奥数组合图形的面积修订版

合集下载

小学五年级奥数讲义之精讲精练第18讲 组合图形的面积(一)含答案

小学五年级奥数讲义之精讲精练第18讲 组合图形的面积(一)含答案

第18讲组合图形面积(一)一、知识要点组合图形是由两个或两个以上的简单的几何图形组合而成的。

组合的形式分为两种:一是拼合组合,二是重叠组合。

由于组合图形具有条件相等的特点,往往使得问题的解决无从下手。

要正确解答组合图形的面积,应该注意以下几点:1.切实掌握有关简单图形的概念、公式,牢固建立空间观念;2.仔细观察,认真思考,看清所求图形是由哪几个基本图形组合而成的;3.适当采用增加辅助线等方法帮助解题;4,采用割、补、分解、代换等方法,可将复杂问题变得简单。

二、精讲精练【例题1】一个等腰直角三角形,最长的边是12厘米,这个三角形的面积是多少平方厘米?练习1:1.求四边形ABCD的面积。

(单位:厘米)2.已知正方形ABCD的边长是7厘米,求正方形EFGH的面积。

3.有一个梯形,它的上底是5厘米,下底7厘米。

如果只把上底增加3厘米,那么面积就增加4.5平方厘米。

求原来梯形的面积。

【例题2】正图正方形中套着一个长方形,正方形的边长是12厘米,长方形的四个角的顶点把正方形的四条边各分成两段,其中长的一段是短的2倍。

求中间长方形的面积。

练习2:1.(如下图)已知大正方形的边长是12厘米,求中间最小正方形的面积。

2.正图长方形ABCD的面积是16平方厘米,E、F都是所在边的中点,求三角形AEF的面积。

3.求下图(上右图)长方形ABCD的面积(单位:厘米)。

【例题3】四边形ABCD和四边形DEFG都是正方形,已知三角形AFH的面积是7平方厘米。

三角形CDH的面积是多少平方厘米?练习3:1.图中两个正方形的边长分别是6厘米和4厘米,求阴影部分的面积。

2.下图中两个完全一样的三角形重叠在一起,求阴影部分的面积。

(单位:厘米)3.下图中,甲三角形的面积比乙三角形的面积大多少平方厘米?【例题4】下图中正方形的边长为8厘米,CE为20厘米,梯形BCDF的面积是多少平方厘米?练习4:1.如下图,正方形ABCD中,AB=4厘米,EC=10厘米,求阴影部分的面积。

五年级奥数组合图形的面积

五年级奥数组合图形的面积

五年级奥数组合图形的面积Document number:NOCG-YUNOO-BUYTT-UU986-1986UT组合图形的面积1.基本平面图形特征及面积公式特征面积公式正方形①四条边都相等。

②四个角都是直角。

③有四条对称轴。

S=a2长方形①对边相等。

②四个角都是直角。

③有二条对称轴。

S=ab平行四边形①两组对边平行且相等。

②对角相等,相邻的两个角之和为180°③平行四边形容易变形。

S=ah三角形①两边之和大于第三条边。

②两边之差小于第三条边。

③三个角的内角和是180°。

④有三条边和三个角,具有稳定性。

S=ah÷2梯形①只有一组对边平行。

②中位线等于上下底和的一半。

S=(a+b)h÷22.基本解题方法:由两个或多个简单的基本几何图形组合成的组合图形,要计算这样的组合图形面积,先根据图形的基本关系,再运用分解、组合、平移、割补、添辅助线等几种方法将图形变成基本图形分别计算。

1.已知右面的两个正方形边长分别为6分米和4分米,求图中阴影部分的面积。

2.右图是两个相同的直角三角形叠在一起,求阴影部分的面积。

(单位:厘米)3.如图,这个长方形的长是9厘米,宽是8厘米,A和B是宽的中点,求长方形内阴影部分的面积。

4.在右图中,三角形EDF的面积比三角形ABE的面积大6平方厘米,已知长方形ABDC的长和宽分别为6厘米、4厘米,DF的长是多少厘米5.正方形ABCD的面积是100平方厘米,AE=8厘米,CF=6厘米,求阴影部分的面积。

6.右图是一块长方形公园绿地,绿地长24米,宽16米,中间有一条宽为2米的道路,求草地(阴影部分)的面积。

7.如图,三角形ABC的面积是24平方厘米,且DC=2AD,E、F分别是AF、BC的中点,那么阴影部分的面积是多少8.如下图,是一块长方形草地,长方形的长是16米,宽是10米,中间有两条宽2米的道路,一条是长方形,一条是平行四边形,那么有草部分(阴影部分)的面积有多大9.如图,一个三角形的底长5米,如果底延长1米,那么面积就增加2平方米。

小学五年级《组合图形的面积》奥数教案

小学五年级《组合图形的面积》奥数教案

五年级备课教员:第十二讲组合图形的面积一、教学目标: 1.结合生活实际认识组合图形,会把组合图形分解成学过的平面图形并计算出面积。

2.理解计算组合图形的多种方法,并能根据各种组合图形的条件,有效地选择计算方法,进行正确解答。

3.培养识图的能力和综合运用有关知识的能力,能合理的运用“割”、“补”等方法来计算组合图形的面积,在这一过程中感受转化的数学思想。

4.通过观察、思考、运用等过程,激发学生积极参与学习探究的热情,培养学生倾听、合作、交流的良好学习习惯。

二、教学重点:探索组合图形面积的计算方法:1.分割法:把一个复杂的组合图形分割成我们学过的几个简单的基本图形,通过求这几个简单的基本图形的面积来得到组合图形的面积。

2.添补法:充分利用已知的数据,恰当地使用辅助线,用添补的方法,把复杂的组合图形转化为简单的图形,从而计算出组合图形的面积。

3.挖空法:就是把多边形看成是一个完整的规则图形,计算它的面积以后,再减去空缺部分的面积。

三、教学难点:根据图形之间的联系,选择有效的方法求组合图形的面积,在学习中去探索掌握解决问题的思考策略及解决问题方法的最优化。

四、教学准备:课件、活页练习纸、展示图。

五、教学过程:第一课时(50分钟)一、导入(5分)师:同学们,让大家准备的七巧板,你们都准备了吗?生:准备了。

师:真棒,现在就请同学们拿出自己准备的七巧板,动动你们的小手,拼出自己最喜欢的图形给你的同桌看。

看看你和同桌谁拼的图形更好看。

生:(开始动手拼)师:(投影展示学生作品)同学们看,这位同学拼的图形像什么呀?生:小鱼。

师:能说说这条小鱼是怎么拼成的吗?生:由两个三角形拼成的。

师:同学们观察得真仔细。

师:老师现在再叫几位同学来分享,要说清楚你拼成的是什么,是怎么拼的。

生:我拼的是一只猫,是用七巧板的七个图形拼成的。

生:我拼的是一棵树,是用两个三角形和一个正方形拼成的。

生:……师:同学们有没有发现拼的图形都有一个共同的特征?是什么呢?生:拼成的图形都是由几个图形组合而成的。

(word版)五年级数学(上册)《组合图形面积》试题及答案,文档

(word版)五年级数学(上册)《组合图形面积》试题及答案,文档

五年级数奥数:?组合图形的面积?1、求图形的面积(单位:厘米)梯形面积:三角形面积:〔8+12〕×÷212×3÷2=20×÷2=36÷2=170÷2=18〔cm2〕=85〔cm2〕图形面积=梯形面积–三角形面积:85-18=67〔cm2〕2、校园里有两块花圃(如图),你能计算出它们的面积吗?(单位:m)图形面积=长方形面积6×〔5-2〕+正方形面积〔2×2〕图形面积=长方形面积-梯形面积6×〔5-2〕+2×210×6–[〔3+6〕×2÷2] =6×3+4=60-[9×2÷2]=18+4=60-9=22〔m2〕=51〔m2〕3、下列图直角梯形的面积是49平方分米,求阴影局部的面积。

直角梯形的高=直角三角形的高〔阴影局部面积〕直角梯形的高=49÷〔6+8〕×2直角三角形面积=6×7÷2=49÷14×2=42÷2=×2=21〔dm2〕=7〔dm2〕4、图中梯形中空白局部是直角三角形,它的面积是45平方厘米,求阴影局部面积。

直角梯形的高=直角三角形的高梯形面积=〔5+12〕×÷2=45÷12×2=17×÷2=×2=÷2=〔cm2〕=〔cm2〕阴影局部面积=梯形面积–空白局部面积:-45=〔cm2〕11 / 315、阴影局部面积是40平方米,求空白局部面积。

〔单位:米〕梯形的高=三角形的高〔阴影局部三角形〕梯形面积=〔6+10〕×8÷2=40÷10×2=16×8÷2=4×2=128÷2=8〔m2〕=64〔m2〕空白局部面积=梯形面积–阴影局部面积:64–40=24〔m2〕6、如图,平行四边形面积240平方厘米,求阴影局部面积。

小学数学5年级培优奥数讲义 第14讲-组合图形的面积(含解析)

小学数学5年级培优奥数讲义 第14讲-组合图形的面积(含解析)

第14讲组合图形的面积掌握三角形的面积计算公式; 学会使用拆补法求解三角形面积; 通过题目中给定比例关系求解面积比。

计算平面图形的面积时,有些问题乍一看,在已知条件与所求问题之间找不到任何联系,会使你感到无从下手。

这时,如果我们能认真观察图形,分析、研究已知条件,并加以深化,再运用我们已有的基本几何知识,适当添加辅助线,搭一座连通已知条件与所求问题的小“桥”,就会使你顺利达到目的。

有些平面图形的面积计算必须借助于图形本身的特征,添加一些辅助线,运用平移旋转、剪拼组合等方法,对图形进行恰当合理的变形,再经过分析推导,方能寻求出解题的途径。

例1、已知图12-1中,三角形ABC 的面积为8平方厘米,AE =ED ,BD=23 BC ,求阴影部分的面积。

例2、在△ABC 中(图12-2),BD=DE=EC ,CF :AC=1:3。

若△ADH 的面积比△HEF 的面积多24平方厘米,求三角形ABC 的面积是多少平方厘米?典例分析知识梳理学习目标ABCFE D 12-1例3、两条对角线把梯形ABCD 分割成四个三角形,如图12-3所示,已知两个三角形的面积,求另两个三角形的面积各是多少?例4、四边形ABCD 的对角线BD 被E 、F 两点三等分,且四边形AECF 的面积为15平方厘米。

求四边形ABCD 的面积(如图12-4所示)。

例5、如图12-5所示,BO =2DO ,阴影部分的面积是4平方厘米。

那么,梯形ABCD 的面积是多少平方厘米?例6、如图18-17所示,长方形ADEF 的面积是16,三角形ADB 的面积是3,三角形ACF 的面积是4,求三角形ABC 的面积。

BCDAO 12-312612-4ABCDEFBADCOE12-512-6例7、如图,某公园的外轮廓是四边形ABCD ,被对角线AC 、BD 分成四个部分。

△AOB 的面积是2平方千米,△COD 的面积是3平方千米,公园陆地面积为6.92平方千米,那么人工湖的面积是多少平方千米?➢ 课堂狙击1、如图所示,AE =ED ,BC=3BD ,S △ABC =30平方厘米。

2022-2023学年小学五年级奥数(全国通用)测评卷24《组合图形的面积》(解析版)

2022-2023学年小学五年级奥数(全国通用)测评卷24《组合图形的面积》(解析版)

【五年级奥数举一反三—全国通用】测评卷24《组合图形的面积》试卷满分:100分考试时间:100分钟姓名:_________班级:_________得分:_________ 一.选择题(共8小题,满分16分,每小题2分)1.(2分)如图中长方形的面积相等,则图中阴影部分面积相比较,()A.甲的面积大B.乙的面积大C.甲和乙的面积相等D.无法确定【解答】解:甲的面积=长方形的长⨯长方形的宽2÷;乙的面积=长方形的长⨯长方形的宽2÷;即:甲乙的面积都是长方形面积的一半,它们的面积一样大.故选:C。

2.(2分)在图中,平行线间的三个图形,它们的面积()A.平行四边形最大B.三角形最大C.梯形最大D.一样大【解答】解:设他们的高为h,平行四边形的面积4h=三角形的面积184 2h h =⨯⨯=梯形面积(26)24h h=+⨯÷=所以它们的面积相比,都相等;故选:D。

3.(2分)甲长方形包含16个小正方形,乙长方形包含12个小正方形.甲长方形与乙长方形的面积相比,结果是什么?()A.甲的面积大B.乙的面积大C.无法确定【解答】解:因为不能确定甲、乙长方形包含的小正方形的面积是否相等,所以无法比较甲长方形与乙长方形面积的大小;故选:C.4.(2分)如图所示,把一个长方形分成一个梯形和一个三角形.已知梯形的面积比三角形的面积大18厘米2,那么梯形的上底长为()厘米.A.2 B.3 C.4 D.6【解答】解:设梯形的上底为a厘米,那么三角形的底为(12)a-厘米,根据题意可得:+⨯÷--⨯÷=(12)62(12)6218a a+⨯--⨯=a a(12)3(12)318+-+=a a33636318a=618a=3答:梯形的上底是3厘米.故选:B.5.(2分)如图,甲、乙两个平行四边形中阴影部分面积的大小为()A.甲>乙B.甲=乙C.甲<乙D.无法确定【解答】解:如图:甲+丙=乙+丙,丙是公共部分,所以甲=乙,答:甲的面积等于乙的面积.故选:B .6.(2分)如图的长方形中有三个三角形,它们面积间的关系是( )A .123S S S +=B .13S S =C .23S S =D .321S S S =-【解答】解:由图可知:2S 的面积是长方形形面积的一半,3S 和1S 的面积和也是长方形面积的一半,由此可得:132S S S +=,即:321S S S =-.故选:D .7.(2分)图中,直线//a b ,比较三角形ADC 和三角形ABD 面积的大小,结果是( )A .三角形ADC 面积大B .三角形ABD 面积大C .它们的面积相等D .无法比较【解答】解:由题意可知:三角形ADC 和三角形ABD 等底等高,所以角形ADC 和三角形ABD 面积相等. 故选:C .8.(2分)如图ABCD 是长方形,已知4AB =厘米,6BC =厘米,三角形EFD 的面积比三角形ABF 的面积大6平方厘米,求(ED = )厘米.A .9B .7C .8D .6【解答】解:长方形ABCD 的面积:4624⨯=(平方厘米);三角形EBC的面积:+=(平方厘米);24630⨯÷=(厘米);CE的长:302610DE的长:1046-=(厘米).故选:D.二.填空题(共9小题,满分18分,每小题2分)9.(2分)如图,图中2=,阴影部分的面积是6平方厘米,求梯形ABCD的面积是27平方厘米.BO DO【解答】解:因为2=,BO DO所以三角形CDO的面积=三角形BCO面积的一半,即三角形CDO的面积3=平方厘米;三角形BCD与三角形ACD同底等高,所以三角形BCD与三角形ACD的面积相等,三角形AOD的面积=三角形BCO的面积,即三角形AOD的面积6=平方厘米;=,三角形ABO的面积是三角形AOD面积的2倍,BO DO2即三角形AOB的面积12=平方厘米;梯形ABCD的面积为:6361227+++=(平方厘米),答:梯形ABCD的面积为27平方厘米.故答案为:27.10.(2分)如图涂色部分的面积是322cm.【解答】解:8866⨯+⨯=+6436=(平方厘米)100(86)62882+⨯÷+⨯÷=+423274=(平方厘米)⨯-÷6(86)2=⨯÷6226=(平方厘米)-+100746=+266=(平方厘米)32答:涂色部分的面积是232cm.故答案为:32.11.(2分)如图,它是由两个正方形拼成的,小正方形的边长为2厘米,大正方形的边长为4厘米,阴影部分的面积为6平方厘米.【解答】解:(24)22+⨯÷=⨯÷622=(平方厘米)6答:阴影部分的面积是6平方厘米.故答案为:6.12.(2分)六个等腰三角形如图摆放,那么四个空白三角形的面积和是两个阴影三角形的面积和的6倍.【解答】解:如下图:把这六个等腰直角三角形从小到大分别编号为①②③④⑤⑥,设①号三角形的面积为1,则②号的面积为2,③号的面积为4,④号的面积为8,⑤号的面积为16,⑥号的面积为32,+++÷+(241632)(18)=÷5496=答:四个空白三角形的面积和是两个阴影三角形的面积和的6倍.故答案为:6.13.(2分)如图,梯形的面积是18.【解答】解:如图:已知45BAC∠=︒,90ABC∠=︒,所以180904545ACB∠=︒-︒-︒=︒,所以AB BC=;因为90ACE∠=︒,所以180904545ECD∠=︒-︒-︒=︒,则45DEC∠=︒,所以DE CD=,梯形的面积()62DE AB=+⨯÷()62BC CD=+⨯÷662=⨯÷18=.故答案为:18.14.(2分)如图:ABCD是一个面积为36平方厘米的长方形,E为BC中点,则阴影部分的面积是15平方厘米.【解答】解:据分析可知:三角形ABE的面积为13694⨯=(平方厘米);三角形DHC的面积和三角形ADH的面积比是1:2,而三角形ADC的面积是36218÷=(平方厘米),所以三角形DHC 的面积为18(12)6÷+=(平方厘米),则三角形AHE 的面积也是6平方厘米.所以阴影部分的面积是9615+=(平方厘米).答:阴影部分的面积是15平方厘米.故答案为:15.15.(2分)如图,ABCD 是直角梯形,5AD =厘米,3DC =厘米,三角形DOC 的面积是1.5平方厘米,则阴影部分的面积是 6 平方厘米.【解答】解:352 1.5⨯÷-,7.5 1.5=-,6=(平方厘米); 答:阴影部分的面积是6平方厘米.故答案为:6.16.(2分)图中直角三角形里有3个正方形,已知25AD cm =,100BD cm =,阴影部分的面积是 10754 2cm .【解答】解:100:25100254=÷=4BC AB =4(25100)=⨯+500=(厘米)设最小正方形的边长为x 厘米4()1005004x x x x ++++= 6.25100500x ++=6.25100100500100x +-=-6.25400x =6.25 6.25400 6.25x ÷=÷64x =中正方形的边长:4x x + 64644=+6416=+80=(厘米)500(25100)2(10010080806464)⨯+÷-⨯+⨯+⨯5001252(1000064004096)=⨯÷-++3125020496=-10754=(平方厘米)答:阴影部分的面积是10754平方厘米.故答案为:10754.17.(2分)如图,已知正方形ABCD 的周长是40厘米, 6.4DE =厘米,阴影部分的面积是 32 平方厘米.【解答】解:由分析可知阴影部分的面积为:6.4(404)2⨯÷÷6.4102=⨯÷642=÷32=(平方厘米); 答:阴影部分的面积是32平方厘米.故答案为:32.三.计算题(共3小题,满分18分,每小题6分)18.(6分)求阴影部分面积.【解答】解:(1)222+=,空白三角形是一个直角三角形,304050空白三角形的面积:30402⨯÷=÷12002=(平方分米)600斜边上的高:⨯÷600250=÷120050=(分米)24+⨯÷(4050)242=⨯÷90242=(平方分米)1080-=(平方分米)1080600480答:阴影部分的面积是480平方分米.(2)40403030⨯+⨯=+1600900=(平方分米)2500⨯÷=(平方分米)40402800+⨯÷(4030)302=⨯÷70302=÷21002=(平方分米)1050--25008001050=-17001050=(平方分米)650答:阴影部分的面积是650平方分米.19.(6分)平行四边形ABCD的边BC长10厘米,直角三角形的直角边EC长8厘米.已知阴影部分的面积比三角形EGF的面积大9平方厘米.求CF的长.【解答】解:设EF长为x厘米,则CF就是8x-厘米,根据题干分析可得方程:x⨯-=⨯÷+10(8)10829-=801049xx=1031x=3.1-=(厘米);8 3.1 4.9答:CF长为4.9厘米.20.(6分)求图中阴影部分的面积.【解答】解:6644662(64)42⨯+⨯-⨯÷-+⨯÷3616181042=+--⨯÷=+--36161820=(平方厘米)14答:阴影部分的面积是14平方厘米.四.应用题(共5小题,满分29分)21.(5分)如图是一幢楼房占地的平面图,算一算它的占地面积有多大?(单位:)m你能想出几种算法?【解答】解:方法一如图:⨯+-⨯-÷6048(6030)(7248)2=+⨯÷288030242=+28803603240=(平方米)方法二如图:⨯-+⨯-÷7260(6030)(7248)2432090242=-⨯÷=-43201080=(平方米)3240答:它的占地面积有3240平方米。

五年级奥数 第19讲 组合图形的面积(2)

五年级奥数  第19讲  组合图形的面积(2)

五年级奥数第19讲组合图形面积(二)知识要点在组合图形中,三角形的面积出现的机会很多,解题时我们还需要记住下面三点:1、两个三角形等底、等高,其面积相等;2、两个三角形底相等,高成倍数关系,面积也成倍数关系;3、两个三角形高相等,底成倍数关系,面积也成倍数关系。

例1、如图所示,已知三角形ABC的面积是88平方厘米,是平行四边形DEFC的两倍,求阴影部分的面积。

练习:1、下图中,梯形的下底为12厘米,高为8厘米,求阴影部分的面积。

2、如图所示,四边形ABCD是直角梯形,AD=9厘米,CD=12厘米,求阴影部分的面积。

3、求图中阴影部分的面积。

(单位:厘米)例2、下图中,边长为10和15的两个正方形并放在一起,求三角形ABC(阴影部分)的面积。

练习:1、下图中,三角形ABC的面积是36平方厘米,三角形ABE与三角形AEC的面积相等,如果AB =9厘米,FB=FE,求三角形AFE的面积。

2、图中两个正方形的边长分别是10厘米和6厘米,求阴影部分的面积。

3、图中三角形ABC的面积是36平方厘米,AC长8厘米,DE长3厘米。

求阴影部分的面积(ADFC是长方形)。

例3、下图中每个长方形小格的面积都是1平方厘米,求阴影部分的面积练习:1、下图中每个长方形小格的面积都是1平方厘米,求阴影部分的面积。

2、把等边三角形ABC的每条边6等分,组成如下图所示的三角形网。

如果图中每个小三角形的面积都是1平方厘米,求图中三角形DEF的面积。

3、如图所示,在长方形ABCD中,AD=15厘米,AB=8厘米图中阴影部分面积为68平方厘米,四边形EFGO的面积是多少平方厘米?例4、在三角形ABC中(如下图所示),DC=2BD,CE=3AE,阴影部分的面积是20平方厘米。

求三角形ABC的面积。

练习:1、把下图三角形的底边BC四等分,在下面括号里填上“>”“<”或“=”。

2、如图所示,在三角形ABC中,D是BC的中点,E、F是AC的三等分点。

完整五年级奥数组合图形的面积

完整五年级奥数组合图形的面积

1.基本平面图形特征及面积公式组合图形的面积特征面积公式正方形①四条边都相等。

②四个角都是直角。

③有四条对称轴。

S=a2长方形①对边相等。

②四个角都是直角。

③有二条对称轴。

S=ab平行四边形①两组对边平行且相等。

②对角相等,相邻的两个角之和为180°③平行四边形容易变形。

S=ah三角形①两边之和大于第三条边。

②两边之差小于第三条边。

③三个角的内角和是180°。

④有三条边和三个角,具有稳定性。

S=ah* 2梯形①只有一组对边平行。

②中位线等于上下底和的一半。

S=(a+b)h - 22.基本解题方法:■;r由两个或多个简单的基本几何图形组合成的组合图形,要计算这样的组合图形面积,先根据图形的基本关系,再运用分解、组合、平移、割补、添辅助线等几种方法将图形变成基本图形分别计算。

1.已知右面的两个正方形边长分别为6分米和4分米,求图中阴影部分的面积2.右图是两个相同的直角三角形叠在一起,求阴影部分的面积。

(单位:厘米)3.如图,这个长方形的长是9厘米,宽是8厘米,A和B是宽的中点,求长方形内阴影部分的面积。

-------------4.在右图中,三角形EDF的面积比三角形ABE的面积大6平方厘米,已知长方形ABDC勺长和宽分别为6厘米、4厘米,DF的长是多少厘米?5.正方形ABCD勺面积是100平方厘米,AE=8厘米, 积。

6.右图是一块长方形公园绿地,绿地长24米,宽16米,中间有一条宽为2米的道路,求草地(阴影部分)的面积。

7.如图,三角形ABC的面积是24平方厘米,且DC=2ADE、F分别是AF、BC的中点,那么阴影部分的面积是多少?8.如下图,是一块长方形草地,长方形的长是16米,宽是10米,中间有两条宽2米的道路,一条是长方形,一条是平行四边形,那么有草部分(阴影部分)的面积有多大?9.如图,一个三角形的底长5米,如果底延长1米,那么面积就增加2平方米。

问原来的三角形的面积是多少平方米?1米组合图形的面积作业1.在右图中,三角形EDF的面积比三角形ABE的面积大75平方厘米,已知正方形ABCD勺边长为15厘米,DF的长是多少厘米?2.如图,ABCD1 一个长12厘米,宽5厘米的长方形,求阴影部分三角形ACE的面积3.已知正方形乙的边长是8厘米,正方形甲的面积是36平方厘米,那么图中阴影部分的面积是多少?4.如图,A、B两点是长方形长和宽的中点,那么阴影部分占长方形的面积是多少?5.如图,在平行四边形ABCD中, E、F分别是AC BC的三等分点,且平行四边形的面积为54平方厘米,求S^BEF o6.计算右边图形的面积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

奥数组合图形的面积修
订版
IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-ZZT18】
阴影部分面积专题练习一、求下列各图中阴影部分的面积。

(单位:厘米)
1、
2、下图中长方形的长是6厘米,宽是5厘米,求阴影部分的面积。

3、如图长方形的面积是45平方厘米,宽是5厘米,求阴影部分的面积。

4、如图,两个大小不等的正方形拼成一个图形,已知小正方形的边长是4厘米,阴影部分的面积是30平方厘米,求空白部分的面积是多少?
5、将直角三角形ABC向右平移6厘米,再向下平移1.5厘米,得到一个图形如图,已知三角形的底边BC长16厘米,求阴影部分的面积。

长方形ABCD内的阴影部分的面积之和为70,AB=8,AD=15四边形EFGO的面积为
______.
解答:根据容斥关系:四边形EFGO的面积=三角形AFC+三角形DBF-白色部分的面积,三角形AFC+三角形DBF=长方形面积的一半,即60,白色部分的面积等于长方形面积减去阴影部分的面积,即120-70=50所以四边形EFGO的面积=60-50=10
如图,已知边长为5的额正方形ABCD和边长为的正方形CEFG共顶点C,正方形CEFG 绕点C旋转60°,连接BE、DG,则ΔBCE的面积与ΔCDG的面积比是_____.
几何图形面积答案:将ΔCDG绕点C逆时针旋转900,得到ΔCBH,这样点E、C、H 在同一直线上,且CE=CG=CH,所以ΔBCE的面积=ΔBCH的面积=ΔCDG的面积,所求面积比为1:1。

相关文档
最新文档