圆,分别与三条边的垂直平分线的交点和三条垂直平分线的交点即为等边三角形的巧妙点,共有10个,故选:C.【点睛】本题主要考查垂直平分线的性质、等腰三角形的性质,构建等腰三角形的作法:定顶点,定圆心;定腰,定半径;以及等边三角形的性质等.熟练掌握相关性质是解题关键.21(2022·黑龙江密山·八年级期末)如图,直线MN与x轴、y轴分别相交于B、A两点,OA-6+OB-82=0.(1)求A,B两点的坐标;(2)若点O到AB的距离为245,求线段AB的长;(3)在(2)的条件下,x轴上是否存在点P,使△ABP是以AB为腰的等腰三角形,若存在请直接写出满足条件的点P的坐标.【答案】(1)A(0,6),B(8,0);(2)AB=10;(3)存在,(-8,0)、(-2,0)、(18,0).【分析】(1)由非负数的性质知OA=6,OB=8,据此可得点A和点B的坐标;(2)根据S△OAB=12AB∙d=1 2∙OA∙OB求解可得;(3)先设点P(a,0),根据A(0,6),B(8,0)得PA2=a2+62,PB2=a-82,AB2=102=100,再分PA=AB和AB=PB两种情况分别求解可得.(1)∵OA-6+OB-82=0∴OA-6=0OB-8=0∴OA=6OB=8则A点的坐标为A(0,6),B点的坐标为(8,0)(2)∵S△OAB=12AB∙d=12∙OA∙OB,d=245∴AB=OA∙OBd=6×8245=10(3)存在点P,使△ABP是以AB为腰的等腰三角形设点P(a,0),根据A(0,6),B(8,0)得PA2=a2+62,PB2=a-82,AB2=102=100①若PA=AB,则PA2=AB2,即a2+62=100,解得a=8(舍)或a=-8,此时点P(-8,0);②若AB=PB,即AB2=PB2,即100=a-82解得a=18或a=-2,此时点P(18,0)或(-2,0);综上,存在点P,使△ABP使以AB为腰的等腰三角形,其坐标为(-8,0)或(18,0)或(-2,0).【点睛】本题考察了非负数的性质、直角三角形的面积求法、勾股定理及等腰三角形的性质,分类讨论思想的运用是解决第3问的关键。

等腰三角形的五个模型(最新整理)

1等腰三角形1.(1)已知:等腰三角形的一个内角为140°,那么另外两个角的度数为:__________(2)等腰三角形有一个内角是70,那么它的顶角为:__________(3)等腰三角形的周长为30,其中一边长为14,那么底边的长:__________(4)等腰三角形,它的两条边长分别为2和4,那么它的周长为: 2.如图,在△ABC 中,∠ABC 和∠ACB 的平分线交于点O,过点O 作EF ∥BC,交AB 于E,交AC 于F,AB=9,AC=8.求:(1)图中有几个等腰三角形,(2)AEF 的周长。

并说明理由。

模型一:角平分线+平行线→等腰三角形3、如图,已知平分,平分,,且过点,若BO CBA ∠CO ACB ∠MN BC ∥O ,,则的周长是.12AB =14AC =AMN △4、如图2,△ABC 中,AB =AC ,在AC 上取点P ,过点P 作EF ⊥BC ,交BA 的延长线于点E ,垂足为点F .求证:AE =AP .5、如图3,在△ABC 中,∠BAC ,∠BCA 的平分线相交于点O ,过点O 作DE ∥AC ,分别交AB ,BC 于点D ,E .试猜想线段AD ,CE ,DE 的数量关系,并说明你的猜想理由.6、如图4,△ABC 中,AD 平分∠BAC ,E ,F 分别在BD ,AD 上,且DE =CD ,EF =AC .求证:EF ∥AB .模型二 角平分线+垂线→等腰三角形当一个三角形中出现角平分线和垂线时,我们就可以寻找到等腰三角形.1、如图5中,若AD 平分∠BAC ,AD ⊥DC ,则△AEC 是等腰三角形.2、如图6,已知等腰R t△ABC 中,AB =AC ,∠BAC =90°,BF 平分∠ABC ,CD ⊥BD 交BF 的延长线于D .求CABE DO图3图4B FCD EA图2F BACPE 图6BFDCA E图5AB CD2证:BF =2CD .模型三 作倍角的平分线→等腰三角形当一个三角形中出现一个角是另一个角的2倍时,我们就可以作倍角的平分线寻找到等腰三角形.1、如图7中,若∠ABC =2∠C ,如果作BD 平分∠ABC ,则△DBC 是等腰三角形.2、如图8,△ABC 中,∠ACB =2∠B ,BC =2AC .求证:∠A =90°. 模型四 “以角平分线为轴翻折”构造全等三角形如图,在中,平分,AB=AC+CD ,求:的值.ABC △AD BAC ∠B C ∠:∠模型五 “角平分线 + 垂线”构造全等三角形或等腰三角形1.根据角平分线的性质作垂线:自角的平分线上任意一点向角的两边作垂线,得到两个全等的直角三角形;2.根据等腰三角形的“三线合一”性质作垂线:自角的一边上任意一点作角平分线的垂线,使之与另一边相交,则截的一个等腰三角形.如图4,在四边形中,,,平分.ABCD BC BA >AD DC =BD ABC ∠求证:.180A C ︒+=∠∠CB图7DA图8CBAABCDA BCD(图4)。

(基础版)等腰直角三角形中的基本模型

基础版)等腰直角三角形中的基本模型等腰直角三角形是一种特殊的三角形,具有两条边长度相等且与底边垂直的特点。

对于等腰直角三角形,我们可以有一些基本模型来帮助我们理解和解决相关问题。

1.基本定义等腰直角三角形具有以下特点:两条边的长度相等,称为腰;底边与两条腰垂直相交,形成一个直角。

2.边长关系设等腰直角三角形的腰长为 *a*,底边长为 *b*。

由勾股定理可知:a^2 + a^2 = b^2*,即 *2a^2 = b^2*;则 *a = \sqrt{\frac{b^2}{2}}*。

3.高的计算等腰直角三角形的高即为顶点到底边的垂直距离。

根据几何关系可知,高等于腰的一半,即高 *h* 和腰 *a* 的关系为:h = \frac{a}{2}*。

4.面积计算等腰直角三角形的面积可以通过底边长和高的关系来计算,即面积 *S* 和底边长 *b*、高 *h* 的关系为:S = \frac{b \cdot h}{2}*。

5.例题解析例题 1已知等腰直角三角形的底边长为 8 cm,求其面积。

解析:根据高的计算公式,高 *h* 等于底边长的一半,即 *h =\frac{8}{2} = 4*。

代入面积公式可得:S = \frac{8 \cdot 4}{2} = 16*。

所以,等腰直角三角形的面积为 16 平方厘米。

例题 2已知等腰直角三角形的腰长为 6 cm,求其底边长和面积。

解析:根据边长关系公式,底边长 *b* 等于 *a* 的平方根的两倍,即*b = 2 \cdot \sqrt{\frac{6^2}{2}} = 12*。

代入面积公式可得:S = \frac{12 \cdot \frac{6}{2}}{2} = 18*。

所以,等腰直角三角形的底边长为 12 厘米,面积为 18 平方厘米。

6.总结等腰直角三角形是一种特殊的三角形,在解题过程中可以利用基本定义、边长关系、高的计算和面积计算等基本模型来求解相关问题。

通过掌握这些基本模型,我们可以更好地理解和应用等腰直角三角形的概念和性质。

等腰直角三角形中的常用模型

等腰直角三角形中的常用模型模型一:一条直线(不与三角形的边重合)过等腰直角三角形的直角顶点(1)以原等腰直角三角形的两直角边为对应斜边,必定可以构造一对全等的直角三角形:例1.如图:Rt ΔABC 中,∠BAC =90º,AB =AC ,点D 是BC 上任意一点,过B 作BE⊥AD 于点E ,过C 作CF ⊥AD 于点F 。

(1)求证:BE-CF=EF ;(2)若D 在BC 的延长线上(如图(2)),(1)中的结论还成立吗若不成立,请写出新的结论并证明。

1.如图1,等腰Rt △ABC 中,AB=CB ,∠ABC =90º,点P 在线段BC 上(不与B 、C 重合),以AP 为腰长作等腰直角△PAQ ,QE ⊥AB 于E ,连CQ 交AB 于M 。

(1)求证:M 为BE 的中点(2)若PC=2PB ,求MBPC的值(2)以原等腰直角三角形的两直角边为对应直角边,必定可以构造一对全等的直角三角形:3、如图:Rt ΔABC 中,∠BAC =90º,AB =AC ,点D 是BC 上任意一点,过B 作BE ⊥AD 于点E ,交AC 于点G ,过C 作CF ⊥AC 交AD 的延长线与于点F 。

(1)求证:BG=AF ;(2)若D 在BC 的延长线上(如图(2)),(1)中的结论还成立吗若不成立,请写出新的结论并证明。

变式1:如图,在R t △ABC 中,∠ACB =45º,∠BAC =90º,AB=AC ,点D 是AB 的中点,GG BACDEF(2)(1)F EDCBADEF FED (2)(1)CCABBA(2)FEDC B AAB C D E F(1)(2)(3)(1)DDEECEAAABAF⊥CD于H交BC于F,BE∥AC交AF的延长线于E,求证:BC垂直且平分DE.变式2:等腰Rt△ABC中,AC=AB,∠BAC=90°,点D是AC的中点,AF⊥BD于点E,交BC于点F,连接DF,求证:∠1=∠2。

《等腰直角三角形中的常用模型》

等腰直角三角形中的常用模型一【知识精析】1、等腰直角三角形的特征:①边、角方面的特征:两直角边相等,两锐角相等(都是45º)②边之间的关系:已知任意一边长,可得到其它两边长。

2、等腰直角三角形与全等三角形:以等腰直角三角形为背景的几何问题中,常常包含全等三角形,发现并证明其中的全等三角形往往是解题的关键突破口。

熟悉以下基本模型,对解决等腰直角三角形问题很有好处。

模型一:一条直线(不与三角形的边重合)过等腰直角三角形的直角顶点(1)以原等腰直角三角形的两直角边为对应斜边,必定可以构造一对全等的直角三角形:例1.如图:RtΔABC中,∠BAC=90º,AB=AC,点D是BC上任意一点,过B作BE⊥AD于点E,过C作CF⊥AD于点F。

(1)求证:BE-CF=EF;(2)若D在BC的延长线上(如图(2)),(1)中的结论还成立吗?若不成立,请写出新的结论并证明。

2.如图1,等腰Rt△ABC 中,AB=CB ,∠ABC =90º,点P 在线段BC 上(不与B、C 重合),以AP 为腰长作等腰直角△PAQ ,QE ⊥AB 于E ,连CQ 交AB 于M 。

(1)求证:M 为BE 的中点(2)若PC=2PB,求MBPC的值(2)以原等腰直角三角形的两直角边为对应直角边,必定可以构造一对全等的直角三角形:3、如图:RtΔABC 中,∠BAC =90º,AB =AC ,点D 是BC 上任意一点,过B 作BE ⊥AD 于点E ,交AC 于点G ,过C 作CF ⊥AC 交AD 的延长线与于点F 。

(1)求证:BG=AF ;(2)若D 在BC 的延长线上(如图(2)),(1)中的结论还成立吗?若不成立,请写出新的结论并证明。

变式1:如图,在R t△ABC中,∠ACB=45º,∠BAC=90º,AB=AC,点D是AB的中点,AF⊥CD 于H交BC于F,BE∥AC交AF的延长线于E,求证:BC垂直且平分DE.变式2:等腰Rt△ABC中,AC=AB,∠BAC=90°,点D是AC的中点,AF⊥BD于点E,交BC 于点F,连接DF,求证:∠1=∠2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等腰三角形经典模型
1.角平分线+平行:如图,在△ABC中,∠ACB和∠ABC
的平分线交于点E,过点E作MN∥BC角AB于M,交AC
于N,若BM+CN=9,则线段MN的长为()
A.6B.7C.8D.9
2.两圆一中垂:在平面直角坐标系x0y中,已知点A(2,3),在坐标轴上找一点P,使得△AOP是等腰三角形,则这样的点P共有个。
则DE=
拔高创新讲练:
1.如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每
秒3cm的速度向点A运动,点Q从点A同时出发以每秒2cm的速
度向点C运动,其中一个动点到达终点时,另一个动点也随之停止
运动,当APQ是以AP、AQ为腰的等腰三角形是,运动的时间是
2. 如图,在Rt△ABC中,AB=AC,∠A=90°,O为BC的中点.
求证:△OMN是等腰三角形。
8. 如图,在四边形ABCD中,AD=4,BC=1,∠A=30°,
∠ADC=120°,试求CD的长
3.等边三角形类弦图问题:如图,E、F分别是等边三角
形ABC的边AB,AC上的点,且BE=AF,CE、BF交于点P.
(1)求证:CE=BF(2)求∠BPC的度数。
4.绕直角顶点旋转:如图,在△ABC中,AB=CB,∠ABC
=90°,F为AB延长线上一点,点E在BC上,且AE=CF.
(1)求证:Rt△ABE≌Rt△CBF
与BC之间的距离是
5.已知,如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,
DE=DG,△ADG和△AED的面积分别是50和38,则△EDF的面
积是()
A.8B.12C.4D.6
6.利用角平分线构造全等三角形:如图,△ABC中,AD平分
∠BAC,若AB+BD=AC,则∠B:∠C=:
7.给出角平分线和垂直关系,补全等腰:已知,如图,
D为△ABC内一点,CD平分∠ACB,BD⊥CD,∠A=∠ABD,
若AC=8,BC=5,则BD的长为
8.截长补短:
已知,如图,BD是△ABC的角平分线,AB=AC,
若BC=BA+
D是BC边的中点,点E在AC的延长线上,且∠E=30°.若AD=
求证:DE-DF= BC
4.如图,△ABC是等边三角形,△BDC是等腰三角形,BD=CD,
∠BDC=120°,以点D为顶点作一个60角,角的两边分别交
AB、AC于MN两点,连接MN.
(1)探究BM、MN、NC之间的数量关系,并说明理由.
(2)若△ABC的边长为2,求△AMN的周长.
5.如图,△ABC是等边三角形,延长BC至点E,延长BA至
8.将一张矩形纸片折叠成如图所示的图形,若AB=6cm,
则AC=
几何辅助线技巧
1. 如图,已知AB=DC,DB=AC,
(1).求证:∠ABD=∠DCA
2.已知,如图,△ABC中,C=90°,点O为ABC的3
条角平分线的交点,OD⊥BC,OE⊥AC,OF⊥AB,点
D、E、F分别是垂足,且AB=10,BC=8,CA=6,则点
(1).写出点O到△ABC的三个顶点A、B、C的距离关系
(不必证明)
(2).如果点M、N分别在线段AB、AC上移动,在移动
过程中保持AN=BM,判断△OMN的形状,并证明.
3. 如图,在△ABC中,AB=AC,∠BAC=120°,D为BC
延长线上的一点.DE⊥AB,DF⊥AC,分别交BA的延长线
于点E,交AC的延长线于点F.
⑤△BFG是等边三角形;⑥FG∥AD。其中正确的有
()个A.3B.4C.5D.6
7.如图,在RtABC中,BAC=90°,AC=2AB,点D是AC的中点,
将一块锐角为45°的直角三角板如图放置,是三角板的两个端点
分别与A、D重合,连接BE、EC,试猜想线段BE和EC的数量
及位置关系,并证明你的猜想。
(2)若∠CAE=30°,求∠ACF的度数
5.等腰共定点问题:如图,△ABC是等边三角形,
D是AB边上一点,以CD为边作等边三角形CDE,
使点E、A在直线DC的同侧,连接AE.
求证:AE∥BC
6.如图,已知△ABC和△BDE都是等边三角形,且A、B、D三点共线,下列结论:①AE=CD;②BF=BG;③HB平分∠AHD;④∠AHC=60°;
O到三边AB、AC和BC的距离分别等于()
A.2、2、2B.3、3、3C.4、4、4D.2、3、5
3.已知,如图,在△ABC中,AB=5,AC=3,AD是BC边上的
中线,则AD的取值范围是:<AD<
4.已知,如图,AD∥BC,∠ABC的角平分线BP与∠BAD的角平
分线AP相交于点P,作PE⊥AB于点E.若PE=2,则两平行线AD
点F,使AF=BE,连接CF,EF,过点F作FD⊥CE于点D,探究
∠FCE与∠FEC之间的数量关系,并说明理由.
6.已知一个等腰三角形的一边上的高等于这边的一半,求顶角的度数。
7.已知,等腰三角形ABC中,AB=AC,AE:EM:MB=1:2:1,
AD:DN:NC=1:2:1,连接MD,NE交于点O,
相关文档
最新文档