含字母参数的分式方程专题导学案
2023年人教版数学五年级上册用字母表示数导学案(精选3篇)

人教版数学五年级上册用字母表示数导学案(精选3篇)〖人教版数学五年级上册用字母表示数导学案第【1】篇〗教学目标:1、通过在探究活动让学生初步理解用字母表示数的方法。
2、初步会用含有字母的式子表示简单的数量、数量关系和计算公式,并能根据字母所取的值口头求简单的含有字母的式子的值。
3、学生在完整地经历把实际问题用含有字母的式子表达的抽象过程中,进一步体会用字母表示数的简洁与便利,发展学生的符号感,进一步引发学生的数学思考。
4、联系生活实际,让学生在运用简单符号进行表达和交流的过程中,感受数学表达方式的严谨性、概括性及简洁性,从而增强学生进一步产生对数学的好奇心求知欲,进而形成稳定的数学学习兴趣。
教学准备:教学课件教学过程:一、导入1、我们先来看一首儿歌,自己读一读。
(1)你能接着说下去吗?(指名说2个,并出示课件)(2)还能接着说下去吗?能说完吗?(3)不过,老师就有个办法只用一句话就能数出所有的青蛙来?你们想知道吗?2、不要急,在今天这节课后,你也能办到的。
有信心学好吗?二、新授其实在我们的生活中像这样数不完的例子还有很多呢!我们一起来看看。
1、例1(课件出示1个用小棒摆成的三角形)(1)摆1个这样的三角形需要几根小棒?(2)摆2个这样的三角形呢?可以怎样列式?(3)你能接着往下说吗?(4)摆1000个呢?摆10000个呢?(5)如果用字母a表示三角形的个数,那摆a个三角形需要几根小棒?(6)为什么用a×3?(7)这里的a表示什么?a×3呢?(8)也就是说不管摆几个三角形,小棒根数总是三角形个数的3倍。
(9)a个三角形,那究竟是几个三角形呢?这里的a可以表示哪些数?可以是小数吗?(我觉得这里应该让孩子们自己讨论下会比较好)怎么样,用一句含有字母的话就把咱们数不完的事情给弄清楚了。
看来字母可真神奇呀,字母的魅力还不止这些呢,我们接着看!2、例2(出示例题的全部三个问题条件)(1)自己看题目,比较这三个问题有什么共同点?(这里还是加上“写出数量关系”比较好)(2)所以该怎样列式?(3)合唱组的人数是(24+X),这里的24表示什么?X呢?那24+X就表示?(4)根据写出的加法算式,书法组一共有多少人呢?舞蹈组呢?合唱组呢?(5)如果X=10,合唱组有多少人?X=14呢?(6)请同学们思考下,这里的字母X除了可以表示10或14,还可以表示其他的数吗?一个字母能表示这么多的数,简直太神奇了吧!接着体会它的奇妙之处!3、习题3(1)从这幅图中你得到哪些信息?(2)为什么用两个不同的字母表示?(3)独立填在自己的书上。
人教版八年级上数学第十五章分式分式方程导学案

人教版八年级上数学第十五章分式分式方程导学案一. 学习目标1、掌握分式方程的定义2、会解可化为一元一次方程的分式方程3、会解已知方程有增根时方程中有待定字母的值4、列分式方程解有关应用题二、重难点重点:掌握解分式方程的方法难点:分式方程的增根及其应用三、知识链接前面讲过的一元一次方程的解法,以及怎样在应用题中找等量关系四、学法指导注意分式方程向整式方程的转化五、学习过程(A级)(一)、基础知识梳理(1)分母中含有______的方程叫做分式方程。
(2)在方程变形时,有时可能产生不适合原方程的根,这种根叫做方程的____(3)解分式方程的思想:把分式方程转化为_______.(4)解分式方程的一般步骤①把方程两边都乘以_________,化成整式方程。
②解这个______方程。
③检验:把整式方程的根代入________,若使最简公分母的值为_____,则这个根是原方程的______,必须舍去,若_________不等于零,则它是________. (5)整式方程和__________叫做有理方程。
(二)注意事项2、由增根求参数值的解答思路:(1)将原方程化为整式方程(两边同时乘以最简公分母)(2)确定增根(题目已知或使分母为零的未知数的值)(3)将增根代入变形后的整式方程,求出参数的值。
(理由:增根是由分式方程化成的整式方程的根)3、列分式方程解应用题与列一元一次方程解应用题类似,但要稍复杂些,解题时应抓住“找等量关系,恰当设未知数,确定主要等量关系,用含未知数的分式或整式表示未知量”等关键环节,从而正确列出方程,并进行求解。
另外,还要注意从多角度思考,分析,解决问题,注意检验。
(三)典例解答(B 级)1、解方程:22321011x x x x x --+=--(B 级)2、解分式方程x x +27—23x x -=1+1722--x x点拨:找好最简公分母,注意对几个分母进行分解后,来找.(C 级)3、若关于x 的分式方程0111=----x x x m 有增根,则m 的取值是? 点拨:把分式方程进行转化,然后找到有可能的增根,代入。
八年级数学上册 15.3《分式方程》导学案3(新版)新人教版

八年级数学上册 15.3《分式方程》导学案3(新版)新人教版(一)教学知识点1、解分式方程的一般步骤,解分式方程验根的必要性、2、用分式方程的数学模型反映现实情境中的实际问题,用分式方程来解决现实情境中的问题、(二)能力训练要求1、通过具体例子,让学生独立探索方程的解法,经历和体会解分式方程的必要步骤、2、使学生进一步了解数学思想中的"转化"思想,认识到能将分式方程转化为整式方程,从而找到解分式方程的途径、3、经历运用分式方程解决实际问题的过程,发展抽象概括、分析问题和解决问题的能力、学习重点1、解分式方程的一般步骤,熟练掌握分式方程的解决、2、明确解分式方程验根的必要性、3、审明题意,寻找等量关系,将实际问题转化成分式方程的数学模型、学习难点1、明确分式方程验根的必要性、2、寻求实际问题中的等量关系,寻求不同的解决问题的方法、学习过程:一、知识梳理、分式方程:分母里含有未知数的方程叫分式方程。
注:分母中是否含有未知数是分式方程与整式方程的根本区别,分母中含未知数就是分式方程,否则就为整式方程。
2、解分式方程的一般步骤:(1)方程两边都乘以最简公分母,约去分母,化为整式方程。
(2)列整式方程,求得整式方程的根。
(3)验根:把求得的整式方程的根代入A,使最简公分母等于0的根是增根,否则是原方程的根。
(4)确定原分式方程解的情况,即有解或无解。
3、增根的概念:在分式方程去分母转化为整式方程的过程中,可能会增加使原分式方程中分式的分母为零的根,这个根叫原方程的增根,因此列分式方程一定要验根。
注:增根不是解题错误造成的。
4、列方程解应用题步骤:审、设、列、解、验、答。
二、基础知识练习解下列分式方程1、2、5、要使的值相等,则x=__________。
6、若关于x的分式方程无解,则m的值为__________。
7、A、B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程-------------8、A、B两地相距50千米,甲骑自行车,乙骑摩托车,都从A地到B地,甲先出发1小时30分,乙的速度是甲的2、5倍,结果乙先到1小时,求甲、乙两人的速度。
新人教版八年级数学上册《分式方程》导学案

《分式方程》导学案学习目标:1.使学生理解分式方程的意义.2.使学生掌握可化为一元一次方程的分式方程的一般解法.3.了解解分式方程解的检验方法.学习重点:(1)可化为一元一次方程的分式方程的解法.(2)分式方程转化为整式方程的方法及其中的转化思想学习难点:检验分式方程解的原因学习过程:一、自主学习:1.概念:分式方程:分母中含有 的方程叫分式方程。
2.练习:判断下列各式哪个是分式方程.(1)5x y += (2)2253x y z +-= (3)1x (4)05y x =+ 3. 看课本例题回答问题:轮船顺流航行的速度为 千米/时;逆流航行的速度为 千米/时,顺流航行 100千米所用的时间为 小时,逆流航行 60 千米所用的时间为 小时。
由两次航行所用时间相等,可列方程100602020v v =+- 二、合作探究1、观察课本生解题过程,思考:方程100602020v v=+-和()()100206020v v -=+中 V 的取值范围相同吗?所以对上题中的解 v=5 必须检验。
检验:将 v=5 代入原方程中,左边= 4,右边=4 ,左边 =右边,因此 v=5 是原方程的解。
注意:分式方程必须检验2、解方程:2110525x x =--小结:一般地,解分式方程时,去分母后所得整式方程的解有可能使原方程中分母为0,因此检验时常将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解,否则,这个解不是原分式方程的解,是原分式方程的增根三、学以致用1、解方程:(1)1223x x =+ (2)21133x x x x =+++(3)22411x x =-- (4)22510x x x x -=+-(5)572x x =- (6)11322xx x -=---四、能力提升:1、若关于 x 的分式方程1011m xx x --=--有增根, 则m 的取值是?点拨:把分式方程进行转化,然后找到有可能的增根,代入。
八年级数学上册 15.3 分式方程导学案3(新版)新人教版

八年级数学上册 15.3 分式方程导学案3(新版)新人教版15、3 分式方程学习目标1、使学生会解简单的字母系数的分式方程。
2、能应用分式方程的解法进行简单的公式变形。
3、正确分析实际问题中的数量关系、找准等量关系,进而列出分式方程。
学习重点:会解含字母系数的分式方程学习难点:明确解含哪一个字母(未知数)的分式方程学前准备:1、解关于x的方程:(1)(2)2、速度、距离、时间三者之间的关系导入:一、自主学习,合作交流例、从2004年5月起某列车平均提速v千米/时,用相同的时间,列车提速前行驶s千米,提速后比提速前多行驶50千米,提速前列车的平均速度为多少?分析:这里的字母v,s表示已知数据,设提速前列车的平均速度为x千米/时,先考虑下面的填空:提速前列车行驶s千米所用时间为小时,提速后列车的平均速度为千米/时,提速后列车运行(s+50)千米所用时间为小时、根据行驶时间的等量关系可以列出方程、二、精讲点拨根据学生交流的情况教师给予点拨跟踪练习:甲、乙两地相距19千米,某人从甲地去乙地,先步行7千米,然后改骑自行车,共用了2小时到达乙地,已知这个人骑自行车的速度是步行速度的4倍,求步行的速度和骑自行车的速度。
三、课堂检测1、解方程:(1)(2)纠错栏2、张明4小时清点完一批图书的一半,李强加入清点另一半图书的工作,两人合作1小时清点完另一半图书,如果李强单独清点这批图书需要几小时?四、课堂小结:1、本节课的收获有:2、本节课你不会做的题有:五、课后作业:必做题1、解方程(1)(2)2、甲、乙两人分别从距目的地6千米和10千米的两地同时出发,甲、乙的速度比是3:4,结果甲比乙提前20分到达目的地、求甲、乙的速度?选做题1、一个圆柱形容器的容积为V立方米,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用一根口径为小水管2倍的大水管注水,向容器中注满水的全过程共用时间t 分,求两根水管各自的注水速度。
分式方程的含参问题教案

分式方程的含参问题教案
一、教学目标
1. 掌握分式方程的解法,理解含参问题的解决方法。
2. 培养学生的数学思维能力和问题解决能力。
二、教学内容
1. 分式方程的基本概念。
2. 分式方程的解法。
3. 含参问题的解决方法。
三、教学重点与难点
重点:分式方程的解法。
难点:含参问题的解决方法。
四、教学过程
1. 导入新课
通过简单的例子引入分式方程的概念,让学生了解分式方程的基本形式和特点。
2. 新课讲解
(1)讲解分式方程的解法,包括去分母、去括号、移项、合并同类项等步骤。
(2)通过例题演示分式方程的解法,让学生理解并掌握分式方程的解法。
(3)引入含参问题的解决方法,包括参数的分类、参数的取值范围等。
3. 练习与巩固
(1)通过练习题让学生进一步掌握分式方程的解法。
(2)通过含参问题的练习,让学生了解如何处理含参问题,提高学生的解题能力。
4. 归纳与总结
对本节课的内容进行总结,强调分式方程的解法和含参问题的解决方法的重要性。
5. 布置作业
布置适量的练习题,让学生在家中继续巩固本节课所学内容。
五、教学评价
通过课堂练习和作业完成情况,评价学生对分式方程的解法和含参问题的解决方法的掌握情况,及时调整教学策略,提高教学效果。
八年级数学《分式方程》导学案

八年级数学《分式方程》导学案公式变形与字母系数方程【知识精读】含有字母系数的方程和只含有数字系数的一元一次方程的解法是相同的,但用含有字母的式子去乘以或除以方程的两边,这个式子的值不能为零。
公式变形实质上是解含有字母系数的方程对于含字母系数的方程,通过化简,一般归结为解方程型,讨论如下:(1)当时,此时方程为关于x的一元一次方程,解为:(2)当时,分以下两种情况:若,原方程变为,为恒等时,此时x可取任意数,故原方程有无数个解;若,原方程变为,这是个矛盾等式,故原方程无解。
含字母系数的分式方程主要有两类问题:(一)求方程的解,其中包括:字母给出条件和未给出条件:(二)已知方程解的情况,确定字母的条件。
下面我们一起来学习公式变形与字母系数方程【分类解析】1. 求含有字母系数的一元一次方程的解例1. 解关于x的方程分析:将x以外字母看作数字,类似解一元一次方程,但注意除数不为零的条件。
解:去分母得:移项,得2. 求含字母系数的分式方程的解例2. 解关于x的方程分析:字母未给出条件,首先挖掘隐含的条件,分情况讨论。
解:若a、b全不为0,去分母整理,得对是否为0分类讨论:(1)当,即时,有,方程无解。
(2)当,即时,解之,得若a、b有一个为0,方程为,无解若a、b全为0,分母为0,方程无意义检验:当时,公分母,所以当时,是原方程的解。
说明:这种字母没给出条件的方程,首先讨论方程存在的隐含条件,这里a、b全不为0时,方程存在,然后在方程存在的情况下,去分母、化为一元一次方程的最简形式,再对未知数的字母系数分类讨论求解。
当a、b中只有一个为0时,方程也存在,但无解;当a、b全为0时,方程不存在。
最后对字母条件归纳,得出方程的解。
3. 已知字母系数的分式方程的解,确定字母的条件例3. 如果关于x的方程有唯一解,确定a、b应满足的条件。
分析:显然方程存在的条件是:且解:若且,去分母整理,得当且仅当,即时,解得经检验,是原方程的解应满足的条件:且说明:已知方程有唯一解,显然方程存在的隐含条件是a、b全不为0,然后在方程存在的条件下,求有解且唯一的条件。
人教版八年级数学上册《分式》导学案:分式方程(第三课时)

人教版八年级数学上册《分式》导学案分式方程(第三课时)【学习目标】1.经历将实际问题中的等量关系用分式方程表示的过程;2.会列出分式方程解决简单的应用题,并掌握列分式方程解应用题的一般步骤;3.发展分析问题和解决实际问题的能力,体会数学的应用价值.【知识梳理】1.列分式方程解应用题的关键是找出题目中的 .2.分式方程解应用题的一般步骤:(1)审:审清题意,找 . (2)设:设未知数.(3)列:根据,列分式方程. (4)解:解分式方程.(5)检:检验所求的解是否为分式方程的解,并检验分式方程的解是否符合 .(6)答:写出答案.【典型例题】知识点一列分式方程解决实际问题1.某单位将沿街的一部分房租出租,每间房屋的租金相同.已知每间房屋的租金第二年比第一年多500元,所有房屋出租的租金第一年为9.6万元,第二年为10.2万元.(1)你能找出这一情境中的等量关系吗?(2)填表:设第一年每间房屋的租金为x元.(3)你能利用方程求出这两年每间房屋的租金各是多少吗?2.某农场开挖一条长960米的渠道,开工后工作效率比计划提高50%,结果提前4天完成任务.原计划每天挖多少米?【巩固训练】1.某市在道路改造过程中,需要铺设一条长为m 千米的管道,为了尽量减少施工对交通造成的影响,实际施工时,工作效率比原计划提高了n %,结果提前了8天完成任务,设原计划每天铺设管道x 千米,根据题意,下列方程正确的是( ) A.8%m m x n x-= B.8(1%)m m x n x -=+ C.8(1%)m m n x x -=+ D.8(1%)m m n x x -=- 2.为了改善生态环境,防止水土流失,某村计划在荒坡上种480棵树,由于青年志愿者的支援,每日比原计划多种 31 ,结果提前 4天完成任务,原计划每天种多少棵树?3.为解决“最后一公里”的交通接驳问题,北京市投放了大量公租自行车供市民使用.到2023年底,全市已有公租自行车25000辆,租赁点600个,预计到2025年底,全市将有公租自行车50000辆,并且平均每个租赁点的公租自行车数量是2023年底平均每个租赁点的公租自行车数量的1.2倍.预计到2025年底,全市将有租赁点多少个?4.为应对新冠疫情,某药店到厂家选购A 、B 两种品牌的医用外科口罩,B 品牌口罩每个进价比A 品牌口罩每个进价多0.7元,若用7200元购进A 品牌数量是用5000元购进B 品牌数量的2倍.(1)求A 、B 两种品牌的口罩每个进价分别为多少元?(2)若A 品牌口罩每个售价为2元,B 品牌口罩每个售价为3元,药店老板决定一次性购进A 、B 两种品牌口罩共6000个,在这批口罩全部出售后所获利润不低于1800元.则最少购进B 品牌口罩多少个?5.某服装店购进一批甲、乙两种款型时尚T 恤衫,甲种款型共用了7800元,乙种款型共用了6400元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少30元.(1)甲、乙两种款型的T 恤衫各购进多少件?(2)商店进价提高60%标价销售,销售一段时间后,甲款型全部售完,乙款型剩余一半,商店决定对乙款型按标价的五折降价销售,很快全部售完,求售完这批T 恤衫商店共获利多少元?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
15.3.1含字母参数的分式方程专题导学案
班级: 姓名:
解方程:
14105
52=-+-x x x
增根的定义:
1、____________________
2、____________________
类型一:分式方程有增根 例1:若关于x 的方程2222=-++-x
m x x 有增根,求m 的值。
方法归纳: (1)化分式方程为____________________; (2)根据________________,确定增根的值;
(3)解含参数方程方法:
① ___________________________; ② ___________________________。
练习1:如果关于x 的方程0221=----x
k
x x 有增根,则k 的值为_________ 练习2:若方程
211=-+-+x
x
x k x 有增根,则增根为_______,k 的值_______ 练习3:若关于x 的方程3
33112-=--+x k
x x x x 有增根,求增根和 k 的值。
类型二:分式方程无解 例2:若关于x 的方程4
3
2212-=++-x x k x 无解,求k 的值
练习4:如果关于x 的分式方程
2
1
32--=
+-x x x k 无解,求k 的值
类型三:分式方程的解为正数或者为负数(其他的限制条件)
例3:如果关于x 的方程1131=-+-x
x m 的
解为正数,则m 的取值范围?
提示:不要忘记保证____________(即________________)这个隐含条件。
方法归纳: (1)__________________________; (2)__________________________; (3)__________________________。
练习5:如果关于x 的方程
4
24-+=-x a x x 的解为正数,则a 的取值范围____________。
练习6:当a 的值为何值时,关于x 的方程)
3)(2(321+-+=+--+x x a
x x x x x 的解为负数?。