自动往复循环延时电机控制线路
电动机正反转,限时自动往返(时间继电器)控制电路接线图

电动机正反转,限时自动往返(时间继电器)控制电路接线图
如下图所示是一种由一台电动机在规定时间范围内作连续可逆的正反方向运转的自动控制电路。
图中用时间继电器KT1、KT2作时间控制元件,中间继电器KA1、KA2起中间控制作用。
合上电源开关Q 和旋转开关S,这时时间继电器KT1得电,中间继电器KA1得电吸合。
接触器KM1得电并吸合,电动机作正向限时运转。
待延时时间到,时间继电器KT1常闭延时断开触点断开,使中间继电器KA1断电,其触点KA1断开,接触器KM1线圈断电,主触点KM1断开,电动机瞬时停止正转。
电动机正反转,限时自动往返(时间继电器)控制电路接线图
在时间继电器KT1常闭延时断开触点断开的同时,其常开延时闭合触点KT1闭合,反转中间继电器KA2暂时得电吸合,其常开触点闭合自锁,并使时间继电器KT2得电,反转接触器KM2得电并吸合,电动机作反向限时运转。
待延时时间到,时间继电器KT2的常闭延时断开触点断开,使中间继电器KA2断电,接触器KM2断电,电动机瞬时停止反转。
由于中间继电器KA2的断电,其常闭触点复位,时间继电器KT1得电,中
间继电器KA1吸合,KM1得电吸合,电动机又处于正向限时运转状态。
这样周而复始重复前面工作过程,使电动机在规定时间内作连续可逆运转。
若需使电动机停止,可扳开旋转开关S,待KT2延时时间到,电动机停转。
本电路适用于在规定时间内作连续可逆运转的生产机械。
自动往返控制电路原理与稳定性图解

自动往返控制电路原理与稳定性图解简介自动往返控制电路是一种常见的电气控制系统,可以使电机快速实现轨迹往返运动。
本文将介绍自动往返控制电路的原理以及其稳定性的图解。
原理自动往返控制电路主要由触发器、计时器、继电器和电机组成。
其工作原理如下:1. 当触发器输入高电平信号时,触发器的输出从低电平变为高电平。
2. 高电平信号经过计时器延时后,触发继电器开闭。
3. 继电器打开后,电机启动,进行运动。
4. 当电机运动到所需位置时,触发器输入低电平信号,触发器的输出从高电平变为低电平。
5. 低电平信号经过计时器延时后,触发继电器开闭。
6. 继电器关闭后,电机停止运动。
稳定性图解自动往返控制电路的稳定性是衡量其控制效果的重要指标之一。
稳定性图解可以直观地展示电路的稳定性,以下是一个例子:图中横轴表示时间,纵轴表示电压。
从图中可见,在正常情况下,自动往返控制电路的输出稳定在高电平和低电平之间,且切换迅速,无明显的电压波动。
这说明电路的稳定性良好。
然而,如果电路受到外部干扰或电器元件老化导致工作不稳定,稳定性图会出现以下情况:1. 高电平或低电平持续时间缩短,切换频率增加。
2. 高低电平之间存在明显的电压波动。
3. 控制电路产生噪声,干扰其他设备。
当发现稳定性图中出现以上情况时,需要及时检查电路、元件和电源,以保证自动往返控制电路的正常运行。
总结自动往返控制电路是一种重要的电气控制系统,能够实现电机的快速往返运动。
本文介绍了自动往返控制电路的原理,并通过稳定性图解展示了其稳定性。
稳定性图解可以用于判断电路的稳定性,并及时进行故障排查和维修。
希望本文能对读者理解自动往返控制电路的原理和稳定性有所帮助。
限位开关控制自往返电路原理图解

限位开关控制自动往返电路原理图解
1、限位开关控制自动往复电路(1)
限位开关控制自动往复电路(1)工作原理:按起动按钮SB2,KM1吸合
并自保,电动机正转,带动机械设备左移。
当撞块碰压行程开关SQ2时,KM1断电,KM2得电吸合并自保,电动机反转,机械设备右移。
当撞块碰压行程开关SQ1时,KM2断电,KM1得电,电动机又正转左移。
SB1为停止按钮。
电路由按钮SB2、SB3及行程开关SQ1、 SQ2的动断触点实现了机械联锁,串联在交流接触器线圈KM1、KM2中的KM2、KM1辅助触点实现了电气联锁。
串联在控制电路中的FR常闭触点,是在电动机过负载或缺相过热时热继电器将控制电路自动断开,保护了电动机。
2、限位开关控制自动往复电路(2)
限位开关控制自动往复电路(2)电路工作原理:
按起动按钮SB2,KM1吸合并自保,电动机正转,带动机械设备左移。
当撞块碰压行程开关SQ2时,KM1断电,KM2得电吸合并自保,电动机反转,机械设备右移。
当撞块碰压行程开关SQ1时,KM2断电,KM1得电,电动机又正转左移。
SB1为停止按钮。
电路由按钮SB2、SB3及行程开关SQ1、 SQ2的动断触点实现了机械联锁,串联在交流接触器线圈KM1、KM2中的KM2、KM1辅助触点实现了电气联锁。
串联在控制电路中的FR常闭触点,是在电动机过负载或缺相过热时热继电器将控制电路自动断开,保护了电动机。
SQ3、SQ4S是左移和右移的终端位置行程开关。
电机控制线路安装与调试项目五自动往返控制线路安装课件

2. 固 定 安 装 电 气 元 件 检查所给电气元件是否良好,如有问题及时跟老师提出。在老师 指 导 下 在 亚 龙 YL-210-II 型 电 气 装 配 实 训 台 上 ,根 据 布 置 图 在 网 孔 板 上固定电气元件,如图 5-7 所示
3.连 接 电 路
根 据 接 线 图 5-8 和 5-9 板 前 明 线 布 线 工 艺 连 接 控 制 电 路 ,完 成 连 接的电路如图 5-10 所示。
1. 认识行程开关 在实际生产中,将行程开关安装在预先安排的位置,当装于生产机械运动部 件上的模块撞击行程开关时,行程开关的触点动作,实现电路的切换。因此,行 程开关是一种根据运动部件的行程位置而切换电路的电器,它的作用原理与按钮 类似。机床中常用的行程开关有 LX19 和 JLXK1 等系列,其外形如图 5-3 所示。
1
1. 推杆 2.弹簧 3.压缩弹簧 4.动断触点 5.动合触点
图 5-5 微动开关结构
行程开关的触头动作方式可分为瞬动式、蠕动式和交叉从动式三种,动作后 的复位方式有自动复位和非自动复位两种。
行程开关在电路图中的电气符号如图 5-6 所示。
图 5-6 行程开关的电气符号
3.行程开关的选用 行程开关的选用主要参数是型式、工作行程、额定电压及触头的电流容量, 在产品说明书中都有详细说明。主要根据动作要求、安装位置及触头数量进行选 择。LX19 和 JLXK1 系列行程开关的主要技术参数见表 5-1。
一、认识电路工作原理
该控制电路是行程开关控制自动往返 控制线路, 在线路中,QS 是电源开关,负责整个电路电源的通断;FU1 是主电路电路保护的熔 断器,FU2 是控制电路短路保护的熔断器;KM1 是控制电动机正转运 行的交流接触器;KM2 是控制电动机反转运行的交流接触器;SB1 是 控制交流接触器线圈 KM1 通电按钮;SB2 是控制交流接触器线圈 KM2 通电的按钮;SB3 是停止按钮;SQ1 是控制 KM1 线圈断电和 KM2 线 圈 得电的行 程开关 ;SQ2 是控制 KM2 线圈 断电和 KM1 线圈 得电的 行程开 关;FR 是提供电动机过载保护的热继电器。线路的工作原理如下:
二、自动往返控制线路

QS L1 L2 L3
FU1
FU2 KH SB1
KM1 SQ1复原 工作台继续向右运 动 KH U V M 3~ W
KM2 SB2 SQ1 KM1 KM2 SB3 SQ2
SQ3
SQ4
KM2
SQ3 SQ4
KM1
KM1 SQ1 SQ2
KM2
QS L1 L2 L3
FU1
FU2 KH SB1
KM1 挡铁碰SQ2 SQ2动断触头断开 KM2失电 KM2动合主触头断 开,电机停转 KM2动合触头断开 U 解除对KM2自锁 KM2动断触头闭合 解除对KM1联锁
SQ3
SQ4
KM1 SQ1 SQ2
KM2
QS L1 L2 L3
FU1
FU2 KH SB1
KM1 SQ1动合触头闭 合 KM2线圈得电 KH U V M 3~ W
KM2 SB2 SQ1 KM1 KM2 SB3 SQ2
SQ3
SQ4
KM2
SQ3 SQ4
KM1
KM1 SQ1 SQ2
KM2
QS L1 L2 L3
SQ3
SQ4
KM2
SQ3 SQ4
KM1
KM1 SQ1 SQ2
KM2
QS L1 L2 L3
FU1
FU2 KH SB1
KM1 挡铁碰SQ1, SQ1动断触头断开 KM1线圈失电 KM1动合主触头断 开,电机停转 KM1动合触头断开 U 解除对KM1自锁 KM1动断触头闭合 解除对KM2联锁
KM2 SB2 SQ1 KH V M 3~ KM2 KM1 W SQ3 SQ4 KM1 KM2 SB3 SQ2
二、自动往返控制线路
有些设备的工作台要在一定距离能自动循 环往返,可用行程开关达到目的,实质上是用
自动往返正反转控制电路工作原理

自动往返正反转控制电路工作原理1.简介自动往返正反转控制电路是一种常用于电动机控制系统中的电路,通过控制电动机的正反转运动,实现对机械系统的控制。
本文将介绍自动往返正反转控制电路的工作原理。
2.正反转控制电路的基本原理正反转控制电路的基本原理是通过控制电动机的相序来实现电动机的正反转运动。
在电动机的控制系统中,通过改变电动机的相序,可以改变电动机的运动方向。
正反转控制电路利用这一原理,通过适当的电路设计和控制信号,实现电动机的正反转运动。
3.自动往返控制电路的设计要点自动往返控制电路的设计需要考虑以下几个要点:(1) 电路稳定性:自动往返控制电路在工作过程中需要保持稳定的输出信号,以确保电动机的正常运行。
(2) 控制信号的生成:自动往返控制电路需要能够根据外部输入信号,生成对应的控制信号,实现正反转运动。
(3) 过载和短路保护:自动往返控制电路还需要考虑电动机的过载和短路保护,以确保电动机在异常情况下可以安全停止运行。
4.自动往返正反转控制电路的工作原理自动往返正反转控制电路主要包括控制信号生成模块、电动机驱动模块和过载保护模块等部分。
(1) 控制信号生成模块通过对外部输入信号进行解析和处理,生成对应的正反转控制信号。
(2) 电动机驱动模块接收控制信号,根据控制信号来控制电动机的相序,实现电动机的正反转运动。
(3) 过载保护模块通过监测电动机的电流和温度等参数,对电动机进行过载和短路保护,确保电动机在异常情况下可以安全停止运行。
5.自动往返正反转控制电路的应用自动往返正反转控制电路广泛应用于各种需要正反转运动的场合,如输送带、升降机、自动门等系统中。
通过自动往返正反转控制电路,可以实现这些系统的自动化控制,提高生产效率和安全性。
6.总结自动往返正反转控制电路是一种常用的电动机控制电路,通过控制电动机的相序,实现电动机的正反转运动。
在设计和应用过程中,需要考虑电路的稳定性、控制信号的生成、过载和短路保护等因素。
工作台自动往返控制线路(周)

用电设备:M(三相异步电动机)
工作台自动往返
双重联锁正反转
二、动作原理分析
前进
后退
自
启动过程
后退
返 往
动
前进
二、动作原理分析
前进
后退
自
启动过程
后退
返 往
动
前进
停止过程
按下停止按钮SB3
整个控制电路失电
KM1(KM2)主触断开
电动机M失电
工作台停车
三、联锁及保护环节分析
• • • • • 1、双重联锁:行程开关联锁与接触器联锁。 2、短路保护:熔断器FU1和FU2。 3、过载保护:热继电器FR。 4、终端位置保护:行程开关SQ3、SQ4。 5、失压欠压保护:接触器的自锁触点。
机床工作台的自动往返 控制线路分析
周代红 机电工程系
自动往返运 动控制广泛应用 于工业生产设备 中,如平面磨床, 铣床,刨床等。
运动部件的自动往 返运动是靠什么来 驱动的呢???
三相异步电动机
动作描述 自动往返控制对电动机进行控制,是通过行程开关与 运动部件的挡铁碰撞,接通或断开电路,控制工作台往返。 通常叫做行程控制。
图1 工作台自动往返示意图
自动往返控制线路
图2 工作台自动往返控制线路
1 电路组成分析
2 动作原理分析 3 联锁与保护分析
4 整体检查
一、电路组成分析 电源:三相交流电 控制设备元件: KM1 (正转接触器) KM2 (反转接触器) 其他元件:FU1(熔断器); FR(热继电器); QS(组合开关)。
工作台前进
至前进限位撞块碰SQ1
KM1主 触断开
KM2主 触闭合
KM1动合 触点断开 KM2自 锁触点 闭合 SQ1-1先 断开 KM2互 锁触点 断开 KM1线 圈失电 SQ1-2再 闭合 KM2线圈得 电 KM1动断 触点闭合
关于电机自动往返行程控制的电路再加延时

关于电机自动往返行程控制的电路再加延时所谓行程控制就是根据生产机械运动部件的位置或行程距离来进行控制,如起重机运动到预定位置要求自动停止;机床工作台运动到预定位置时要求自动往复运动。
可见,行程控制实质上就是电动机的正反转控制,只是在行程的终端加行程开关,利用行程开关来实现行程控制。
有些生产机械如刨床、铣床等要求工作台在一定距离内做往返自动循环运行。
实现这一控制要求的电路称为自动往复行程控制电路。
电路图如下:工作原理:合上空气开关QF,按下点动按钮SB2----KM1线圈得电---- KM1辅助触点闭合并自锁,----- KM1主触点闭合,电动机正转。
当工作台向左运动,运动部件碰到行程开关SQ1时 ----- 行程开关SQ1常闭触点断开,行程开关SQ1常开触点闭合,-----KM1线圈失电,电机停转,通电延时继电器KT线圈得电-------通电延时继电器KT触点延时闭合----KM2线圈得电,行程开关SQ1复位 ---- KM2辅助触点闭合并自锁,KM2主触点闭合,电动机反转。
工作台开始向右运动,运动部件碰到行程开关SQ2时 -----行程开关SQ2常闭触点断开,行程开关SQ2常开触点闭合-------恢复原始状态,重复往返循环。
如此往返,实现工作台自动往返循环运动,直到按下停止按钮SB1,工作台停止运动。
当现有时间继电器不是通电延时的,而是断电延时继电器时,我们将电路改为如下,效果也很好。
合上空气开关QF,按下点动按钮SB2----KM1线圈得电,断电延时继电器KT得电---- KM1辅助触点KM1闭合并自锁,KM1主触点闭合,电动机正转。
当工作台向左运动,运动部件碰到行程开关SQ1时 ----- 行程开关SQ1常闭触点断开,行程开关SQ1常开触点闭合,----KM1线圈失电,电机停转,断电延时继电器KT线圈失电,------断电延时继电器KT触点延时闭合-----线圈KM2得电,KM2辅助触点闭合并自锁,KM2主触点闭合,电动机反转。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自动往复循环延时电机控制线路
【摘要】通过对电机工作原理及拖动过程的分析,根据生产机械的运行要求,采取现代电气控制技术设计的自动往复循环延时控制线路控制电机的工作,该电路适用于电动机容量较小,循环周期较长、电动机转轴具有足够刚性的拖动系统中。
【关键词】现代电气控制;电机;循环;延时
0.引言
三相笼型异步电动机由于结构简单、价格便宜、坚固耐用等有点获得了广泛的应用。
在生产实际中,它的应用占到了使用电机的80%以上。
在生产实践中,各种生产机械常常需要自动往复运动,如:机床工作台。
因此,利用现代电气技术设计的控制线路来控制电机的正反转,方便可靠。
该控制线路由继电器、接触器和按钮等有触点的电器组成。
该线路可以提高生产效率,给厂家带来更大的利益,也方便了人们的生活。
1.解决方案
由电动机原理可知,三相异步电动机的三相电源进线最终任意两相对调,电动机即可反转。
因此,采取现代电气控制技术,由继电器、接触器和按钮等有触点的电器组成的控制线路来改变定子绕组相序来实现正反向的切换工作,实现自动往复循环延时运动。
2.控制线路及工作原理
控制线路如下:
工作原理:
L1、L2、L3为三相电源进线端子。
BG3、BG4分别为左、右超限限位保护用的形成开关。
限位开关BG1放在左端需要反向的位置,而BG2放在右端需要反向的位置,机械挡铁放在运动部件上。
启动时利用正向或反向按钮。
当按下正转按钮SF2,接触器QA1通电吸合,并形成自锁,主触点QA1闭合,电动机正向旋转并带动机械向左运动。
当机械移至左端,并碰到BG1时,将其压下,其常闭触点断开,QA1线圈失电,同时,使其常开出点闭合,继电器KF1线圈得电并形成自锁,当KF1得电一段时间后,通电延时闭合常开触点闭合,接通反转接触器QA2线圈电路,主触点QA2闭合。
此时电动机则由正转变为反转,带动机械向右边运动。
当机械移至右端,并碰到BG2时,将其压下,其常闭触点断开,QA2线圈失电,同时,使其常开出点闭合,继电器KF2线圈得电并形成自锁,当KF2得电一段时间后,通电延时闭合常开触点闭合,接通正转接触器QA1线圈电路,电机又开始正转带动机械向左边运动。
如此循环往复,从而使
机械实现自动的往复循环运动。
控制线路保护环节工作原理:
(1)短路保护:当控制线路发生短路故障时,控制线路由自动开关QA0完成短路保护任务。
(2)过载保护:由电动机原理知,当电动机长期处在超载运行的状态下,会造成电动机绕组温升超过其允许值而破坏,因此采取热继电器BB来完成过载保护。
当过载时间较长时常闭触点BB断开,从而各个线圈失电,其主触点QA1、QA2断开主电路,电动机停止运转,达到了保护电机的目的。
(3)欠压和失压保护:上述控制线路中由接触器本身实现欠压和失压保护。
当电源低到一定程度或失电时,此时接触器QA1或QA2的电磁吸力小于反力,电磁机构会释放,从而主触点把主电路切断,电动机则停止运转。
3.结论
该电路实现了电机的自动往复循环延时控制,具有很强的使用性,现已广泛的应用于生产实践和人们的日常生活中。
提高了生产效率,方便了日常生活。
机械式的形成开关容易损坏,也可以使用接近开关或光电开关来取代形成开关来实现更可靠的控制。
■
【参考文献】
[1]王永华.现代电气控制及PLC应用技术.北京航空航天大学出版社,2008,2.
[2]方荣慧,邓先明.电机原理与拖动基础.中国矿业大学出版社,2004,1.。