2019年秋浙教版初中数学八年级上册《一次函数》单元测试(含答案) (81)
浙教版八年级数学上册《第五章一次函数》章节检测卷-带答案

浙教版八年级数学上册《第五章一次函数》章节检测卷-带答案学校:___________班级:___________姓名:___________考号:___________一、选择题(每题3分,共30分)1.下列函数中是正比例函数的是()2+1D.y=0.6x−5 A.y=−7x B.y=−7x C.y=2x2.已知一次函数y=mnx与y=mx+n(m,n为常数,且mn≠0),则它们在同一平面直角坐标系内的图象可能为()A.B.C.D.3.水滴进玻璃容器(滴水速度相同)实验中,水的高度随滴水时间变化的情况(下左图),下面符合条件的示意图是()A.B.C.D.4.如图,小刚骑电动车到单位上班,最初以某一速度匀速行进,途中由于遇到火车挡道,停下等待放行,耽误了几分钟,为了按时到单位,小刚加快了速度,仍保持匀速行进,结果准时到单位.小刚行进的路程y(千米)与行进时间t(小时)的函数图象的示意图,你认为正确的是()A.B.C.D.5.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂物体质量x(kg)之间有如下关系(其中x≤12)x kg⁄012345y/cm1010.51111.51212.5下列说法不正确的是()A.x与y都是变量,且x是自变量,y是因变量B.弹簧不挂重物时的长度为10cmC.所挂物体质量x每增加1kg,弹簧长度y增加0.5cmD.所挂物体质量为7kg时,弹簧长度为14.5cm6.如图,直线l1:y=x+3与l2:y=kx+b相交于点P(1,m),则方程组{y=x+3y=kx+b的解是()A.{x=4y=1B.{x=1y=4C.{x=1y=3D.{x=3y=17.一次函数y=(m-2)x+2-m和y=x+m在同一平面直角坐标系中的图象可能是()A.B.C.D.8.如图,在平面直角坐标系中,一次函数y=x+4的图象与x轴交于点A,与y轴交于点B,点P在线段AB上,PC⊥x轴于点C,则△PCO周长的最小值为()A.2√2B.4+2√2C.4D.4+4√29.若A(x1,y1),B(x2,y2)是一次函数y=ax+2x−2图象上的不同的两点,记m=(x1−x2)(y1−y2),则当m>0时,a的取值范围是()A.a<0B.a>0C.a<−2D.a>−210.如图,已知点P(6,2),点M,N分别是直线l1:y=x和直线l2:y=12x上的动点,连接PM,MN.则PM+MN的最小值为()A.2B.2√5C.√6D.2√3二、填空题填空题(每题4分,共24分)11.函数y=√x−3中,自变量x的取值范围是.12.若函数y=x m−1+m是关于x的一次函数,则常数m的值是.13.如图,直线y=x+2与直线y=ax+c相交于点P(m,3),则关于x的不等式x+2≤ax+c的解集为.14.已知一次函数y=kx+b,当−2≤x≤3时−1≤y≤9,则k=.15.已知A(a,b),B(c,d)是一次函数y=kx−3x+2图象上不同的两个点,若(c−a)(d−b)<0,则k的取值范围是.16.如图,已知一次函数y=kx+b的图象与x轴,y轴分别交于点(2,0),点(0,3),有下列结论:①图象经过点(1,−3);②关于x的方程kx+b=0的解为x=2;③关于x的方程kx+b=3的解为x=0;④当x>2时y<0.其是正确的是.三、综合题(17-21每题6分,22、23每题8分,共46分)17.如图,在平面直角坐标系xOy中,直线y=−2x+4与直线y=kx相交于点E(m,2).(1)求m,k的值;(2)直接写出不等式−2x+4≥kx的解集.18.如图,一次函数y=12x+3与x轴交于点A,与y轴交于点B,点C与点A关于y轴对称.(1)求直线BC的函数解析式;(2)设点M是x轴上的一个动点,过点M作y轴的平行线,交直线AB于点P,交直线BC于点Q.若△PQB的面积为3,求点M的坐标.19.如图,直线AB与x轴,y轴分别交于点A和点B,点A的坐标为(−1,0),且2OA=OB.(1)求直线AB解析式;(2)如图,将△AOB向右平移3个单位长度,得到△A1O1B1,求线段OB1的长;(3)在(2)中△AOB扫过的面积是.20.如图,直线l1:y=x+3与过点A(3,0)的直线l2交于点C(m,4),与x轴交于点B.(1)求直线l2的解析式y=kx+b;(2)直接写出不等式0<kx+b<x+3的解集;(3)点M在直线l1上,MN∥y轴,交直线l2于点N,若MN=AB,求点M的坐标.21.北京园博园是一个集园林艺术、文化景观、生态休闲、科普教育于一体的大型公益性城市公园.小田和小旭在北京园博园游玩,两人同时从永定塔出发,沿相同的路线游览到达国际展园,路线如图所示.记录得到以下信息:a.小田和小旭从永定塔出发行走的路程y1和y2(单位:km)与游览时间x(单位:min)的对应关系如下图:b.在小田和小旭的这条游览路线上,依次有4个景点,从永定塔到这4个景点的路程如下表:景点济南园忆江南北京园锦绣谷路程(km)12 2.53根据以上信息,回答下列问题:(1)在这条游览路线上,永定塔到国际展园的路程为km;(2)小田和小旭在游览过程中,除永定塔与国际展园外,在相遇(填写景点名称),此时距出发经过了min;(3)下面有三个推断:①小旭从锦绣谷到国际展园游览的过程中,平均速度是245km/min;②小旭比小田晚到达国际展园30min;③60min时,小田比小旭多走了23km.所有合理推断的序号是.22.已知直线l1:y1=x−3m+15;l2:y2=−2x+3m−9.(1)当m=3时,求直线l1与l2的交点坐标;(2)若直线l1与l2的交点在第一象限,求m的取值范围;(3)若等腰三角形的两边为(2)中的整数解,求该三角形的面积.23.如图,已知直线y=kx+b经过A(6,0),B(0,3)两点.(1)求直线y=kx+b的解析式;(2)若 C 是线段OA 上一点,将线段CB 绕点 C 顺时针旋转90∘得到CD ,此时点D 恰好落在直线AB 上①求点C 和点D 的坐标;②若点P 在y 轴上,Q 在直线AB 上,是否存在以C,D,P,Q为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的点Q 的坐标,否则说明理由.参考答案1-5.【答案】ADDDD6-10.【答案】BBBDB11.【答案】x≥312.【答案】213.【答案】x≤114.【答案】2或−215.【答案】k<316.【答案】②③④17.【答案】(1)解:将点E(m,2)代入y=−2x+4可得:2=−2m+4解得:m=1∴E(1,2)∵E(1,2)过直线y=kx∴k×1=2,即k=2∴直线OE的解析式为:y=2x即:k=2,m=1;(2)解:结合函数图象可知:不等式−2x+4≥2x的解集为:x≤1.18.【答案】(1)解:对于y=12x+3当y=0时0=12x+3,解得x=−6,∴A(−6,0)当x=0时y=3,∴B(0,3)∵点C与点A关于y轴对称∴点C(6,0)设直线BC 的解析式为y =kx +b(k ≠0)∴{6k +b =0b =3,解得:{k =−12b =3∴直线BC 的解析式为y =−12x +3;(2)解:设M(m,0),则点P(m,12m +3),Q(m,−12m +3)如图,过点B 作BD ⊥PQ 于点D则PQ =|−12m +3−(12m +3)|=|m|,BD =|m|∵△PQB 的面积为3∴12PQ ⋅BD =12m 2=3解得:m =±√6∴点M 的坐标为(√6,0)或(−√6,0).19.【答案】(1)解:∵点A 的坐标为(−1,0)∴OA =1 ∵2OA =OB ∴OB =2OA =2 ∴B(0,2)设直线AB 解析式为 y =kx +b将 A(−1,0) 和 B(0,2) 代入 y =kx +b 中{0=−k +b 2=b解得 {k =2b =2∴y =2x +2 ;故直线AB 解析式为 y =2x +2(2)解:∵将△AOB 向右平移3个单位长度,得到△A 1O 1B 1∴B 1(3,2)∴OB 1=√(3−0)2+(2−0)2=√13 (3)720.【答案】(1)解:把C(m,4)代入直线l 1:y =x +3得到4=m +3,解得m =1∴点C(1,4)设直线l 2的解析式为y =kx +b 把A 和C 的坐标代入 ∴{k +b =43k +b =0 解得{k =−2b =6∴直线l 2的解析式为y =−2x +6; (2)1<x <3;(3)解:当y =0时x +3=0,解得x =−3 ∴点B 的坐标为(−3,0)AB =3−(−3)=6设M(a,a +3),由MN ∥y 轴,得N(a,−2a +6)MN =|a +3−(−2a +6)|=AB =6解得a =3或a =−1 ∴M(3,6)或(−1,2).21.【答案】(1)4(2)忆江南(3)②③22.【答案】(1)解:将m =3代入直线l 1:y 1=x −3m +15,l 2:y 2=−2x +3m −9得y 1=x −9+15=x +6,y 2=−2x +9−9=−2x联立得{y =x +6y =−2x 解得{x =−2y =4∴直线l 1与l 2的交点坐标为(−2,4);(2)解:联立直线l 1与l 2得方程组{y =x −3m +15y =−2x +3m −9 解得{x =2m −8y =−m +7∴直线l 1与l 2的交点为(2m −8,−m +7)∵交点在第一象限∴{2m −8>0−m +7>0解得4<m <7即m 的取值范围为4<m <7 (3)解:∵4<m <7 ∴等腰三角形的两边为5,6①如图,当AB =AC =6,BC =5时,过点A 作AD ⊥BC 于D∴BD =CD =12BC =52∴AD =√AB 2−BD 2=√62−(52)2=√1192∴S △ABC =12×5×√1192=5√1194;②如图,当AB =AC =5,BC =6时,过点A 作AD ⊥BC 于D∴BD =CD =12BC =3 ∴AD =√AB 2−BD 2=√52−32=4∴S △ABC =12×6×4=12. 综上所述,该三角形的面积为5√1194或4.23.【答案】(1)解:将A(6,0),B(0,3)代入y =kx +b 得: {6k +b =0b =3解得{k =−12b =3∴直线AB 得表达式为y =−12x +3.(2)解:①过点D 作DE ⊥x 于点E∵∠BOC=∠BCD=∠CED=90°∴∠OCB+∠DCE=90°,∠DCE+∠CDE=90°∴∠BCO=∠CDE又BC=CD∴△BOC≅CED(ASA)∴OC=DE,BO=CE=3.设OC=DE=m,则点D得坐标为(m+3,m)∵点D在直线AB上∴m=−12(m+3)+3∴m=1∴点C得坐标为(1,0),点D得坐标为(4,1).②存在点Q得坐标为(3,32),(−3,92)或(5,12).理由如下:设点Q的坐标为(n,-12n+3).分两种情况考虑,如图2所示:当CD为边时∵点C的坐标为(1,0),点D的坐标为(4,1),点P的横坐标为0∴0-n=4-1或n-0=4-1∴n=-3或n=3∴点Q 的坐标为(3,32),点Q '的坐标为(-3,92); 当CD 为对角线时∵点C 的坐标为(1,0),点D 的坐标为(4,1),点P 的横坐标为0∴n+0=1+4∴n=5∴点Q″的坐标为(5,12). 综上所述:存在以C 、D 、P 、Q 为顶点的四边形是平行四边形,点Q 的坐标为(3,32),(-3,92)或(5,12)。
2019年秋浙教版初中数学八年级上册《一次函数》单元测试(含答案) (106)

25.(6 分)某学校要印刷一批资料,甲印刷公司提出收制版费 900 元,另外每份材料收印刷 费 0.5 元;乙印刷公司提出不收制版费,每从头材料收印刷费 0.8 元. (1)分别写出两家印刷公司的收费 y(元)与印刷材料 x(份)之间的函数解析式; (2)若学校预计要印刷 2500 份宣传材料,请问学校应选择哪一家印刷公司更合算?
过第
象限.
19.(3 分)如果 y-1 与 x-3 成正比例,且当 x=4 时,y=-1,那么 y 关于 x 的函数解析式
是
.
20.(3 分)如图表示甲骑电动自行车和乙驾驶汽车沿相同的路线行驶 45km,由 A 地到 B 地
时,行驶的路程 y(km)与经过的时间 x(h)之间的函数关系.请根据这个行驶过程中的图象
28.(6 分)某地举办乒乓球比赛的费用 y(元)包括两部分:一部分是租用比赛场地等固定不 变的费用 b(元),另一部分与参加比赛的人数 x(人)成正比例关系. 当 x=20 时,y=1600,当 x=30 时,y=2000.
(1)求 y 与 x 之间的函数解析式; (2)如果有 50 名运动员参加比赛,且全部费用由运动员分摊,那么每名运动员需要支付多 少元?
C. y = −x −1
D. y = x +1
4.(2 分)函数 y = x + 4 , y = 1 x + 4 , y = −2x + 4 , y = − 1 x + 4 的共同特点是( )
2
4
A.图象位于相同象限
B. y 随 x 的增大而减小
C. y 随 x 的增大而增大
D.图象都经过同一定点
5.(2 分)已知,一次函数 y = kx + b 的图象如图,下列结论正确的是( )
2019年秋浙教版初中数学八年级上册《一次函数》单元测试(含答案) (339)

2019-2020 年八年级数学上册《一次函数》测试卷
学校:__________ 姓名:__________ 班级:__________ 考号:__________
题号 一
二
三 总分
பைடு நூலகம்
得分
评卷人 得分
一、选择题
1.(2 分)已知 y + a 与 x +b (a、b 为常数)成正比,则下列判断中,正确的是( ) A.y 是 x 的正比例函数 B.y 是 x 的一次函数 C.y 不是 x 的一次函数 D.y 既不是 x 的正比例函数,也不是 x 的一次函数
D.-2 D.(8,O)
A.
B.
C.
D.
评卷人 得分
二、填空题
5.(3 分)已知直线 y=kx+2(k 为常数,且 k≠0),则 k= 时,该直线与坐标轴所围成的三角 形的面积等于 1. 6.(3 分)若一次函数 y = x + a 与一次函数 y = −x + b 的图象的交点坐标为(m,4),则
25.(6 分)一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱用,按市 场价售出一些后,又降价出售,售出土豆千克数与他手中持有钱数(含备用零钱)的关系如 图所示,结合图象回答下列问题: (1)农民自带的零钱是多少? (2)降价前他每千克土豆出售的价格是多少? (3)降价后他按每千克 0.4 元将剩余土豆售完,这时他手中的钱(含备用零钱)是 26 元,问 他一共带了多少 kg 土豆?
30.(6 分)已知等腰△ABC 的周长为 50 cm,底边 BC 长为 y(cm),腰 AB 长为 x(cm).求: (1)y 与 x 之间的函数解析式及自变量 x 的取值范围; (2)求当 x=15 时的函数值.
第五章 一次函数单元测试卷(标准难度)(含答案)

浙教版初中数学八年级上册第五章《一次函数》单元测试卷考试范围:第五章;考试时间:120分钟;总分:120分学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、选择题(本大题共12小题,共36分。
在每小题列出的选项中,选出符合题目的一项)1.如图所示的图象(折线ABCDE)描述了一辆汽车在某一直线上的行驶过程中,汽车离出发地的距离s(千米)与行驶时间t(时)之间的关系,根据图中提供的信息,给出下列说法:①汽车共行驶了140千米;②汽车在行驶途中停留了1小时;③汽车在整个行驶过程中的平均速度为30千米/时;④汽车出发后6小时至9小时之间行驶的速度在逐渐减小.其中正确的说法共有( )A. 1个B. 2个C. 3个D. 4个2.根据如图所示的计算程序计算y的对应值,若输入变量x的值为12,则输出的结果为( )A. 12B. −12C. −32D. 543.在矩形ABCD中,动点P从A出发,沿A→D→C运动,速度为1m/s,同时动点Q从点A出发,以相同的速度沿路线A→B→C运动,设点P的运动时间为t(s),△CPQ的面积为S(m2),S与t的函数关系的图象如图所示,则△CPQ面积的最大值是( )A. 3B. 6C. 9D. 184.学枝组织部分师生去烈士陵园参加“不忘初心,牢记使命”主题教育活动.师生队伍从学校出发,匀速行走30分钟到达烈士陵园,用1小时在烈主陵园进行了祭扫和参观学习等活动,之后队伍按原路匀速步行45分钟返校.设师生队伍离学校的距离为y米,离校的时间为x分钟,则下列图象能大致反映y与x关系的是( )A. B.C. D.5.小聪某次从家出发去公园游玩的行程如图所示,他离家的路程为s米,所经过的时间为t分钟.下列选项中的图象,能近似刻画s与t之间关系的是( )A. B.C. D.6.下列函数中,一次函数是( )+2 B. y=−2xA. y=1xC. y=x2+2D. y=mx+n(m,n是常数)7.函数①y=πx,②y=−2x+1,③y=1,④y=x2−1中,是一次函数的有( )xA. 4个B. 3个C. 2个D. 1个8.下列函数:(1)y=πx2(2)y=2x−1(3)y=1(4)y=2−3x(5)y=x2−1中,x是一次函数的有( )A. 4个B. 3个C. 2个D. 1个9.一次函数y=2(x+1)−1不经过第象限.( )A. 一B. 二C. 三D. 四10.如图,已知直线l1:y=−2x+4与直线l2:y=kx+b(k≠0)在第一象限交于点M.若直线l2与x轴的交点为A(−2,0),则k的取值范围是( )A. −2<k<2B. −2<k<0C. 0<k<4D. 0<k<2x+4与x轴、y轴分别交于A、B两点,C、D分别为线段AB、OB的11.如图,直线y=23中点,P为OA上一动点,当PC+PD的值最小时,点P的坐标为( )A. (−52,0) B. (−3,0) C. (−32,0) D. (−6,0)12.甲、乙两人在一条长400米的直线跑道上同起点、同终点、同方向匀速跑步,先到终点的人原地休息.已知甲先出发3秒,在跑步过程中,甲、乙两人间的距离y(米)与乙出发的时间x(秒)之间的函数关系如图所示,则下列结论中正确的个数是( )①乙的速度为5米/秒;②离开起点后,甲、乙两人第一次相遇时,距离起点60米;③甲、乙两人之间的距离为40米时,甲出发的时间为55秒和90秒;④乙到达终点时,甲距离终点还有80米.A. 4个B. 3个C. 2个D. 1个第II卷(非选择题)二、填空题(本大题共4小题,共12分)13.一根长为20cm的蜡烛,每分钟燃烧2cm,蜡烛剩余长度y(厘米)与燃烧时间t(分)之间的关系式为______(不必写出自变量的取值范围).14.某公司生产一种产品,前期投资成本为100万元,在此基础上,每生产一吨又要投入5万元成本,那么生产的总成本y万元与产量x吨之间的数量关系是______.15.新定义:[a,b]为一次函数y=ax+b(a≠0,a,b为实数)的“关联数”.若“关联数”[3,m+2]所对应的一次函数是正比例函数,则关于x的方程1x−1+1m=1的解为.16.如图,直线y=kx+b与y=mx+n分别交x轴于点A(−0.5,0),B(2,0),则不等式(kx+b)(mx+n)>0的解集为______.三、解答题(本大题共9小题,共72分。
2019年秋浙教版初中数学八年级上册《一次函数》单元测试(含答案) (280)

24.(6 分)某市为了鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费:月
用水量不超过 20 m3 时,按 2 元/m3 计费;月用水量超过 20 m3 时,其中的 20 m3 仍按 2 元
/m3 收费,
超过部分按 2.6 元/m3 计费.设每户家庭月用水量为 x(m3)时,应交水费 y 元.
A.第一象限
B.第二象限
C.第三象限
D.第四象限
5.(2 分)如果一次函数 y = kx + b 的图象经过第一象限,且与 y 轴负半轴相交,那么( )
A.k>0,b>O
B.k>0,b<0
C.k<0,b>0
D.k<0,b<0
6.(2 分)函数 y=3x-6 的图象是( )
A.过点(0,-6),(0,-2)的直线
B.过点(0,2),(1,-3)的直线
C.过点(2,O),(1,3)的直线
D.过点(2,0),(0,-6)的直线
7.(2 分)下列函数:① y = 1 x ;② y = 1 − x ;③ y = 2x2 ;④ y = 2 .其中是一次函数的个数
8
8
x
为( ) A. 0 个 B.1 个 C. 2 个 D.3 个
浙教版初中数学试卷
2019年秋浙教版初中数学八年级上册《一次函数》单元测试(含答案) (80)

15. −1 k 1
16.2
17.-2
18.3
19.2,≠-2
20.y=-2x
21.y=2.2x,33,用水量为 15 吨时所付水费为 33 元,l6
22.6;Q、t
评卷人 得分
三、解答题
23.(1) y = −x + 40 (2)200 元
24.(1)600;(2) y = 2 x − 500 ;(3)29000 5
数.
20.(3 分)已知一个正比例函数的图象经过点(-2,4),那么这个正比例函数的表达式
是.
21.(3 分)某市居民用水的价格是 2.2 元/m3,设小煜家用水量为 x(m3),所付的水费为 y
元,则 y 关于 x 的函数解析式为
;当 x=15 时,函数值 y 是 ,它的实际意义
是
;若这个月小煜家付了 35.2 元水费,则这个月小煜家用了 m3 水.
25
20
15
…
若日销售量 y (件)是销售价 x (元)的一次函数.
(1)求出日 售量 y (件)与销售价 x (元)的函数析式;
(2)求销售价定为 30 天时,每日的销售利润.
24.(6 分)从有关方面获悉,在某市农村已经实行了农民新型合作医疗保险制度.享受医保
的农民可以在规定的医院就医并按规定标准报销部分医疗费用.下表是医疗费用报销的标
22.(3 分)某汽车每小时耗油 6 kg,该车在行驶 t(h)后耗去了 Q(kg)油,即 Q=6t,其中常量
是
,变量是 .
评卷人 得分
三、解答题
23.(6 分)某产品每件成本 10 元,试销阶段每件产品的销售价 x (元)与产品的日销售量
y (件)之间的关系如下表:
2019年秋浙教版初中数学八年级上册《一次函数》单元测试(含答案) (349)

2019-2020 年八年级数学上册《一次函数》测试卷
学校:__________ 姓名:__________ 班级:__________ 考号:__________
题号 一
二
三 总分
得分
评卷人 得分
一、选择题
1.(2 分)在直角坐标系中,横、纵坐标都是整数的点称为整点,那么一次函数 y = −x + 3 在
.
15.(3 分)已知一次函数 y = kx + b (k≠0)的图象经过点(0,1),而且 y 随 x 的增大而增大,请
你写出一个符合上述条件的函数解析式
.
16.(3 分)如图,一次函数 y=x+2 的图象经过点 M(a,b)和 N(c,d),则 a(c-d)-b(c-d)的值
为.
17.(3 分)直线 y=kx+b 经过点 A(-2,0)和 y 轴正半轴上的一点 B,若△ABO(0 为坐标原点)
27.(6 分)已知 y+n 与 x+m(m,n 是常数)成正比例关系. (1)试判断 y 是否是 x 的一次函数,并说明理由; (2)若 x=2,y=3;x=-2,y=1,求 y 与 x 之间的函数解析式.
28.(6 分)如图,已知直线 y = kx − 3经过点 M ,求此直线与 x 轴, y 轴的交点坐标.
25.(1)y=4x,y=-2x+6;(2)图略
26.( 20 ,l) 3
27.(1)是,理由略;(2) y = 1 x + 2 2
28.解:由图象可知,点 M(−2,1) 在直线 y = kx − 3上,−2k − 3 = 1.
解得 k = −2 .
29.(1) S = −x2 +10x (0<x<10);(2)16,25,16 30.(1)28 个,38 个;(2)18 排;(3)m=20+2(n-1)(1≤n≤30 且 n 为正整数);常量为 20,2,
2019年秋浙教版初中数学八年级上册《一次函数》单元测试(含答案) (355)

【参考答案】***试卷处理标记,请不要删除
y=-x+6 上的点是
,在直线 y=3x 一 4 上的点是 ..
21.(3 分)一次函数 y=kx+b(k≠0)的图象是
,正比例函数 y=kx(k≠0)的图象是经过
的一条直线.
22.(3 分)如图①、②所示,
图①中 y 与 x 函数 关系;图②中 y 与 x 函数关系(填“是”或“不是”). 23.(3 分)如图,l1 反映了某公司的销售收入与销量的关系,l2 反映了该公司产品的销售成
()
A. 5
B. 20
C. 2
D. 5
2.(2 分)已知函数 y = mx + 3x − 3 ,要使函数值 y 随自变量 x 值的增大而增大,则 m 的取值
范围是 ( )
A. m −3
B. m −3
C. m −3
D. m −3
3.(2 分)直线 y = − 4 x − 4 与两坐标轴围成的三角形面积是( ) 3
C.若通讯费用为 60 元,则 B 方案比 A 方案的通话时间多
D.若两种方案通讯费用相差 10 元,则通话时间是 145 分或 185 分
评卷人 得分
二、填空题
15.(3 分)直线 y = −3x 与 y = −3x + 2 的位置关系为 .(填“平行"或“相交").
16.(3 分)已知 A,B 的坐标分别为(-2,0),(4,0),点 P 在直线 y = x + 2 上,如果△ABP
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙教版初中数学试卷2019-2020年八年级数学上册《一次函数》测试卷学校:__________题号 一 二 三 总分 得分评卷人 得分一、选择题1.(2分)星期日晚饭后,小燕的的爷爷老杨从家里出去散步.如图描述了他散步过程中离家的距离s (米)与散步所用时间t (分)之间的函数关系.依据图象.下面的描述符合老杨散步情景的是( )A .从家出发,到了某个地方遇到了邻居老张,聊了一会就回家了B .从家出发,到了某个地方遇到了邻居老张,聊了一会后,继续向前走了一段,然后回家了C .从家出发,一直散步(没有停留),然后回家了D .从家出发,散了一会儿步,又去了超市,27分钟后才开始返回2.(2分)如图,直线y kx b =+与x 轴交于点(-4,0),则0y >时,x 的取值范围是( ) A .4x >-B .0x >C .4x <-D .0x <3.(2分)已知正比例函数y kx =的图象经过点(2,4),k 的值是( ) A . 1B .2C . -1D .-24.(2分)如图,在光明中学学生耐力测试比赛中,甲、乙两学生测试的路程s (m )与时间t (s )之间的函数关系图象分别为折线OABC 和线段OD ,下列说法正确的是( )A.乙比甲先到达终点B.乙测试的速度随时间增加而增大C.比赛进行到29.4 S时,两人出发后第一次相遇D.比赛全程甲的测试速度始终比乙的测试速度快5.(2分)将直线y=2x向右平移2个单位所得的直线的解析式是()A.y=2x+2 B.y=2x一2 C.y=2(x-2)D.y=2(x+2)6.(2分)“高高兴兴上学来,开开心心回家去.”小王某天放学后,l7时从学校出发,回家途中离家的路程s(km)与所走的时间t(min)之间的函数关系如图所示,那么这天小明到家的时间为()A.17 h15 min B.17 h14 min C.17 h12 min D.17 h11 min7.(2分)如图是某人骑自行车的行驶路程s(km)与行驶时间t(h)的函数图象,下列说法不正确的是()A.从0 h到3 h,行驶了30 kmB.从l h到2 h匀速前进C.从l h到2 h在原地不动D.从0 h到l h与从2 h到3 h的行驶速度相同8.(2分)李老师骑自行车上班,最初以某一速度匀速行进,中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进.李老师行进的路程y (千米)与行进时间t (时)的函数图象大致为 ( )A .B .C .D .9.(2分)半径为R ,弧长为l 的扇形可用计算公式12S lR =计算面积,其中变量是( ) A .R B .lC .S 、RD .S 、l 、R评卷人 得分二、填空题10.(3分)已知点A(12-,a)、B(3,b)在函数y=-2x+3的图象上,则a 与b 的大小关系是 .11.(3分)已知一次函数的图象如图所示,则一次函数的解析式为 .12.(3分)一次函数y=kx+b 与y=-2x+3平行,且经过点(-3,4),则一次函数的表达式是 .13.(3分)已知点A 坐标为(-1,-2),点B 坐标为(1,-l),点C 坐标为(5,1),其中在直线y=-x+6上的点是 ,在直线y=3x 一4上的点是 ..14.(3分)对于函数y=(a+2)x+b-2,当a= 时,它是正比例函数;当a 时,它是一次函数.15.(3分)已知一个正比例函数的图象经过点(-2,4),那么这个正比例函数的表达式是 .16.(3分)某市居民用水的价格是2.2元/m 3,设小煜家用水量为x(m 3),所付的水费为y 元,则y 关于x 的函数解析式为 ;当x=15时,函数值y 是 ,它的实际意义 是 ;若这个月小煜家付了35.2元水费,则这个月小煜家用了 m 3水. 17.(3分)随着海拔高度的升高,大气压强下降,空气中的含氧量也随之下降,即含氧量3(g /m )y 与大气压强(kPa)x 成正比例函数关系.当36(kPa)x =时,3108(g /m )y =,请写出y 与x 的函数关系式 .18.(3分)一次函数y kx b =+的图象经过点A(0,2),B(3,0),则此函数的解析式为 .19.(3分)仓库里现有粮食l200 t ,每天运出60 t ,x 天后仓库里剩余粮食y(t),则y 与x 之间的函数解析式为 ,自变量x 的取值范围是 . 评卷人 得分三、解答题20.(6分)已知正比例函数1y k x =(1k 为常数,且10k ≠)的图象与一次函数23y k x =+(2k 为常数,且20k ≠)的图象交于点P (-3,6). (1)求1k 、2k 的值;(2)如果一次函数与x 轴交于点M ,求点M 的坐标.21.(6分)已知:如图,直线l 是一次函数y kx b =+的图象. 求:(1)这个函数的解析式; (2)当4x =时,y 的值.22.(6分)已知一次函数的图象过点(-1,5),且与正比例函数12y x =-的图象交于点(2,a),求:(1)求一次函数解析式;(2)这两个函数图象与x轴所围成的三角形面积,23.(6分)在正常情况下,一个人在运动时所能承受的每分钟心跳的最高次数S(次/分)是这个人年龄n(岁)的一次函数.(1)根据以上信息,求在正常情况下,S关于n的函数解析式;(2)若一位66岁的老人在跑步时,医生在途中给他测得l0秒心跳为25次,问:他是否有危险?为什么?24.(6分)某市为了鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费:月用水量不超过20 m3时,按2元/m3计费;月用水量超过20 m3时,其中的20 m3仍按2元/m3收费,超过部分按2.6元/m3计费.设每户家庭月用水量为x(m3)时,应交水费y元.(1)分别求出0≤x≤20和x>20时,y与x的函数表达式;(2)小明家第二季度交纳水费的情况如下:月份四月份五月份六月份交费金额30元34元42.6元小明家这个季度共用水多少m3?25.(6分)已知函数y=(2m-1)x-2+m.(1)若函数图象经过原点,求m的值;(2)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.26.(6分)某市自来水公司为限制单位用水,每月只给某单位计划内用水2500m 3,计划内用水每立方米收费0.9元,超计划部分每立方米按1.5元收费. (1)写出该单位水费y(元)与每月用水量x(m 3)之间的函数解析式; ①用水量x ≤2500时,y= ; ②用水量x>2500时,y= ;(2)某月该单位用水2000 m 3,应付水费 元;若用水3000m 3,应付水费 元; (3)若某月该单位付水费3300元,则该单位用水多少?27.(6分)已知y+n 与x+m(m ,n 是常数)成正比例关系. (1)试判断y 是否是x 的一次函数,并说明理由;(2)若x=2,y=3;x=-2,y=1,求y 与x 之间的函数解析式.28.(6分)衢州是中国历史文化名城,衢州烂柯山是中国围棋文化的重要发源地.如图是棋子摆成的“巨”字.求:(1)第四个“巨”字需要的棋子数;(2)按以上规律继续摆下去,求第n 个“巨”字所需的棋子数m .29.(6分)已知直线1l :54+-=x y 和直线2l ::421-=x y ,求两条直线1l 和2l 的交点坐标,并判断该交点落在平面直角坐标系的哪一个象限上.30.(6分)某礼堂共有30排座位,第1排共有20个座位,后面每一排比前一排多2个座位,则(1)第5排、第10排分别有几个座位? (2)若某一排有54个座位,则应是第几排?(3)写出每排的座位数m 与这排的排数n 之间的关系式,并指出这个问题中的常量和变量.【参考答案】***试卷处理标记,请不要删除一、选择题1.B 2.A 3.B 4.C 5.C 6.C 7.B 8.C 9.D二、填空题10.a>b 11.y=-2x+2 12.y=-2x-2 13.点C ,点B 14.2,≠-2 15.y=-2x16.y=2.2x ,33,用水量为15吨时所付水费为33元,l6 17.3y x18.223y x =-+19.y=1200-60x ,0≤x ≤20三、解答题20.(1)根据题意.得163k =-,∴12k =-;2633k =-+,21k =-. (2)由(1),得3y x =-+.令0y =,得30x -+=,∴3x =. ∴点M 的坐标为(3,0) .21.解:(1)依题意,得201k b b -+=⎧⎨=⎩,.,解得112k b ==,.112y x =+∴. (2)当4x =时,3y =. 22.(1)y=-2x+3;(2)3423.(1)21743S n =-+;(2)有危险 24.(1)y=2x ,y=2.6x-12;(2)53 m 3 25.(1)m=2;(2)m<1226.(1)①y=0.9x ;②y=2250+1.5(x-2500);(2)1800,3000;(3)3200 m 3 27.(1)是,理由略;(2)122y x =+ 28.(1)34颗;(2)m=10+8(n-l) 29.解:由题意得,45,1 4.2y x y x =-+⎧⎪⎨=-⎪⎩,解得,2,3.x y =⎧⎨=-⎩ ∴ 直线1l 和直线2l 的交点坐标是(2,-3). 交点(2,-3)落在平面直角坐标系的第四象限上.30.(1)28个,38个;(2)18排;(3)m=20+2(n-1)(1≤n ≤30且n 为正整数);常量为20,2,1;变量为m ,n。