伏安分析法1PPT课件

合集下载

第2章 极谱与伏安分析法

第2章 极谱与伏安分析法
富集
检出限:10-9~10-11 mol/L
Anodic Stripping Voltammetry (ASV,阳极溶出伏
安法)
Deposition
Stripping
For a mercury film electrode, the peak current is given by For a hanging mercury drop, the peak current is given by
Potentiometric Stripping Analysis (PSA,电位溶出分析)
Cathodic Stripping Voltammetry(阴极溶出伏安法)
如卤素离子
Adsorptive Stripping Voltammetry and Potentiometry
典型的研究电极的特性
1.1 nF
E1/ 2
n
0.056 Epa Epc n (V)
(V) (25C)
对于固体电极 表面积不变的汞电极
线性扫描伏安法
(悬汞电极或汞膜电极):
特点:
• 方法快速; • 灵敏度高;检测限达10-7 mol/L; • 分辨率高;
两物质峰电位相差0.1 V即可分开。 • 前放电物质干扰小; • 氧波干扰小。
稳定扩散和非稳定扩散
稳态扩散电流
• 每一个电位下电极表面物质浓度均符合 Nernst方程 • 扩散层厚度不变。
电极表面附近
图5.7 电极表面附近各层厚度示意图
D(c/x)0 = D(cb-cs)/ = D(cb-cs)/ d 这里 或d称为扩散层的厚度( 或d以外的溶液由于对流
或搅拌控制,浓度保持恒定)
图5.8
图5.10

第5章伏安分析法

第5章伏安分析法

二、电解池的伏安行为
当外加电压达到Cd2+的电解 还原电压时,电解池内会发生 氧化还原反应。
阴极:Cd2+ + 2e Cd
阳极:
2OH- -2e
H2O + 1/2 O2
U外 ∝ i
U外- Ud= iR
(Cd2+)
二、电解池的伏安行为
浓差极化:由于电解过程中电极表面离子浓度与 溶液本体浓度不同而使电极电位偏离平衡电位的 现象。
,当外加电压未达分解电压时 所观察到的微小电流。
产生原因: a.由于溶液中存在微量易在滴 汞电极上还原的杂质所致. b.电容电流(由于对滴汞电极 和待测液的界面双电层充电形 成的,故又称充电电流) 消除方法:
0.0120 39.55.00
99.0 (25.0 5.00) 25.039.5
0.00120mol / L
§5-4 定性分析依据
半波电位(E1/2): 是当电流等于平均 极限扩散电流的一 半时对应的电位。 它不随被还原离子 的浓度不同而改变 ,故用半波电位来 作为定性分析的依 据。
§5-5干扰电流及其消除方法 1.残余电流:在极谱分析时
(4)电解液组成的影响
§5-3极谱定量分析方法
1.极谱定量方法一般有3种:
(1)直接比较法:在相同实验条件下,分别
测浓度为Cs的标准液及未知液的极谱波的波
高hs及hx。
Cx
hx hs
cs
从而求出未知液的浓度
同一条件指两个溶液的底液组成、温度、
毛细管、汞柱高度等保持一致。
(2)标准曲线法:配制一系列含有不同浓度的待测离 子的标准溶液,在相同的实验条件下作各个溶液的 极谱波,求出各溶液的扩散电流

伏安分析法PPT

伏安分析法PPT

a) 溶液组份的影响
组份不同,溶液粘度不同,因而扩散系数D不同。分析时应使标准液 与待测液组份基本一致——底液。
b) 毛细管特性的影响
汞滴流速 m、滴汞周期 t 是毛细管的特性,将影响平均扩散电流大小
。 通 常 将 m2/3t1/6 称 为 毛id 细 管 特 性 常 数 。 设 汞 柱 高 度 为 h , 因 m=k’h ,
.
6
电压由 0 V逐渐增加到-1.2 V左右,绘制电流-电压曲线。
图中①~②段,仅有微小的电流流过,这时的电流称为“残余电流”或背 景电流。当外加电压到达Pb2+的析出电位时,Pb2+开始在滴汞电极上迅速反 应。
继续增加电压,或DME更负。即
滴汞电极表面的Pb2+ 迅速获得电 子而还原,电解电流急剧增加。
11.1.1 极谱分析基本装置
改变电阻(电压) 测量(记录电压)
阳极
阴极
.
绘制 i-U曲线 (极谱曲线)
3
11.1.2 伏安分析电极系统
三电极系统及装置: 实际工作中,当回路电流较大或内阻较高时,此时参比电极也发生极化,
并产生iR 降。此时测得的是i~V曲线,而不是i-曲线!此时半波电位负移,总 电解电流减小且极谱波变形。此时要准确测定滴汞电极电位,必须克服 iR 降 !通常的做法是使用三电极系统,如下图所示。
电解电流:由存在于滴汞上的易还原的微量杂质如水中微量铜、溶 液中未除尽的氧等引起。
电容电流:又为充电电流,是残余电流的主要部分。是由于滴汞的 不断生长和落下引起的。充电电流为10-7A, 相当于10-5 mol/mL物质所 产生的电位—影响测定灵敏度和检测限。
扣除:ir 应从极限扩散电流中扣除:作图法和空白试验。

课件伏安分析法.ppt

课件伏安分析法.ppt
汞滴滴落速度:2-3滴/10s。电压由0V逐渐增加,绘制电 流-电压曲线。
图中a~b段,仅有微小的电流流过,这时的电流称为“ 残余电流”或背景电流。当外加电压到达Cd2+的析出电位时,
2024/10/8
8
(-0.5V~-0.6V),Cd2+开始在滴汞电极上迅速反应:
滴汞电极: 甘汞电极:
Cd2+ + 2e + Hg = Cd(Hg)(汞齐) 2Hg - 2e + 2Cl- = Hg2Cl2
Ede = E ⊝ +
0.O59 n
lg
ABccABee
2024/10/8
20
-id = kA cA
未达到极限电流之前:
-i = kA (cA- cAe)
则:
cAe =
-id + i kA
由法拉第电解定律: cBe =
-i kB
Ede =
E

+
0.O59
n
lg(
A B
kB kA

id -i i

令:E´ = E ⊝ + 0.On59
第四节 干扰电流及其消除方法 1.残余电流 (a)微量杂质等所产生的微弱电流
产生的原因:溶剂及试剂中的微量杂质及微量氧等。 消除方法:可通过试剂提纯、预电解、除氧等; (b)电容电流(也称充电电流) 影响极谱分析灵敏度的主要因素。 产生的原因:由于汞滴表面与溶液间形成的双电层,在与 参比电极连接后,随着汞滴表面的周期性变化而发生的充电现 象所引起。分析过程中由于汞滴不停滴下,汞滴表面积在不断
消除方法: 加入强电解质(支持电解质,为惰性电解质,如KCl、HCl、 H2S04等)。加入强电解质后,被测离子所受到的静电吸引力 减小。一般支持电解质的浓度比待测物质的浓度大100倍以上。 3.极谱极大 在极谱分析过程中产生的一种特殊现象,即在极谱波刚出 现时,扩散电流随着滴汞电极电位的降低而迅速增大到一极大

伏安分析法

伏安分析法

温度、离子强度等因素及毛细管的影响
1 21
id KnD2m 3t 6c
影响扩散电流常数的因素:离子淌度、离子 强度、溶液黏度、介电常数、温度等。保证 待测溶液的各种条件恒定不变,控制温度。 影响毛细管常数的因素:毛细管内径,汞柱 高度。使汞柱高度维持恒定。
4、直流极谱波方程式
极谱波方程式:用于描述极谱波上任意时刻电 流、极限扩散电流与电极电位之间的关系。
三、方波极谱法
方波极谱法:为解决充电电流干扰,提高测 定灵敏度而发展起来的一种快速极谱法。
将叠加的交流正弦波 改为方波,使用特殊 的时间开关,利用充 电电流随时间很快衰 减的特性,在方波改 变方向前一瞬间记录 通过电解池交流极化 电流信号。 记录的
法拉第电流
峰电流与峰电位
电极面积
1
峰电流: i p 1.4107 n2Es D2 Ac
简单金属离子:Mn+ +ne +Hg = M(Hg)
极谱波方程式:EDME

E1/ 2

0.0591 lg n
id
i
i
半波电位 定性分析的依据
E DME

E1/ 2

0.0591 lg
n
id
i i
还原波+,氧化波得以E到D一ME~直l线g i,d i其i 作斜率图:
lg id i
i
一、直流极谱法
以滴汞电极为极化电极(工 作电极),饱和甘汞电极为 去极化电极(参比电极)进 行特殊的电解反应,根据电 流-电位曲线对被测物质进 行定量分析。
特殊性:使用了一支极化电 极和一支去极化电极;在溶 液静止的情况下进行的非完 全的电解过程。
极化电极和去极化电极

《伏安和极谱分析法》课件

《伏安和极谱分析法》课件

伏安法的原理和应用
1
应用
2
伏安法可用于测定溶液中的金属离子浓
度、电极表面的质子反应以及电解过程
中的动力学信息。
3
原理
伏安法基于电流与电压之间的关系来分 析化学反应。
操作步骤
实验中包括电化学池的搭建、采集电流 和电压数据以及数据分析。
极谱分析法的原理和应用
1
原理
极谱分析法基于物质在特定波长光下的吸收或发射来分析其组成。
伏安法和极谱分析法的优缺点和比较
伏安法
• 优点:灵敏度高、实验步骤简单、结果准确。 • 缺点:对电极表面状态敏感、不适用于非电
化学反应。
极谱分பைடு நூலகம்法
• 优点:高精确度、广泛应用、适用于稀溶液。 • 缺点:需要仪器设备、样品处理步骤复杂。
2
应用
极谱分析法可用于定量和定性分析金属、离子、有机物和生物样品。
3
操作步骤
实验中包括样品预处理、光谱仪的设置和信号测量、数据分析和结果解释。
伏安法和极谱分析法适用的样品类型
1 伏安法
适用于液态和固态样品,尤其是含有氧化还原反应的溶液。
2 极谱分析法
适用于气体、液体和固体样品,特别是需要分析其元素或化合物组成的样品。
《伏安和极谱分析法》 PPT课件
欢迎来到本次课程,我们将一起探讨伏安法和极谱分析法。这两种分析方法 在化学领域中扮演着重要角色,让我们深入了解它们的原理和应用,以及实 验操作步骤。
什么是伏安法和极谱分析法
伏安法
伏安法是一种电化学实验方法,用于研究氧化还 原反应和电化学动力学。
极谱分析法
极谱分析法是一种测定物质吸收或发射光谱的方 法,用于分析元素和化合物。

2019年第11章极谱分析和伏安分析法PolarographyandVoltammetry.ppt

2019年第11章极谱分析和伏安分析法PolarographyandVoltammetry.ppt
3 极谱波
③极谱波的讨论
11-1 特殊条件下的电解极谱法的关键在于电极上产生浓差极化
除DME外, 还可用其它电 极吗?
Pt Au微电极
第11章 极谱分析法和伏安分析法
3 极谱波
11-1 特殊条件下的电解
④其它固体电极的实践
A —DME
I
B —静止Pt,Au微电极
C
B
A
没有锯齿 驼峰状!!! 峰高∝扫描电压的平方根
第11章
极谱分析和伏安分析法
Polarography and Voltammetry
1922年 极谱法创立 J.Heyrovský(海洛夫斯基) 1925年 J.Heyrovský与志方益三 手工极谱仪V301 1934年 Ilkoviĉ(尤考维奇)方程 定量基础 1941年 I.M.Kolthoff, J.J.Lingane 极谱学 1950年 捷克 创建 极谱研究所
50年代 J.Heyrovský来我国讲学 1959年 J.Heyrovský获诺贝尔化学奖(69岁) 1962年 J.Heyrovský, J.Kůta 极谱学基础 1967年 J.Heyrovský逝世
第11章 极谱分析法和伏安分析法
Polarography and Voltammetry
11-1 直流极谱法的基本原理 11-2 极谱电流与极谱定量分析 11-3 直流极谱波方程 11-4 极谱及伏安分析技术的发展
前波 大量前放电物质
分离前放电物质
叠波Δ1/2 <0.2 V
改变价态,加配合剂,改变1/2。
第11章 极谱分析法和伏安分析法
3. 测id
11-2 极谱定量——强度信号与浓度的关系
电容电流 ic
约10-7 A!!!

伏安分析法

伏安分析法

第五章 伏安分析法
Voltammetric analysis 第二节
扩散电流方程----极谱定 量分析基础 Diffusion equations
一、尤考维奇方程式 Ilkovic equations 二、讨论
Discussion
三、极谱的定量分析方法
Quantity analysis
第二节 扩散电流方程式–––极谱定量基础
经典极谱测 小于0.01 mM有困难!
id 607nD m t c
1/ 2 2 / 3 1/ 6
607 1 (1.0 10-5 )1/2 12/3 41/6 0.1 0.24 mA
新极谱
id 607nD m t c
1/ 2 2 / 3 1/ 6
其中id (mA),t(s) 滴汞周期,m(mg / s) 汞流速, C(mM),D(cm2 / s) 扩散系数
汞流速度与汞柱压力呈 正比, 滴汞周期与汞柱压力呈 反比, m 2 / 3t 1/ 6 p 2 / 3 p 1/ 6 , p h, m 2 / 3t 1 / 6 h mp t 1/p p
即 m 2 / 3t 1 / 6
id h
其中id (mA),t(s) 滴汞周期,m(mg / s) 汞流速, C(mM),D(cm2 / s) 扩散系数
二、 迁移电流
加惰性电解质,其浓度 比被测组分大50-100倍
三、 极大现象
产生原因: 1)电流密度j不匀,电位分布不匀。汞滴上端毛细管屏蔽效应,j 比下部小 2)电位分布不匀,表面张力不匀。σ大的地方收缩,σ小的地方 扩张,引起切向运动 3)切向运动引起溶液搅动,i↑ 4)极大以后,完全浓度极化,降至id值 消除方法:加表面活性剂,如动物胶,σ大的多吸附:σ下降更多 ,达到σ的均匀分布,消除切间运动,但表面活性剂不能太大,< 0.02%,否则粘度↑,D↓, id↓,甚至极谱变形。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020/11/3
讨论:影响id的因素: (1) n,D 取决于被测物质的特性。影响因素:离子淌度、
电流—外加电压曲线(i—U 曲线)如上图所示。 电流—滴汞电极电位曲线( i—Ede曲线): U =(ESCE- Ede )+ iR
2020/11/3
U ≈ ESCE- Ede U ≈ - Ede(vs.SCE) 因此i—U 曲线与 i—Ede曲线接近相同。 i—Ede曲线称为极
谱波。由于汞滴是周期性落下,故扩散电流呈周期性重复变 化。所得的极谱曲线(极谱波)呈锯齿状。
2020/11/3
浓差极化——由于电解时在电极表面浓度的差异而引起的极 化现象。
由于浓差极化,必须增加外加电压才能在溶液中通过同样 的电流,因此直线将发生弯曲,如图5-2。 (2)阴极使用微铂电极, 电解时不搅拌溶液。
由于电解电流密度较 大,溶液静止,随着外加 电压的增加, Cd2+浓度迅 速降低,很快发生浓差极 化,直至浓度变为零。此 时电流不再随外பைடு நூலகம்电压的
重点及难点
1、伏安法和极谱法
2、浓差极化?它与哪几个参 数有关
3、为什么很少使用静止微铂 电极
4、尤考维奇公式中,扩散电 流的因数是什么?
5、极谱定量方法有几种?
6、什么是半波电位?
7、为什么半波电位是定性分 析的依据?
8、残余电流?
9、法拉第电流和非法拉第电 流?
2020/11/3
第五章 伏安分析法
i = K(c - ce)
当电解电压增加到一定数值时, ce →0,电流不再随外 加电压而变化:
id = K c
K=607nD1/2m2/3t1/6 —— 尤考维奇常数
2020/11/3
扩散电流方程(尤考维奇公式):
id = 607 n D1/2 m2/3 t 1/6 c
id —汞滴上的平均极限扩散电流(A) n — 电极反应中转移的电子数; D—被测物质在溶液中的 扩散系数(cm2.s-1); t —滴汞周期(s); C— 待测物原始浓度(mmol/L); m— 汞流速度(mg/s);
汞滴滴落速度:2-3滴/10s。电压由0V逐渐增加,绘制电 流-电压曲线。
图中a~b段,仅有微小的电流流过,这时的电流称为“ 残余电流”或背景电流。当外加电压到达Cd2+的析出电位时,
2020/11/3
(-0.5V~-0.6V),Cd2+开始在滴汞电极上迅速反应:
滴汞电极: 甘汞电极:
Cd2+ + 2e + Hg = Cd(Hg)(汞齐) 2Hg - 2e + 2Cl- = Hg2Cl2
O2
电流与电压的关系: 线性关系
2020/11/3
U外-Ud=iR
呈线性的条件:电解电流密度 不大,溶液经充分搅拌。如图 5—2a所示。
若电解电流密度较大,溶 液搅拌不充分,使得电极表面 Cd2+浓度小于溶液本体浓度:
E
=E

+
RT nF
lncM
Cd2+的电极电位向负的方向移 动,即发生所谓的极化现象。
滴汞电极的特点: a. 电极毛细管口处的汞滴很小,易形成浓差极化;
2020/11/3
b. 汞滴不断滴落,使电 极表面不断更新,重复性 好。汞滴下落时将原来的 汞滴表面的扩散层带走。
c. 氢在汞上的超电位较 大;
d. 金属与汞生成汞齐,降 低其析出电位,使碱金属和 碱土金属也可分析。 e. 汞容易提纯 极化电极与去极化电极
2020/11/3
(2) 溶液保持静止,使扩散层厚度稳定,待测物质仅依靠扩 散到达电极表面。 (3) 电解液中含有较大量的惰性电解质,使待测离子在电场 作用力下的迁移运动降至最小。只有浓差扩散引起的迁移运动 (KCl:0.1 mol.L-1) (4) 使用两支不同性能的电极。极化电极的电位随外加电压 变化而变,保证在电极表面形成浓差极化。 (5)通N2或H2除去溶液中的溶解氧。
2020/11/3
2020/11/3
增加而增加,而受从溶液本体扩散到电极表面的速度控制,并 达到一个极限值。称之为极限扩散电流。
Cd2+的扩散速度与溶液本体Cd2+的浓度有关,因此根据极 限电流的大小可确定溶液中待测离子的浓度。这就是极谱分析 的依据。
在实际应用中,很少使用静止微铂电极。其原因:一是不 能保证重现性;二是每次测定时电极需要处理;三是测定每一 电位所对应的扩散电流不恒定;四是改变电位后要搅动溶液。 因此测定中很难使用简单的仪器连续记录极谱图。 (3)阴极使用滴汞电极,不搅拌溶液。
2020/11/3
2020/11/3
第二节 扩散电流方程式—极谱定量分析基础 极谱法测定Cd2+: 滴汞电极: Cd2+ + 2e + Hg = Cd(Hg)(汞齐)
2020/11/3
Ede

E

+
RT nF
ln
ccea
滴汞电极表面的浓度梯度:
c x
=
电极表面
c0- ce
在一定电位下,受扩散控制的电解电流:
2020/11/3
极化电极——如果一支电极通过无限小的电流,便引起电极 电位发生很大变化,这样的电极称之为极化电极,如滴汞电 极; 去极化电极——电极电位不随电流变化的电极叫做理想的去 极化电极,如甘汞电极或大面积汞层。
Cd2+的极谱分析过程与极谱波: 极谱分析:在特殊条件下进行的电解分析。特殊性:使 用了一支极化电极和另一支去极化电极作为工作电极,是在溶 液静止的情况下进行的非完全的电解过程。 极谱测定条件: (1)待测物质的浓度要小,快速形成浓度梯度。(CdCl2:510-4 mol.L-1)
2020/11/3
此时外加电压稍稍变化,电流就迅速增加( b~d段)。当外 加电压增加到一定数值时,由于浓差极化而使电流达到极限值 ,即极限电流( d~e段)(极谱定量分析的基础)。
if = id + ir
极限电流——是由溶液本体扩散到电极表面有金属离子所传递 的电流。
图中C处电流随电压变化的比值最大,此点对应的电位称为 半波电位——电流等于扩散电流一半的滴汞电极的电位(E1/2 )。 (极谱定性的依据)
一、极谱分析的基本原理
伏安分析法:以测定电解过程中的电流-电压曲线为基础
的电化学分析方法;
极谱分析法(polarography):采用滴汞电极的伏安分析
法;
以Cd2+溶液的电解来讨论:
(1)条件:两个大的铂片电极,充分搅拌下电解:
阴极: Cd2+ + 2e-
Cd
阳极: 2OH- - 2e-
H2O
+
1 2
相关文档
最新文档