正弦定理和余弦定理课件PPT

合集下载

高中数学必修五 1.1 正弦定理和余弦定理 教学课件 PPT (4)

高中数学必修五   1.1 正弦定理和余弦定理     教学课件   PPT (4)

C
b
a=?
A
c
B
三、证明问题
C
b
a=?
A
c
B
向量法:
C
b
a
A
c
B
四、余弦定理
三角形中任何一边的平方等于其他两边的平方的和减去这两边与 它们的夹角的余弦的积的两倍。
b A
或 (推论)
C a=?
c
B
五、余弦定理基本应用
1.已知两边及它们的夹角,求第三边;
2.已知三边,求三个角。
例1:隧道工程设计,经常需要测算山脚的长度,工程技术人 员先在地面上选一适当位置A,量出A到山脚B,C的距离,再 利用经纬仪(测角仪)测出A对山脚BC的张角,最后通过计 算求出山脚的长度BC。
转化:在 △ABC中,
B
AB 8km, AC 3km, A 600,
求a。
C A
例2:在△ABC中,已知 a=2,b= , 求A。
解:
∴A=45°
例3:在△ABC中,已知 a=2 ,b= , 解三角形。
解:由例2可知 A=45°
方法一:
方法二:
思考
在解三角形的过程中,求某一个角有时 既可以用余弦定理,也可以用正弦定理,两种方法有 什么利弊呢?
1:1: 3
变式训练
在ABC中,角A、B、C的对边分别 为a、b、c,若AB AC = BA BC = 1,c = 2.
(1)判断ABC的形状; (2)若 AB AC 6,求ABC的面积
答案:等腰三角形
3
2
小结:
一、正弦定理: a b c 2R sin A sin B sin C
其中,R是△ABC的外接圆的半径

正弦定理和余弦定理 (共35张PPT)

正弦定理和余弦定理 (共35张PPT)
2 2 2 2 2
考向二 判断三角形的形状[互动讲练型] [例 2] 在△ABC 中,内角 A、B、C 所对边分别是 a、b、c, c-a 2B 若 sin 2 = 2c ,则△ABC 的形状一定是________. 1-cos B c-a a [解析] 由题意,得 = 2c ,即 cos B= c,又由余 2 2 2 2 a + c - b a 弦定理,得c = 2ac ,整理,得 a2+b2=c2,所以△ABC 为 直角三角形. [答案] 直角三角形
2.(2017· 辽宁五校联考)设△ABC 的内角 A,B,C 所对边的 长分别为 a, b, c, 若 b+c=2a,3sin A=5sin B, 则角 C 等于( ) 2π π 3π 5π A. 3 B.3 C. 4 D. 6 解析:因为 3sin A=5sin B,所以由正弦定理可得 3a=5b. 3 7 因为 b+c=2a,所以 c=2a-5a=5a.令 a=5,b=3,c=7,则 由余弦定理 c2=a2+b2-2abcos C,得 49=25+9-2×3×5cos 1 2π C,解得 cos C=-2,所以 C= 3 . 答案:A
[拓展练]——(着眼于迁移应用) 6.(2016· 浙江)在△ABC 中,内角 A,B,C 所对的边分别为 a,b,c,已知 b+c=2acos B. (1)证明:A=2B; a2 (2)若△ABC 的面积 S= 4 ,求角 A 的大小.
考向一 应用正弦、余弦定理解三角形 [自主练透型] [例 1] (2016· 山东,16)在△ABC 中,角 A,B,C 的对边分 tan A tan B 别为 a,b,c.已知 2(tan A+tan B)=cos B+cos A. (1)证明:a+b=2c; (2)求 cos C 的最小值.

正弦定理和余弦定理课件PPT

正弦定理和余弦定理课件PPT
直角三角形的一个锐角的对边与斜边的比叫做这个 角的正弦.
【即时练习】
在△ABC 中,AB= 3,A=45°,C=75°,则 BC
等于( A )
A.3- 3
B. 2
C.2
D.3+ 3
[解析] 由sAinBC=sBinCA得,BC=3- 3.
探究点3 解三角形
1.一般地,把三角形的三个角A,B,C和它们的对 边a,b,c叫做三角形的元素. 2.已知三角形的几个元素,求其他元素的过程叫做 解三角形.
A. 3
B.2
C. 5
D. 7
【解析】选D.因为a2=b2+c2-2bccosA=22+32-2×2×3×
cos 60°=7,所以a=
7.
3.在△ABC中,a=3,b=4,c= ,则此三角形的最大角为
37
.
【解析】由c>b>a知C最大,
因为cosC=
a2
所以C=120°.
b2 c2 2ab
32 42 37 234
【拓展延伸】利用平面图形的几何性质和 勾股定理证明余弦定理 ①当△ABC为锐角三角形时,如图, 作CD⊥AB,D为垂足,则CD=bsinA, DB=c-bcosA,则a2=DB2+CD2=(c-bcosA)2+(bsinA)2 =b2+c2-2bccosA,其余两个式子同理可证;
b
b 2R, a 2R. 即得 :
A
sin B
sin A
C′
a b c 2R. R为三角形外接圆的半径
sin A sin B sin C
A
C
c
b aO
B
C
B`
Ob a B A` A c

正弦定理和余弦定理ppt课件

正弦定理和余弦定理ppt课件
总结词
正弦定理和余弦定理在物理学中有着 广泛的应用。
详细描述
在物理学中,许多现象可以用三角函数来描 述,如重力、弹力等。通过正弦定理和余弦 定理,我们可以更准确地计算这些力的作用 效果,从而更好地理解和分析物理现象。
06 总结与展望
总结正弦a、b、c与对应的角A、B、C 的正弦值之比都相等,即$frac{a}{sin A} = frac{b}{sin B} = frac{c}{sin C}$。
表达式形式
正弦定理的表达式形式简洁,易于理解和记 忆。相比之下,余弦定理的表达式较为复杂
,需要更多的数学基础才能理解和应用。
定理间的互补性
要点一
解决问题时的互补性
在解决三角形问题时,正弦定理和余弦定理常常是互补使 用的。对于一些问题,使用正弦定理可能更方便;而对于 另一些问题,使用余弦定理可能更合适。通过结合使用两 种定理,可以更全面地理解三角形的性质和关系,从而更 好地解决各种问题。
深入研究正弦定理和余弦定理的性质
可以进一步研究正弦定理和余弦定理的性质,如推广到多边形、高维空间等。
开发基于正弦定理和余弦定理的算法和软件
可以开发基于正弦定理和余弦定理的算法和软件,用于解决实际问题。
如何进一步深化理解与应用
深入理解正弦定理和余弦定理的证明过程
01
理解证明过程有助于更好地理解和应用正弦定理和余弦定理。
02 正弦定理
正弦定理的定义
总结词
正弦定理是三角形中一个重要的定理,它描述了三角形各边与其对应角的正弦值 之间的关系。
详细描述
正弦定理是指在一个三角形中,任意一边与其相对角的正弦值的比值都相等,即 $frac{a}{sin A} = frac{b}{sin B} = frac{c}{sin C}$,其中$a, b, c$分别代表三角形 的三边长度,$A, B, C$分别代表与三边相对应的角。

正弦定理与余弦定理时PPT课件

正弦定理与余弦定理时PPT课件
第15页/共28页
• 解法二:已知等式变形为
• b2(1-cos2C)+c2(1-cos2B)= 2bccosB·cosC,
• ∴b2+c2=b2cos2C+c2cos2B+ 2bccosB·cosC,
• ∵b2cos2C+c2cos2B+2bccosBcosC • =(bcosC+ccosB)2=a2, • ∴b2+c2=a2,∴△ABC为直角三角形.
得aab2+ =b62-ab=7 ⇒aab2+ =b62.=13 7 分
消去 b 并整理得 a4-13a2+36=0, 解得 a2=4,a2=9.9 分
所以ab= =23 或ab= =32.
故 a+b=5.12 分 第19页/共28页
•变式训练4.若本例题中(2)的条件不变,
试求“△ABC内切圆的半径r”.
由bcb30bcsin303由正弦定理sinccsinbc60或120c60a90c120a30abc为等腰三角形abca3b4c373743边c最大则角c最大bc2ababcsinasinbsincsinasinbsinccosc2ab9t25t49t3t5t1201203ab2cosasinbsincabc180sincsina2cosasinbsinc2cosasinbsinacosbcosasinbsina根据余弦定理上式可化为coscabc为等边三角形由2cosasinbsinc得cosa2sinb2b3ab4bsinb2bccosbcoscabcsinccsinb2bccosbcoscb2sinbsinccosbcoscsinbsincsinbsinccosbcosccosbc0cosa02bccosbcosc2bccosbcoscbcoscccosbabc2csina
形,且角C为____直__角;a2+b2>c2⇔△ABC是

正弦定理和余弦定理-PPT课件

正弦定理和余弦定理-PPT课件

22
类型一
正弦定理和余弦定理的应用
解题准备:
1.正弦定理和余弦定理揭示的都是三角形的边角关系,根据题 目的实际情况,我们可以选择其中一种使用,也可以综合起 来运用.
2.在求角时,能用余弦定理的尽量用余弦定理,因为用正弦定 理虽然运算量较小,但容易产生增解或漏解.
23
3.综合运用正、余弦定理解三角形问题时,要注意以下关系式
32
∵0<A<π,0<B<π,∴sin2A=sin2B
∴2A=2B或2A=π-2B,即A=B或A+B= .
2
∴△ABC是等腰三角形或直角三角形.
33
解法二:同解法一可得2a2cosAsinB=2b2cosBsinA,
由正、余弦定理得
a2b•
b2
c2
a
2
=b2a•
a2 c2 b2
2bc
2ac
1 2 3 2 1 3.
2
2
(2)当|BC|=4时,S△=
1 2
|AB|·|BC|·sinB
1 2 3 4 1 2 3.
2
2
∴△ABC的面积为 2 3 或 3.
27
[反思感悟]本题主要考查正弦定理、三角形面积公式及分类 讨论的数学思想,同时也考查了三角函数的运算能力及推 理能力.
28
40
设云高CM x m,则CE x h,
DE x h, AE x h .
tan
又AE x h , x h x h
tan tan tan
解得x tan tan gh hgsin( ) m.
tan tan
sin( )
41
[反思感悟]在测量高度时,要理解仰角、俯角的概念.仰角和俯 角都是在同一铅垂面内,视线与水平线的夹角,当视线在水 平线之上时,称为仰角;当视线在水平线之下时,称为俯角.

第4章第6节正弦定理余弦定理课件共47张PPT

第4章第6节正弦定理余弦定理课件共47张PPT


6+ 4
2 .
第六节 正弦定理、余弦定理
1
2
3
走进教材·夯实基础 细研考点·突破题型 课后限时集训
点评:在△ABC中,若A=m,则B+C=π-m.从而B=π-m-C 或C=π-m-B,由此可消去B或C.
第六节 正弦定理、余弦定理
1
2
3
走进教材·夯实基础 细研考点·突破题型 课后限时集训
[跟进训练]
=4或b=5.]
1234
第六节 正弦定理、余弦定理
1
2
3
走进教材·夯实基础 细研考点·突破题型 课后限时集训
02
细研考点·突破题型
考点一 考点二 考点三
利用正、余弦定理解三角形 利用正、余弦定理解决三角形面积问题 判断三角形的形状
第六节 正弦定理、余弦定理
1
2
3
走进教材·夯实基础 细研考点·突破题型 课后限时集训
2.三角形常用面积公式
(1)S=12a·ha(ha 表示边 a 上的高);
(2)S=12absin
1
1
C=___2_a_c_s_in__B___=____2_b_c_s_in__A__;
(3)S=12r(a+b+c)(r 为内切圆半径).
第六节 正弦定理、余弦定理
1
2
3
走进教材·夯实基础 细研考点·突破题型 课后限时集训
因此,选条件②时问题中的三角形存在,此时c=2 3.
第六节 正弦定理、余弦定理
1
2
3
走进教材·夯实基础 细研考点·突破题型 课后限时集训
方案三:选条件③.
由C=π6和余弦定理得a2+2ba2b-c2=
3 2.

正弦定理和余弦定理 PPT课件人教版

正弦定理和余弦定理 PPT课件人教版

6 2<
2.
∴∠A 有两解,∴A=60°或 120°.
当 A=60°时,C=180°-45°-60°=75°,
c=bssiinnBC=
s2isni4n57°5°=
6+ 2
2 .
当 A=120°时,C=180°-45°-120°=15°,
c=bssiinnBC=
s2isni4n51°5°=
6- 2
2 .
其他推导方法
(1)因为涉及边长问题,从而可以考虑用向量来研究 此问题.
提示:
作单位向量j⊥AC,j与AB夹角为锐角. j
由向量的加法可得AB = AC + CB, a
C b
则j·AB = j·(AC + CB),
B
A
所以j·AB = j·AC +j·CB,
j AB cos(90°- A)= 0 + j CB cos(90°- C),
直角三角形的一个锐角的对边与斜边的比叫做这个 角的正弦.
【即时练习】
在△ABC 中,AB= 3,A=45°,C=75°,则 BC
等于( A )
A.3- 3
B. 2
C.2
D.3+ 3
[解析] 由sAinBC=sBinCA得,BC=3- 3.
探究点3 解三角形
1.一般地,把三角形的三个角A,B,C和它们的对 边a,b,c叫做三角形的元素. 2.已知三角形的几个元素,求其他元素的过程叫做 解三角形.
C
sinA sinB
同理可得 b = cຫໍສະໝຸດ sinB sinCab
从而 a = b = c . B sinA sinB sinC
DA
(2)钝角三角形 如图,类比锐角三角形,请同学 们自己推导.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

综上可知:A=60°,C=75°,c=
6+ 2
2或 A=120°,
C=15°,c=
6- 2
2 .
例1 在△ABC中,已知A=32.0°,B=81.8°,a =42.9 cm,解三角形.
解:根据三角形内角和定理,
C 180 A B 180 32.0 81.8 66.2.
根据正弦定理,b=
6 2<
2.
∴∠A 有两解,∴A=60°或 120°.
当 A=60°时,C=180°-45°-60°=75°,来自c=bssiinnBC=
s2isni4n57°5°=
6+ 2
2 .
当 A=120°时,C=180°-45°-120°=15°,
c=bssiinnBC=
s2isni4n51°5°=
6- 2
2 .
其他推导方法
(1)因为涉及边长问题,从而可以考虑用向量来研究 此问题.
提示:
作单位向量j⊥AC,j与AB夹角为锐角. j
由向量的加法可得AB = AC + CB, a
C b
则j·AB = j·(AC + CB),
B
A
所以j·AB = j·AC +j·CB,
j AB cos(90°- A)= 0 + j CB cos(90°- C),
注意:(1)正弦定理指出了任意三角形中三条边与对应角
的正弦之间的一个关系式.由正弦函数在区间上的
单调性可知,正弦定理非常好地描述了任意三角形
中边与角的一种数量关系.
2 a b c 等价于
sin A sin B sin C a b , b c ,a c . sin A sin B sin B sin C sin A sin C
探究点2 正弦定理的基本作用
(1)已知三角形的任意两角与一边,求其他的边, 如 a bsin A. sin B
(2)已知三角形的任意两边与其中一边 的对角可以求其他角的正弦值, 如 sin A= a sin B.
b
(3)运用 a:b:c=sinA:sinB:sinC 解决边角之间的转换 关系.
直角三角形的一个锐角的对边与斜边的比叫做这个 角的正弦.
【即时练习】
在△ABC 中,AB= 3,A=45°,C=75°,则 BC
等于( A )
A.3- 3
B. 2
C.2
D.3+ 3
[解析] 由sAinBC=sBinCA得,BC=3- 3.
探究点3 解三角形
1.一般地,把三角形的三个角A,B,C和它们的对 边a,b,c叫做三角形的元素. 2.已知三角形的几个元素,求其他元素的过程叫做 解三角形.
第一章 解三角形 1.1 正弦定理和余弦定理
1.1.1 正弦定理
为了测定河岸A点到对岸C点的距离,在岸边选定1公 里长的基线AB,并测得∠ABC=120o,∠BAC=45o,如何求 A,C两点的距离呢?
.C
.B .A
1.通过对任意三角形边长和角度关系的探索, 掌握正弦定理的内容及其证明方法. 2.会运用正弦定理与三角形内角和定理解斜三 角形的两类基本问题.(重点、难点)
3.已知边a,b和角A,求其他边和角的讨论. (1)A为锐角




b a ba
ba
b
a

A B A B2 B1 A

a<bsinA 无解
a=bsinA bsinA<a<b
一解
两解
a≥b 一解
(2)A为钝角
C ba


C ba A
a>b 一解
a≤b 无解
A为直角时,与A为钝角相同, a>b时,一解;
探究点1 正弦定理
在初中,我们已学过如何解直角三角形,下面首先
来探讨直角三角形中角与边的等式关系.
A
提示:如图,在RtΔABC中,设BC = a,AC = b, C
B
AB = c,根据直角三角形中正弦函数的定义,有 a = sinA, c
b = sinB,sinC = 1 = c,则 a = b = c = c
所以c·sinA = a·sinC,即 a = c , sinA sinC
同理,作j⊥BC,j与AC夹角为锐角.
可得 b = c ,从而 a = b = c .
sinB sinC
sinA sinB sinC
(2)外接圆法 提示:
B a
如图:C=C', c sin
C
c sin C'
2R.
c
·O
C
如下图所示同理:
C
sinA sinB
同理可得 b = c sinB sinC
a
b
从而 a = b = c . B sinA sinB sinC
DA
(2)钝角三角形 如图,类比锐角三角形,请同学 们自己推导.
C
a b
提示:
B
AD
可证得,当ΔABC是钝角三角形时,也有
a = b = c. sinA sinB sinC
【即时练习】
在△ABC 中,a=8,B=60°,C=75°,则 b=( C )
A.4 2
B.4 3
C.4 6
22 D. 3
[分析] 已知两角,由三角形内角和定理第三角可
求,已知一边可由正弦定理求其他两边.
[解析] 在△ABC 中,A=180°-(B+C)=45°,由正 弦定理sinaA=sinbB得,b=assiinnAB=8s·sinin4650°°=4 6.故选 C.
a sin B sin A
=
42.9 sin 81.8 sin 32.0
80.(1 cm);
根据正弦定理,c= a sin C sin A
c
c sinA sinB sinC
从而在RtΔABC中,有 a = b = c . sinA sinB sinC
思考:对于任意的三角形,以上关系式是否仍然成立?
提示:(1)锐角三角形
当ΔABC是锐角三角形时,设边AB上的高是CD,
根据任意角三角函数的定义,有CD = asinB = bsinA,
则a = b
a≤b时,无解.
【即时练习】
已知在△ABC 中,a= 3,b= 2,B=45°,解这 个三角形.
[分析] 在△ABC 中,已知两边和其中一边的对角, 可运用正弦定理求解,但要注意解的个数的判定.
[解析] 由正弦定理及已知条件有sin3A=sin425°,
得 sinA= 23,asinB=
3sin45°=
b
b 2R, a 2R. 即得 :
A
sin B
sin A
C′
a b c 2R. R为三角形外接圆的半径
sin A sin B sin C
A
C
c
b aO
B
C
B`
Ob a B A` A c
正弦定理概述:
在一个三角形中,各边和它所对角的正弦的比相等,

ab sin A sin B
c. sin C
相关文档
最新文档