饲料中蛋白质的消化吸收

合集下载

反刍动物的消化吸收特点

反刍动物的消化吸收特点

反刍动物的消化吸收特点一、蛋白质的消化吸收反刍动物真胃和小肠中蛋白质的消化和吸收与单胃动物无差异。

但由于反刍动物瘤胃中微生物的作用,使反刍动物对蛋白质和含氮化合物的消化利用与单胃动物有很大的不同。

1.饲料蛋白质在瘤胃中的降解饲料蛋白质进入瘤胃后,一部分被微生物降解生成氨,生成的氨除用于微生物合成菌体蛋白外,其余的氨经瘤胃吸收,入门静脉,随血液进入肝脏合成尿素。

合成的尿素一部分经唾液和血液返回瘤胃再利用,另一部分从肾排出,这种氨和尿素的合成和不断循环,称为瘤胃中的氮素循环。

它在反刍动物蛋白质代谢过程中具有重要意义。

它可减少食入饲料蛋白质的浪费,并可使食入蛋白质被细菌充分利用合成菌体蛋白,以供畜体利用 (图1)。

图1 反刍家畜体内蛋白质的消化代谢饲料蛋白质经瘤胃微生物分解的那一部分称瘤胃降解蛋白质 (RDP),不被分解的部分叫做非降解蛋白质(UDP)或过瘤胃蛋白。

饲料蛋白质被瘤胃降解的那部分的百分含量称降解率。

各种饲料蛋白质在瘤胃中的降解率和降解速度不一样,蛋白质溶解性愈高,降解愈快,降解程度也愈高。

例如,尿素的降解率为 100 %,降解速度也最快;酪蛋白降解率 90%,降解速度稍慢。

植物饲料蛋白质的降解率变化较大,玉米为 40%,大多可达80%。

常见几种饲料蛋白质的降解率见表1。

表1 几种饲料蛋白的降解率饲料降解率(%) 饲料降解率(%)尿素酪蛋白大麦棉仁粕花生粕10090807065大豆粕苜蓿干草玉米鱼粉606040302.微生物蛋白质的产量和品质瘤胃中80%的微生物能利用氨,其中 26%可全部利用氨, 55%可以利用氨和氨基酸,少数的微生物能利用肽。

瘤胃微生物能在氮源和能量充足的情况下,合成足以维持正常生长和一定产奶量的蛋白质。

用近于无氮的日粮加尿素,羔羊能合成维持正常生长所需的10种必需氨基酸,其粪、尿中排出的氨基酸是摄入日粮氨基酸的3~1 0倍,其瘤胃中氨基酸是食入氨基酸的9~20倍。

用无氮日粮添加尿素喂奶牛12个月,产奶4271 kg;当日粮中20%的氮来自饲料蛋白时,产奶量提高。

影响饲料消化吸收率有哪些因素

影响饲料消化吸收率有哪些因素

影响饲料消化吸收率有哪些因素饲料营养成分的消化,由于养殖动物的种类、品种、年龄而不同,即使同一种动物也由于饲料的特性及组成而不同,了解和运用这些知识,对于为养殖动物创造良好消化条件,提高饲料的可消化性,从而提高养殖动物产量是很有益的。

1 饲料中蛋白质含量的影响饲料中蛋白质含量是否会影响蛋白质的消化吸收率。

由于在研究中随着蛋白质含量的变化,其他饲料成分也相应改变,因而消化吸收率的变化,是由于饲料成分的影响,还是由于蛋白质含量的影响,这给判断带来一定的困难。

赤筑(1956)用酪蛋白+淀粉+盐类的混合饲料投喂稚鲤,观察到蛋白质含量在10%时消化吸收率低,而蛋白质含量在20%—40%时,消化吸收率没有大的差别。

他认为蛋白质含量低时,消化吸收率也低的原因,可能是受到内因性N成分的影响;他在另一研究中发现,蛋白质含量低时,表观消化吸收率也小,但如把内因性蛋白态N量以0.04毫克/克体重加以修正时,则与真消化吸收率大体一致,因而认为在低蛋白质含量所看到的表观消化率的降低,不是由于添加淀粉所成绩卓著起的,而是由于内因性蛋白态N所致。

麦康森研究对虾对氨基酸的消化吸收率,发现氨基酸的消化吸收率在一定程度上与其含量存在正相关的关系。

2 水温的影响王克行(1984)研究指出,在20-32℃水温范围内,仔虾的生长速度随着水温的上升而加快,水温对生长速度的影响是否通过提高消化吸收率来体现?谢宝华等(1983)报道,配合饵料在不同水温25℃和30℃条件下,其消化速度和蛋白质消化率均无明显不同。

麦康森等(1988)用51 Cr2O3作指标物质掺入小杂鱼、虾中进行实验,结果表明,在20-30℃范围内,消化吸收率在85.90%—88.67%之间,可见水温并不明显影响蛋白质的消化吸收率。

3 粉碎粒度的影响用18目、40目、60目、80目、100目过筛的花生饼粉喂虾,测其消化吸收率。

结果表明,用18目过筛的花生饼粉的蛋白质消化吸收率降至80%以下,这显然是颗粒太粗,消化液难以渗入所致;40目至100目过筛的花生饼粉,其蛋白质消化吸收率没有明显差异,基本在同一水平上。

牛营养物质的消化与吸收

牛营养物质的消化与吸收

牛营养物质的消化与吸收碳水化合物一是来自精料,主要含有淀粉和可溶性糖;二是来自牧草和其他粗饲料,如干草、作物秸秆和青贮料,这类饲料的粗纤维含量很高。

碳水化合物饲料是肉牛的主要能量来源。

(一)可溶性糖的消化可溶性糖主要包括单糖和双糖,是谷物饲料的成分。

这些糖类几乎全部在瘤胃内被微生物发酵生成丙酮酸,丙酮酸进一步分解生成挥发性脂肪酸(VFA)和二氧化碳。

挥发性脂肪酸是反刍动物可以直接吸收利用的能量,也可被细菌直接利用转变为菌体多糖。

(二)淀粉的消化淀粉是谷物和某些作物块茎的主要成分,有直链淀粉和支链淀粉两种形式。

淀粉进入瘤胃后,在微生物的作用下被迅速分解为麦芽糖和葡萄糖。

淀粉的消化速度受饲料来源和加工条件的影响,例如,加热可以加快淀粉的消化速度。

在瘤胃内未被消化的淀粉与菌体多糖一起到达小肠,被分解生成葡萄糖,经小肠吸收后被利用。

(三)粗纤维的消化粗纤维是纤维素、半纤维素、木质素和果胶的总称,约有45%在瘤胃内消化,10%在大肠内消化.粗纤维在瘤胃内被微生物分解的最终产物是挥发性脂肪酸,到达大肠的粗纤维也同样被栖居在那里的微生物所降解。

(一)瘤胃内脂肪的消化与代谢饲料脂肪进入瘤胃后,发生3种变化,即水解作用、水解产物的氢化作用和脂肪酸的合成。

瘤胃微生物能够把脂肪水解为脂肪酸和甘油。

脂肪酸被微生物氢化饱和,甘油则进一步发酵降解生成丙酸。

瘤胃微生物能合成各种结构的脂肪酸。

(二)小肠内脂肪的消化尽管瘤胃微生物对脂肪有一定的消化作用,但起主要作用的是小肠。

在胆汁和胰液的作用下,脂肪在空肠后段被完全降解并吸收。

(一)蛋白质在瘤胃内的消化饲料蛋白质在瘤胃内被微生物消化,可分为4个过程:第一,瘤胃微生物分泌的蛋白分解酶与肽酶将食入的蛋白质水解,变为肽与游离氨基酸;第二,游离氨基酸直接被利用以合成微生物蛋白质或微生物的其他成分,如细胞壁和核酸;第三,氨基酸被继续分解而产生挥发性脂肪酸、二氧化碳与氨;第四,氨被用于合成微生物蛋白质。

动物生理第六章消化部分

动物生理第六章消化部分

促胃液素族 促胃液素 缩胆囊素 促胰液素族 促胰液素、胰高血糖素 血管活性肠肽、糖依赖性胰岛释放素 P物质族 P物质 神经降压素 作用:调节消化道的运动和分泌;调节消化道组织的 生长、代谢;调节其他激素的分泌等。 脑—肠肽:中枢N系统中发现的肽类,胃肠中也有,而 原在胃肠中发现的肽类,现在中枢中也存在。因而把 这种中枢神经和胃肠都有分布的肽类叫脑—肠肽。
(五)农畜唾液分泌的特点
(1、猪 一昼夜15L,腮腺分泌能力最强,仅在采食 时分泌。颌下腺连续分泌。唾液内有唾液淀粉酶,可 使淀粉分解为糊精和麦芽糖。 2、马 一昼夜40L,腮腺和颌下腺仅在咀嚼时分泌。 其它腺体持续地或多或少地分泌。咀嚼时分泌大量稀 薄水样唾液,主要是机械刺激引起,含少量或不含淀 粉酶。
(二)组成
是无色透明的黏性液体(水99.4%、无机 物、有机物)。
(三)作用
1、湿润饲料利于咀嚼。其黏液有助于食团形 成,增加光滑度,利于吞咽。 2、溶解饲料中可溶性物质,刺激舌的味觉感 受器,增强食欲,引起各消化腺的分泌。
3、清洁口腔,帮助清除饲料残渣和异物。 4、唾液呈弱碱性,可缓冲胃酸,利于植物的 碱性酶和微生物对饲料分解与发酵。 5、猪等唾液中有淀粉酶,使淀粉分解→麦芽 糖。 6、水牛和狗可借助唾液中水分的蒸发来调节 体温。 7、杀菌、消毒作用:含有溶菌E,冲淡、中 和或洗去毒素。可清洁口腔和消毒伤口。
壁内N丛系指胃肠壁内两种N丛: 黏膜下N 黏膜下N丛:位于黏膜下层。调节分泌与血液供应。 肌间N丛:位于环行肌和纵行肌间。调节胃肠运动。 肌间N 壁内N丛中有两类细胞: 1、感觉N元:一面与肠黏膜上的机械、化学感受器联 感觉N 系,同时将刺激传给运动N元。 2、运动N元:接受感觉N元传来的刺激,同时支配消 运动N 化道腺体和肠壁肌肉。 联系:这两种N元在N丛内发生突触联系,实现局部反 射。其中运动N元还受外来交感、副交感N的支配。

蛋白酶在饲料中的应用

蛋白酶在饲料中的应用

促进禽畜生长
蛋白酶的应用可以降低饲料中蛋 白质的含量,减少禽畜胃肠道的 负担,促进其生长。
提高禽畜免疫力
蛋白酶的应用可以改善禽畜的营 养状况,增强其免疫力,降低疾 病的发生率。
在宠物饲料中的应用
促进宠物健康生长
降低宠物粪便臭味
蛋白酶能够将宠物饲料中的蛋白质分 解成小分子肽和氨基酸,提高宠物对 饲料的消化吸收率,促进其健康生长。
随着人们对动物健康和动物产 品品质的关注增加,对个性化 营养的需求也在增加。蛋白酶 可以作为实现这一目标的有效 工具。
在可持续发展的背景下,使用 蛋白酶可以减少对有限蛋白质 来源的依赖,从而降低环境负 担。
Part
05
结论
蛋白酶在饲料中的重要性
提高饲料利用率
01
蛋白酶能够将饲料中的蛋白质分解成更易被动物吸收的小肽和
成本与可获得性
虽然许多蛋白酶已经商业化生产,但它们的成本和可获得 性可能限制了其在饲料中的应用。
与饲料的兼容性
蛋白酶需要与饲料中的其他成分兼容,以确保最佳的消化 效果。然而,某些蛋白酶可能与饲料中的某些成分发生反 应,影响其效果。
安全性问题
对于新的蛋白酶来源,需要进行充分的安全性评估,以确 保它们不会对动物或人类健康产生负面影响。
前景
新型蛋白酶的开发
与其他酶的协同作用
个性化营养的需求
可持续性的考虑
随着生物技术的进步,开发新 型、更稳定的蛋白酶已成为可 能。这些新型蛋白酶可以提高 在饲料加工和储存过程中的稳 定性。
研究发现,某些蛋白酶与其他 酶(如植酸酶、木聚糖酶等) 协同作用,可以更有效地提高 饲料的消化率。这为未来饲料 添加剂的开发提供了新的思路 。
蛋白酶能够提供畜禽生长所需的氨基 酸和肽类物质,促进畜禽的生长发育。

影响饲料消化吸收率有哪些因素

影响饲料消化吸收率有哪些因素

影响饲料消化吸收率有哪些因素饲料营养成分的消化,由于养殖动物的种类、品种、年龄而不同,即使同一种动物也由于饲料的特性及组成而不同,了解和运用这些知识,对于为养殖动物创造良好消化条件,提高饲料的可消化性,从而提高养殖动物产量是很有益的。

1 饲料中蛋白质含量的影响饲料中蛋白质含量是否会影响蛋白质的消化吸收率。

由于在研究中随着蛋白质含量的变化,其他饲料成分也相应改变,因而消化吸收率的变化,是由于饲料成分的影响,还是由于蛋白质含量的影响,这给判断带来一定的困难。

赤筑(1956)用酪蛋白+淀粉+盐类的混合饲料投喂稚鲤,观察到蛋白质含量在10%时消化吸收率低,而蛋白质含量在20%—40%时,消化吸收率没有大的差别。

他认为蛋白质含量低时,消化吸收率也低的原因,可能是受到内因性N成分的影响;他在另一研究中发现,蛋白质含量低时,表观消化吸收率也小,但如把内因性蛋白态N量以0.04毫克/克体重加以修正时,则与真消化吸收率大体一致,因而认为在低蛋白质含量所看到的表观消化率的降低,不是由于添加淀粉所成绩卓著起的,而是由于内因性蛋白态N所致。

麦康森研究对虾对氨基酸的消化吸收率,发现氨基酸的消化吸收率在一定程度上与其含量存在正相关的关系。

2 水温的影响王克行(1984)研究指出,在20-32℃水温范围内,仔虾的生长速度随着水温的上升而加快,水温对生长速度的影响是否通过提高消化吸收率来体现?谢宝华等(1983)报道,配合饵料在不同水温25℃和30℃条件下,其消化速度和蛋白质消化率均无明显不同。

麦康森等(1988)用51 Cr2O3作指标物质掺入小杂鱼、虾中进行实验,结果表明,在20-30℃范围内,消化吸收率在85.90%—88.67%之间,可见水温并不明显影响蛋白质的消化吸收率。

3 粉碎粒度的影响用18目、40目、60目、80目、100目过筛的花生饼粉喂虾,测其消化吸收率。

结果表明,用18目过筛的花生饼粉的蛋白质消化吸收率降至80%以下,这显然是颗粒太粗,消化液难以渗入所致;40目至100目过筛的花生饼粉,其蛋白质消化吸收率没有明显差异,基本在同一水平上。

动物对饲料的消化方式及消化过程

动物对饲料的消化方式及消化过程

动物对饲料的消化方式及消化过程一、草食动物的消化方式及过程草食动物主要以植物为食,因此它们的消化系统适应了植物纤维的消化。

首先,草食动物会用牙齿将食物咀嚼成较小的颗粒,增加食物表面积,便于后续消化。

然后,食物进入胃部,在胃中会与胃液混合,胃液中的酸性环境有助于杀死细菌和开始消化食物中的蛋白质。

接下来,食物进入到食道上部的瘤胃,瘤胃中有大量的微生物,它们能够分解植物纤维素,将其转化为可被动物吸收利用的简单糖。

然后,食物进入到食道下部的真胃,真胃中继续进行消化,将食物分解为更小的颗粒。

最后,食物进入到小肠,在小肠中,食物会与胆汁和胰液混合,胆汁有助于脂肪的消化和吸收,胰液则能够分解碳水化合物、蛋白质和脂肪,将其转化为更小的分子,以便被小肠壁吸收。

未被吸收的食物残渣则进入大肠,大肠主要吸收水分和电解质,最终形成粪便排出体外。

二、肉食动物的消化方式及过程肉食动物主要以肉类为食,因此它们的消化系统更加简化。

首先,肉食动物的牙齿通常较为锐利,适合撕咬和切割食物。

然后,食物进入胃部,在胃中与胃液混合,胃液中的酸性环境有助于杀死细菌和开始消化食物中的蛋白质。

接下来,食物进入到小肠,在小肠中,食物会与胆汁和胰液混合,胆汁有助于脂肪的消化和吸收,胰液则能够分解碳水化合物、蛋白质和脂肪,将其转化为更小的分子,以便被小肠壁吸收。

未被吸收的食物残渣则进入大肠,大肠主要吸收水分和电解质,最终形成粪便排出体外。

三、杂食动物的消化方式及过程杂食动物既食用植物也食用肉类,因此它们的消化系统结构较为复杂。

杂食动物的消化方式和过程与草食动物和肉食动物的消化方式结合了起来。

首先,杂食动物会根据食物的特点选择合适的牙齿咀嚼食物。

然后,食物进入胃部,在胃中与胃液混合,胃液中的酸性环境有助于杀死细菌和开始消化食物中的蛋白质。

接下来,食物进入到瘤胃和真胃,瘤胃中的微生物有助于分解植物纤维素,真胃中继续消化食物。

然后,食物进入到小肠,在小肠中,食物会与胆汁和胰液混合,胆汁有助于脂肪的消化和吸收,胰液则能够分解碳水化合物、蛋白质和脂肪,将其转化为更小的分子,以便被小肠壁吸收。

反刍动物含氮化合物的消化吸收

反刍动物含氮化合物的消化吸收

(一)消化吸收反刍动物真胃和小肠中蛋白质的消化、吸收与非反刍动物类似。

但由于瘤胃微生物的作用,使反刍动物对蛋白质和其它含氮化合物的消化、利用与非反刍动物又有很大的差异。

1.饲料蛋白质在瘤胃中的降解进入瘤胃的饲料蛋白质,经微生物的作用降解成肽和氨基酸,其中多数氨基酸又进一步降解为有机酸、氨和二氧化碳。

瘤胃液中的各种支链酸,大多是由支链氨基酸衍生而来,如缬氨酸转变为异丁酸和氨。

微生物降解所产生的氨与一些简单的肽类和游离氨基酸,又被用于合成微生物蛋白质。

瘤胃液中的氨是蛋白质在微生物降解和合成过程中的重要中间产物。

饲粮蛋白质不足或当饲粮蛋白质难以降解时,瘤胃内氨浓度很低(<50mg/L)。

瘤胃微生物生长缓慢,碳水化合物的分解利用也受阻。

反之,如果蛋白质降解比合成速度快,则氨就会在瘤胃内积聚并超过微生物所能利用的最大氨浓度。

此时,多余的氨就会被瘤胃壁吸收,经血液输送到肝脏,并在肝中转变成尿素。

虽然所生成的尿素一部分可经唾液和血液返回瘤胃,但大部分却随尿排出而浪费掉。

这种氨和尿素的生成和不断循环,称为瘤胃中的氮素循环。

瘤胃液中氨的最适浓度范围较宽(85mg/L-300mg/L),其变异主要与瘤胃内微生物群能量及碳架供给有关。

因此,用氨与发酵有机物质间的关系来表示瘤胃内环境比用最适氨浓度表示更切合实际,瘤胃内每公斤有机物质发酵,微生物可利用近30克以上蛋白质或核酸形式存在的氮。

饲料供给的蛋白质少,瘤胃液中氨的浓度就低,经血液和唾液以尿素形式返回瘤胃的氮的数量可能超过以氨的形式从瘤胃吸收的氮量。

这种进入瘤胃的“再循环氮” 转变为微生物蛋白质,就意味着转移到后段胃肠道的蛋白质数量可能比饲料蛋白质多。

这样,瘤胃微生物对反刍动物蛋白质的供给具有一种“调节”作用,能使劣质蛋白质品质改善,优质蛋白质生物学价值降低。

因此,通过给反刍动物饲粮添加尿素,以提高瘤胃细菌蛋白质合成量已成为一项实用措施;对优质饲料蛋白质进行适当的处理(甲醛处理、包被等),以降低其溶解度,使其在瘤胃中的降解率降低,也是必要的办法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

饲料中蛋白质的消化吸
动物饲料中蛋白质的含量常以粗蛋白的形式表述,然而,粗蛋白的分析值并不能代表饲料中有效的蛋白质含量。

如果饲料中粗蛋白含量高,但其蛋白质的有效利用率较低,未被消化吸收的蛋白积累过多,可能会引发肠道健康问题。

影响饲料蛋白质消化吸收的因素有很多:
1、动物因素
动物的个体差异、年龄阶段、不同品种等,对饲料中蛋白质的消化能力都会有影响。

2、饲粮因素
饲料中蛋白质的种类、纤维水平、酶抑制因子也会影响动物的蛋白消化率。

如羽毛粉的蛋白含量高达80%,但其中仅有25%的蛋白可消化,因为羽毛粉中含量较大的角蛋白不易被消化利用;纤维物质能加速蛋白质在消化道排空,阻碍其消化,所以高纤维日粮饲料中蛋白消化率较低;一些农副产品中含有蛋白酶抑制因子,如生大豆中含有胰蛋白酶抑制因子、生马铃薯中含有的糜蛋白酶抑制因子能抑制蛋白酶活性,降低蛋白质的消化率。

3、加工因素
饲料加工生产过程中,粉碎、热处理、发酵、降解等程序可能影响蛋白质的理化性质,降低可消化吸收的蛋白含量。

如粉碎不完全,蛋白酶与饲料作用的表面积小,可利用的蛋白质不能被充分水解,影响其吸收。

动物摄入的蛋白质经过消化以后,以小肽和氨基酸形式在小肠吸收,未能被消化分解的蛋白质会进入大肠被有害微生物分解利用,引起肠道微生物紊乱诱发腹泻,而通过有害微生物的发酵作用产生的大量有害物质如胺类、NH3等会被机体吸收,再通过肝脏的处理转化排出,使得原本用来维持机体生长和健康的能量被这个生理过程消耗,降低了蛋白质的营养质量。

另外,由于未消化蛋白质带来
的环境污染问题也日益突出,因此,如何提供动物适宜的营养,提高消化率,最大程度地降低未消化蛋白进入后肠道应是动物营养研究的新方向。

因此,笔者认为可以从以下两个方面解决饲料中蛋白质的消化吸收问题:
1、适当降低蛋白浓度,配比平衡
随着理想氨基酸模式的研究推广,动物饲料配方中粗蛋白的含量已不能完全彰显配方的营养价值,很多厂家推出的低蛋白日粮逐渐被用户认可并得到良好的反响。

低蛋白日粮虽然从表面看粗蛋白含量有所下降,但其中的可消化蛋白含量、氨基酸配比较之以前更为合理,而蛋白质与其他营养物质的含量也应遵循不同动物的生长需要合理配比。

研究认为,在中低蛋白日粮中合理配比氨基酸和能量等,可以提高蛋白质利用率,降低饲料成本,减少污染物排放。

2、提高消化道前段蛋白质的消化率
提高动物对蛋白质消化率的主要手段除了适量,最重要的是质优,而质优则意味着价高,因此养殖低成本与饲料配方高品质的矛盾长期存在。

于是,非常规、低品质原料的优化处理被提上日程,即在动物对营养物质的消化吸收过程中增加体外预消化过程,降解抗营养因子、大分子物质、提高原料消化性的同时赋予功能性,一举多得。

另外,体外消化的效率要远远高于动物体内消化,对于幼龄动物、应激期动物作用更为显著。

目前,饲料中应用的酶解蛋白、小肽类、生物发酵类原料都属于预消化原料的范畴,为饲料工业的可持续发展提供了新思路。

相关文档
最新文档