数字信号处理期末试卷(完整版)

合集下载

数字信号处理期末试卷及答案

数字信号处理期末试卷及答案

A一、选择题(每题3分,共5题)1、 )63()(π-=n j e n x ,该序列是 .A.非周期序列 B 。

周期6π=N C 。

周期π6=N D 。

周期π2=N2、 序列)1()(---=n u a n x n ,则)(Z X 的收敛域为 。

A 。

a Z < B.a Z ≤ C 。

a Z > D 。

a Z ≥ 3、 对)70()(≤≤n n x 和)190()(≤≤n n y 分别作20点DFT ,得)(k X 和)(k Y ,19,1,0),()()( =⋅=k k Y k X k F ,19,1,0)],([)( ==n k F IDFT n f ,n 在 范围内时,)(n f 是)(n x 和)(n y 的线性卷积。

A.70≤≤nB.197≤≤n C 。

1912≤≤n D.190≤≤n4、 )()(101n R n x =,)()(72n R n x =,用DFT 计算二者的线性卷积,为使计算量尽可能的少,应使DFT 的长度N满足 。

A.16>N B 。

16=N C.16<N D 。

16≠N5.已知序列Z 变换的收敛域为|z|〈1,则该序列为 .A 。

有限长序列 B.右边序列 C 。

左边序列 D 。

双边序列二、填空题(每题3分,共5题)1、 对模拟信号(一维信号,是时间的函数)进行采样后,就是 信号,再进行幅度量化后就是 信号。

2、要想抽样后能够不失真的还原出原信号,则抽样频率必须 ,这就是奈奎斯特抽样定理。

3、对两序列x(n )和y (n),其线性相关定义为 .4、快速傅里叶变换(FFT)算法基本可分为两大类,分别是: ; .5、无限长单位冲激响应滤波器的基本结构有直接Ⅰ型, ,______ 和______ 四种。

三、10)(-≤≥⎩⎨⎧-=n n ba n x n n求该序列的Z 变换、收敛域、零点和极点。

(10分)四、求()()112111)(----=z z Z X ,21<<z 的反变换。

数字信号处理期末考试试题以及参考答案

数字信号处理期末考试试题以及参考答案

数字信号处理期末考试试题以及参考答案1.序列x(n)=cos(nπ/46)+sin(nπ/46)的周期为24.2.采样间隔T=0.02s,对连续信号xa(t)=cos(40πt)进行采样,采样所得的时域离散信号x(n)的周期为5.3.某线性移不变离散系统的单位抽样响应为h(n)=3nu(n),该系统是因果不稳定系统。

4.采样信号的采样频率为fs,采样周期为Ts,采样信号的频谱是原模拟信号频谱的周期函数,周期为fs,折叠频率为fs/2.5.关于序列的傅里叶变换X(ejω)说法中,正确的是X(ejω)关于ω是周期的,周期为2π。

6.已知序列x(n)=2δ(n-1)+δ(n)-δ(n+1),则X(ejω)ω=π的值为2.7.某序列的DFT表达式为X(k)=Σx(n)Wn=N-1nk,由此可看出,该序列的时域长度是N,变换后数字域上相邻两个频率样点之间的间隔为2π/M。

8.设实连续信号x(t)中含有频率40Hz的余弦信号,现用fs=120Hz的采样频率对其进行采样,并利用N=1024点DFT分析信号的频谱,得到频谱的谱峰出现在第341条谱线附近。

9.已知x(n)={1,2,3,4},x((n+1) mod 6)=1,则x((-n) mod6)={2,1,0,0,4,3}。

10.下列表示错误的是(N应为序列长度):(W_N(N-n)k-nkN/2=-W_Nn(k-N/2))2抽样点间的最大时间间隔T105s2fh在一个记录中的最小抽样点数N2fhT500个点。

3.(5分)简述FIR滤波器和IIR滤波器的区别。

答:FIR滤波器是一种只有前向通道的滤波器,其输出仅由输入和滤波器的系数决定,没有反馈路径。

而IIR滤波器则包含反馈路径,其输出不仅由输入和系数决定,还与滤波器的前一次输出有关。

因此,XXX滤波器具有线性相位和稳定性,而IIR滤波器则可能具有非线性相位和不稳定性。

4.(5分)简述FFT算法的基本思想和应用场景。

数字信号处理期末试题及答案

数字信号处理期末试题及答案

一、填空题(每空1分, 共10分)1.序列()sin(3/5)x n n π=的周期为 10 。

2.线性时不变系统的性质有 交换 律、 结合 律、 分配 律。

3.对4()()x n R n =的Z 变换为 ,其收敛域为 |Z |>0 。

4.抽样序列的Z 变换与离散傅里叶变换DFT 的关系为 k N j e Z π2= 。

5.序列x (n )=(1,—2,0,3;n=0,1,2,3), 圆周左移2位得到的序列为{0,3,1,-2; n=0,1,2,3} .6.设LTI 系统输入为x(n) ,系统单位序列响应为h (n ),则系统零状态输出()()()y n x n h n =* 。

7.因果序列x (n),在Z →∞时,X (Z)= x (0) .二、单项选择题(每题2分, 共20分)1.δ(n )的Z 变换是 ( A )A 。

1 B.δ(ω) C 。

2πδ(ω) D 。

2π2.序列x 1(n )的长度为4,序列x 2(n )的长度为3,则它们线性卷积的长度是 ( C )A. 3 B 。

4 C 。

6 D. 73.LTI 系统,输入x(n)时,输出y (n );输入为3x(n —2),输出为 ( B ) A 。

y (n —2) B.3y (n —2) C.3y (n ) D.y (n)4.下面描述中最适合离散傅立叶变换DFT 的是 ( D )A 。

时域为离散序列,频域为连续信号B 。

时域为离散周期序列,频域也为离散周期序列C 。

时域为离散无限长序列,频域为连续周期信号D 。

时域为离散有限长序列,频域也为离散有限长序列5.若一模拟信号为带限,且对其抽样满足奈奎斯特条件,理想条件下将抽样信号通过 即可完全不失真恢复原信号 ( A )A 。

理想低通滤波器 B.理想高通滤波器 C 。

理想带通滤波器 D 。

理想带阻滤波器6.下列哪一个系统是因果系统 ( B )A 。

y(n)=x (n+2) B 。

y (n)= cos (n+1)x (n ) C 。

数字信号处理期末试卷及答案

数字信号处理期末试卷及答案

A一、选择题(每题3分,共5题)1、 )63()(π-=n j e n x ,该序列是 。

A 。

非周期序列B 。

周期6π=N C.周期π6=N D. 周期π2=N 2、 序列)1()(---=n u a n x n ,则)(Z X 的收敛域为 . A.a Z <B.a Z ≤ C 。

a Z > D.a Z ≥ 3、 对)70()(≤≤n n x 和)190()(≤≤n n y 分别作20点DFT ,得)(k X 和)(k Y ,19,1,0),()()( =⋅=k k Y k X k F ,19,1,0)],([)( ==n k F IDFT n f ,n 在 范围内时,)(n f 是)(n x 和)(n y 的线性卷积。

A 。

70≤≤nB 。

197≤≤n C.1912≤≤n D 。

190≤≤n4、 )()(101n R n x =,)()(72n R n x =,用DFT 计算二者的线性卷积,为使计算量尽可能的少,应使DFT 的长度N满足 。

A.16>N B 。

16=N C.16<N D.16≠N5。

已知序列Z 变换的收敛域为|z |<1,则该序列为 .A 。

有限长序列 B.右边序列 C.左边序列 D.双边序列二、填空题(每题3分,共5题)1、 对模拟信号(一维信号,是时间的函数)进行采样后,就是 信号,再进行幅度量化后就是 信号。

2、要想抽样后能够不失真的还原出原信号,则抽样频率必须 ,这就是奈奎斯特抽样定理。

3、对两序列x (n )和y (n ),其线性相关定义为 。

4、快速傅里叶变换(FFT )算法基本可分为两大类,分别是: ; .5、无限长单位冲激响应滤波器的基本结构有直接Ⅰ型, ,______ 和______ 四种。

三、10)(-≤≥⎩⎨⎧-=n n ba n x n n求该序列的Z 变换、收敛域、零点和极点。

(10分)四、求()()112111)(----=z z Z X ,21<<z 的反变换.(8分)B一、单项选择题(本大题12分,每小题3分)1、)125.0cos()(n n x π=的基本周期是 .(A )0.125 (B )0.25 (C )8 (D )16。

(完整版)《数字信号处理》期末试题库

(完整版)《数字信号处理》期末试题库

一、单项选择题(10小题,每小题2分,共20分)在每小题列出的三个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在题后的括号内。

1. 下面说法中正确的是。

A.连续非周期信号的频谱为周期连续函数B.连续周期信号的频谱为周期连续函数C.离散非周期信号的频谱为周期连续函数D.离散周期信号的频谱为周期连续函数2. 要处理一个连续时间信号,对其进行采样的频率为3kHz,要不失真的恢复该连续信号,则该连续信号的最高频率可能是为。

A.6kHz B.1.5kHz C.3kHz D.2kHz3.已知某序列Z变换的收敛域为5>|z|>3,则该序列为。

A.有限长序列B.右边序列C.左边序列D.双边序列4. 下列对离散傅里叶变换(DFT)的性质论述中错误的是。

A.DFT是一种线性变换B. DFT可以看作是序列z变换在单位圆上的抽样C. DFT具有隐含周期性D.利用DFT可以对连续信号频谱进行精确分析5. 下列关于因果稳定系统说法错误的是。

A.极点可以在单位圆外B.系统函数的z变换收敛区间包括单位圆C.因果稳定系统的单位抽样响应为因果序列D.系统函数的z变换收敛区间包括z=∞6. 设系统的单位抽样响应为h(n),则系统因果的充要条件为。

A.当n>0时,h(n)=0 B.当n>0时,h(n)≠0C.当n<0时,h(n)=0 D.当n<0时,h(n)≠07. 要从抽样信号不失真恢复原连续信号,应满足下列条件的哪几条?答。

(I)原信号为带限II)抽样频率大于两倍信号谱的最高频率(III)抽样信号通过理想低通滤波器A.I、IIB.II、IIIC.I、IIID.I、II、III8. 在窗函数设计法,当选择矩形窗时,最大相对肩峰值为8.95%,N增加时,2π/N减小,起伏振荡变密,最大相对肩峰值则总是8.95%,这种现象称为。

A.吉布斯效应B.栅栏效应C.泄漏效应D.奈奎斯特效应9. 下面关于IIR滤波器设计说法正确的是。

数字信号处理期末试卷及答案

数字信号处理期末试卷及答案

数字信号处理期末试卷及答案一、 选择题(每题3分,共5题)1、 )63()(π-=n j e n x ,该序列是 。

A.非周期序列B.周期6π=NC.周期π6=ND. 周期π2=N 2、 序列)1()(---=n u a n x n ,则)(Z X 的收敛域为 。

A.a Z < B.a Z ≤ C.a Z > D.a Z ≥ 3、 对)70()(≤≤n n x 和)190()(≤≤n n y 分别作20点DFT ,得)(k X 和)(k Y ,19,1,0),()()( =⋅=k k Y k X k F ,19,1,0)],([)( ==n k F IDFT n f ,n 在 范围内时,)(n f 是)(n x 和)(n y 的线性卷积。

A.70≤≤nB.197≤≤nC.1912≤≤nD.190≤≤n 4、 )()(101n R n x =,)()(72n R n x =,用DFT 计算二者的线性卷积,为使计算量尽可能的少,应使DFT 的长度N 满足 。

A.16>NB.16=NC.16<ND.16≠N5.已知序列Z 变换的收敛域为|z |<1,则该序列为 。

A.有限长序列B.右边序列C.左边序列D.双边序列二、 填空题(每题3分,共5题)1、 对模拟信号(一维信号,是时间的函数)进行采样后,就是 信号,再进行幅度量化后就是 信号。

2、要想抽样后能够不失真的还原出原信号,则抽样频率必须 ,这就是奈奎斯特抽样定理。

3、对两序列x(n)和y(n),其线性相关定义为 。

4、快速傅里叶变换(FFT )算法基本可分为两大类,分别是: ; 。

5、无限长单位冲激响应滤波器的基本结构有直接Ⅰ型, ,______ 和______ 四种。

三、10)(-≤≥⎩⎨⎧-=n n b a n x n n 求该序列的Z 变换、收敛域、零点和极点。

(10分)四、求()()112111)(----=z z Z X ,21<<z 的反变换。

数字信号处理期末试卷(含答案)

数字信号处理期末试卷(含答案)

数字信号处理期末试卷一、填空题:(每空1分,共18分)1、数字频率ω是模拟频率Ω对采样频率s f 的归一化,其值是 连续 (连续还是离散?)。

2、双边序列z 变换的收敛域形状为 圆环或空集 。

3、某序列的DFT 表达式为∑-==10)()(N n kn M W n x k X ,由此可以看出,该序列时域的长度为 N ,变换后数字频域上相邻两个频率样点之间的间隔是Mπ2 。

4、线性时不变系统离散时间因果系统的系统函数为252)1(8)(22++--=z z z z z H ,则系统的极点为 2,2121-=-=z z ;系统的稳定性为 不稳定 。

系统单位冲激响应)(n h 的初值4)0(=h ;终值)(∞h 不存在 。

5、如果序列)(n x 是一长度为64点的有限长序列)630(≤≤n ,序列)(n h 是一长度为128点的有限长序列)1270(≤≤n ,记)()()(n h n x n y *=(线性卷积),则)(n y 为 64+128-1=191点 点的序列,如果采用基FFT 2算法以快速卷积的方式实现线性卷积,则FFT 的点数至少为 256 点。

6、用冲激响应不变法将一模拟滤波器映射为数字滤波器时,模拟频率Ω与数字频率ω之间的映射变换关系为Tω=Ω。

用双线性变换法将一模拟滤波器映射为数字滤波器时,模拟频率Ω与数字频率ω之间的映射变换关系为)2tan(2ωT =Ω或)2arctan(2T Ω=ω。

7、当线性相位FIR 数字滤波器满足偶对称条件时,其单位冲激响应)(n h 满足的条件为)1()(n N h n h --= ,此时对应系统的频率响应)()()(ωϕωωj j e H e H =,则其对应的相位函数为ωωϕ21)(--=N 。

8、请写出三种常用低通原型模拟滤波器 巴特沃什滤波器 、 切比雪夫滤波器 、 椭圆滤波器 。

二、判断题(每题2分,共10分)1、模拟信号也可以与数字信号一样在计算机上进行数字信号处理,只要加一道采样的工序就可以了。

数字信号处理期末试卷(含答案)

数字信号处理期末试卷(含答案)

________ 次复乘法,运算效率为__
_。
6、FFT利用 来减少运算量。
7、数字信号处理的三种基本运算是: 。
8、FIR滤波器的单位取样响应
是圆周偶对称的,N=6,
,其幅度特性有什么特性? ,相位有何特 性? 。 9、数字滤波网络系统函数为

4、 已知

的反变换
。 3、
,变换区间
,则
。 4、




的8点循环卷积,则

5、用来计算N=16点DFT直接计算需要_
2FFT算法,需要
次复乘法
6、基2DIF-FFT 算法的特点是
7、有限脉冲响应系统的基本网络结构有
8、线性相位FIR滤波器的零点分布特点是
9、IIR系统的系统函数为
次复加法,采用基
转换为
时应使s平面的左半平面映射到z平面的

A.单位圆内 B.单位圆外 C.单位圆上 D.单位圆与实轴的交

6、 分析问答题(每题5分,共2题)
3、 某线性时不变因果稳定系统单位取样响应为
(长度为N),则该系统的频率特性、复频域特性、离散频率特性分 别怎样表示,三者之间是什么关系? 4、 用
对连续信号进行谱分析时,主要关心哪两个问题以及怎样解决二者的 矛盾?
十一、(7分)信号 包含一个原始信号 和两个回波信号: 求一个能从 恢复 的可实现的滤波器.
附录:
矩形窗(rectangular window) 汉宁窗(Hann window) 汉明窗(Hamming window) 布莱克曼窗(Blackman window)
表1 一些常用的窗函数
表2 一些常用窗函数的特性
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

又因为 为实序列
因此 .........................................2分
由 可知
=0
利用DFT的对称性可得
.........................2分
即 为纯虚函数
因为 为实序列,所以
再次利用DFT的对称性可得
即 满足共轭对称。..............................................................................2分
.................................................................................................................................. 4分
阅卷人
得分
七、(共10分)设计低通数字滤波器,要求在通带内频率低于0.2rad时,容许幅度误差在1dB以内;在频率0.3rad到rad之间的阻带衰减大于15dB。指定模拟滤波器采用巴特沃斯低通滤波器。试求用双线性变换法设计时滤波器的阶数。
.............................................................................2分
取N=6..........................................................................................1分
A. 原点 B.单位圆C.实轴 D.虚轴
5.下列哪一个单位抽样响应所表示的系统不是因果系统?(D)
A.h(n)=δ(n)B.h(n)=u(n)
C.h(n)=u(n)-u(n-1)D.h(n)=u(n)-u(n+1)
6.已知x(n)=δ(n),N点的DFT[x(n)]=X(k),N>5,则X(5)=(B)。
解:
(1)写出数字低通滤波器的技术指标:
rad
rad
.............................................................................................................2分
(2)求出模拟低通的技术指标:


线






试密




2009─2010学年第一学期
《数字信号处理》课程考试试卷(A卷)参考答案及评分标准
注意:1、本试卷共3页;2、考试时间:120分钟
3、姓名、学号必须写在指定地方
题号







总分
得分
阅卷人
得分
一、单项选择题(每小题3分,共30分)
1.对序列 ,以下说法正确的是(B)。
..............2分
.........................................................................2分
(1)
................................2分
(2)
......................................2分
阅卷人
得分
八、(共10分)
请写出显示系统 频响曲线的Matlab程序。
解:b=[8 -4 11 -2];
a=[1 -1.25 0.75 -0.125];
freqz(b,a)
A.N B.1 C.0 D.- N
7.已知序列Z变换的收敛域为0|z|<1,则该序列为(C)。
A.有限长序列 B.右边序列
C.左边序列 D.双边序列
8.纯虚数序列的傅里叶变换必是(B)。
A.共轭对称函数 B.共轭反对称函数
C.奇函数 D.偶函数
9.对实信号进行谱分析,要求谱分辨率F10Hz,信号最高频率为2.5KHz,以下说法中错误的是(B)。
(1)求出相应的单位取样响应 ;
(2)求出矩形窗设计法的 的表达式,确定 与 的关系;
(3)N取奇数或偶数对滤波特性有什么影响?
解:(1)
..... 3分
(2)为了满足线性相位条件,要求 ,N为矩形窗函数的长度。.........2分
.............................1分
(3)N取奇数时,幅度特性函数关于=0,,2三点偶对称,可实现各类幅频特性;N取偶数时,幅度特性函数关于=奇对称,所以不能实现高通、带阻滤波器。
A.最小记录时间为0.1s; B.最小的采样间隔为0.2ms;
C.最少的采样点数为500; D.以上说法均不对
10.以下对FIR和IIR滤波器特性的论述中不正确的是(C)。
A.IIR滤波器主要采用递归结构
B.FIR滤波器容易做到线性相位
C.FIR滤波器有可能不稳定
D.IIR滤波器主要用来设计规格化的频率特性为分段常数的标准滤波器
(3)
.................................... 2分
阅卷人
得分
四、(共10分)证明:若 实奇对称,即 ,则 为纯虚函数并奇对称。( =DFT[ ])
证明:序列 可以分解为共轭对称序列 与共轭反对称序列 的和,即
............................................................................2分
阶数N的计算如下:
..........................................................................2分
..........................................................................1分
A.周期序列,周期为16. B.非周期序列
C.周期序列,周期为16D.周期序列,周期为8
2.以下系统中是线性时不变系统的是(B)。
A. B.
C. D.
3.离散序列傅里叶变换在(C)上的采样等于其离散傅里叶变换。
A.单位圆 B.频率 轴C. D.虚轴
4.线性时不变系统稳定的充分必要条件是其系统函数的收敛域包含(B)。
将 为纯虚函数代入可得 为纯虚函数并奇对称。....................2分
阅卷人
得分
五、(共10分)设系统用下面差分方程描述:
试画出系统的直接型、级联型和并联型结构,并简要说明各种结构的优缺点。
解:将差分方程两边进行Z变换,可得
则差分方程所描述的系统的系统函数为
.................................................1分
阅卷人
得分
二、简答题(每小题5分,共10分)
1.已知序列x(n)的傅里叶变换为X(ejw),求序列nx(n)的傅里叶变换。
已知 1分
对该式求导
3分
所以序列nx(n)的傅里叶变换为 1分
2.求序列 的Z变换。
4分 1分


线






试密




阅卷人
得分
三、(共10分)已知 ,求其逆变换 。
解:利用部分分式法


线






试密




系统的直接型结构如下:
2分
将H(z)的分母进行因式分解
系统的级联型结构为:
1分
将H(z)的分母进行部分分式分解
..........................2分
系统的并联型结构为:
2分
优缺点:略2分
阅卷人
得分
六、(共10分)用矩形窗设计线性相位低通滤波器,逼近滤波器传输函数
取T=1s


线






试密



三rΒιβλιοθήκη d/srad/s................................................................................................................2分
(3)设计巴特沃斯低通滤波器:
相关文档
最新文档