第十五章 电路方程的矩阵形式

合集下载

电路课件_15第十五章电路方程的矩阵形式

电路课件_15第十五章电路方程的矩阵形式

Bu
1 0 0
0 1 0
1 1 0
0 0 1
-1 0 -1
1 1 1

u1 u3 u5 u6 u2 u3 u6 u4 u5 u6 0 0 0
u1 u 2 u3 u4 u5 u6
4
8
Q3
5
树支
4
8
1
5
1
Q4
6
连支
6
7 7
2
3
3
2
Q3:1, 4,5
Q4:5,6,7,8
§ 15 - 2 关联矩阵、回路矩阵、割集矩阵
一:关联矩阵Aa
n个结点b条支路的有向图
一条支路连接于两个结点,称该支路与这两个结点相关联。
支路1 .... 支路b
Aa=
结点1 ....... 结点n
1 2 Aa= 3
-1 -1 +1 0 0 0 0 -1 -1 0 +1 0 0 +1 +1 4 0 +1 0 0 -1
0 -1 46
1 2
3
4 5 6
0 +1
1 Aa= 2 3
-1 -1 +1 0 0 0 0 -1 -1 0 +1 0 0 +1 +1 4 0 +1 0 0 -1
( n1 )b
2
i3
1
2
3
i4
6
Q1
3
i2
i6
4
5
3
2
i5
4
1
1

s第15章 电路方程的矩阵形式

s第15章 电路方程的矩阵形式
1、小规模电路 人工观察法 回路电流法 结点电压法 2、大规模电路 利用计算机作为辅助手段 电路方程的矩阵形式
二、割集
1、定义 连通图G的一个割集是G的一个支路集合,把这些支 路移去将使G分离为两个部分,但是如果少移去一条支路, 图仍将是连通的。
a e c f d f c f c b a
a
b
e
d
(b,d,e,f)是割集
5、独立割集组 基本割集组是独立割集组。对于n个结点的连通图,独 立割集数为(n-1) 。 独立割集不一定是单树支割集, 如同独立回路不一定是单连支回路一样。
由于一个连通图G可以有许多不同的树,所以可选出许 多基本割集组。 6、基本割集组的选择 首先选择一个树, 然后确定(n-1)个单树支割集。

4、用矩阵A表示的KCL的矩阵形式
电路中的b个支路电流可以用一个b阶列向量表示
i=[i1 i2 … ib]T
Ai =
结点1上的∑i 结点2上的∑i …… 结点(n-1)上的∑i
因此有 用矩阵A表示的 KCL的矩阵形式
Ai =0
② 3 ① 6 4 ③ 5
A=
-1 0 +1
-1 +1 0 0 0 0 -1 -1 0 +1 0 0 +1 +1 0
u=QfTut=
1 0 0 -1 -1 0
小结:
A
B
Q
KCL
Ai=0
BTil=i
Qi=0
KVL
ATun=u
Bu=0
QTut=u
§15. 3 矩阵A、Bf、Qf之间的关系
在任一网络的有向图中,选一个参考结点可以写出关 联矩阵A, 选择一树可以写出基本回路矩阵[Bf]和基本割集矩阵 [Qf], 因此三个矩阵是从不同角度表示同一网络的连接性质, 它们之间自然存在着一定的关系。

第15章 电路方程的矩阵形式

第15章 电路方程的矩阵形式
T
设b条支路电压列向量为:u u 1 , u 2 , , u b
u n u n 1 , u n 2 , , u n ( n 1 ) T (n-1)个节点电压列向量:
即有: u A T u n (2)
上例中
u1 1 u 2 1 u3 1 u4 0 u 0 5 u6 0 0 0 1 1 0 1 1 0 0 1 1 0 u n1 u n 3 u n1 u n1 u n1 u n 2 u n2 u u n2 n3 un3 un3 un2
例: 1 1 0 B 2 0 3 1 2
1 0 1
2 3 4
1 0 0 0 1 0
5
0 1 1
6
1 1 0
3 1 16
4
2 3
2
1 4 3
5
若选树T,按先连支后树支的顺序编号, 且以连支方向和编号为回路的方向和编 号,选单连支回路(基本回路)。 2 2 4 1 4 1
第k条支路: I k Y k U ek I sk Y k ( U k U sk ) I sk
设 支路电流列向量:I I
, I 2 , , I b 1

T
支路电压列向量:U U
, U 2 , , U b 1
[Aa]的任一元素ajk定义如下: ajk=1 ajk=-1 ajk=0 支路k与节点 j 关联,方向离开节点。 支路k与节点 j 关联,方向指向节点。 支路k与节点 j 非关联。 1 1 2 Aa 3 4
1 0 1 0

第15章 电路方程的矩阵形式

第15章 电路方程的矩阵形式
第15章 电路方程的矩阵形式
本章重点
15.1 15.2 15.3* 15.4 15.5 15.6* 15.7*
割集 关联矩阵、回路矩阵、割集矩阵 矩阵A、Bf 、Qf 之间的关系 回路电流方程的矩阵形式 结点电压方程的矩阵形式 割集电压方程的矩阵形式 列表法
首页
重点 1. 关联矩阵、割集矩阵、基本回路矩
i6 T n-1个独立
方程
i
i i i i
i i i i
1 2 3
1
3
2
4
3 6
0
i i i i 4
1
4
5
i 5
i6
矩阵形式的KCL: [ A ][ i ]= 0
返回 上页 下页
②用矩阵[A]T表示矩阵形式的KVL方程。
un1
设:
u u1 u2 u3 u4 u5 u6 T
un
阵和基本割集矩阵的概念 2. 回路电流方程、结点电压方程和割
集电压方程的矩阵形式
返回
15.1 割集
割集Q 连通图G中支路的集合,具有下述性质:
• 把Q中全部支路移去,图分成二个分离部分。 • 任意放回Q 中一条支路,仍构成连通图。
164
9
3
7
28 5
割集:(1 9 6) (2 8 9) (3 6 8) (4 6 7) (5 7 8)
ajk =0 支路 k 与结点 j 无关。
返回 上页 下页

支 结1
2
3
4
5
6
1 -1 -1 1 0 0 0



Aa= 2
3
0 0 -1 -1 0 1 ①

1 0 01 1 0

第15章电路方程的矩阵形式

第15章电路方程的矩阵形式

(2)保留Q 中的一条支路,其于都移去, G还是连通的。

2
1
2
①5

1
5

43
4

6 6
Q1: { 2 , 5 , 4 , 6 }


3



1
2
①5

1
2
①5

43 ④6
43 ④6
Q2: { 2 , 3 , 6 }
Q3: { 1 , 5 , 4}
单树支割集(基本割集)


1
2
①5

43 ④6
Q1: { 2 , 3 , 6 }
设 I I1 I2 Ib T
IS IS1 IS 2 ISb T
15-3 结点电压方程的矩阵形式
Ik
Iek
U Sk
Yk ISk

U k

U U1 U 2 U b T
U S U S1 U S 2 U Sb T

基本回路
15.1 割集
基本割集
1
2
①5

43 ④6
{1,2,3,4} {1,4,5} {1,2,6}
{1,5,3,6} {2,3,6} {3,4,5}
2. 由某个连支bl确定的单连支回路应包含那些树支,每个
这种树支所构成的基本割集中含有bl 。

基本回路
基本割集
1
2
①5

43 ④6
{1,2,3,4} {1,4,5} {1,2,6}
u5

节点电压
un1
un

第015章_电路方程的矩阵形式

第015章_电路方程的矩阵形式
1 Bu 0 0 0 1 0 1 1 0 0 0 1 1 1 u3 0 1 u4 1 1 u 5 u6

u1 u2

6 1 3 6 31
i
i1 i2 i3 i4 i5 i6

i
这正是回路电流 法的基本思想。
i B T il
i i i

i i
i i i
即为用B表示 KCL的矩阵形式。
17
五、割集矩阵:
1、割集矩阵: 即独立割集矩阵,它反映电路的支 Q1 路与所取的独立割集的关联性。 矩阵元素的取值:
(2)某些列仅有一个非零元素,表示该支路与参考结点相关联。 ②A的物理意义:反映电路的拓扑结构
支路与结点的关联性。
11
3、用A表示的KL的矩阵形式: ①KCL:

i1 i
2 3 4 5 6
证明: G
T1
l1 l2 l3
bt
T2
而且,每一条树支与相应的连支都会构成一个单树支割集。 这种单树支割集又称为基本割集。对于一个G,树支数为 n -1, ∴有n -1个基本割集,称为对一个树的基本割集组。 基本割集组必是独立割集组,但独立割集组不一定是单树 支割集组,因树是一个相对概念,人家可以先(用树)定义一 组独立割集,而后又可以重新定义树。
② 4 6 5 ④ ③
0 k支路与 j 结点不关联 关联,且方向背离该结点 a jk 1 1 关联,但方向为指向结点
② 0 Aa ③ 1 ④ 0
1 ① -1 2 -1 0 3 1 4 0

电路第五版第十五章电路方程的矩阵形式

返 回 上 页 下 页
②(降阶)关联矩阵A
支路b
用关联矩阵A表示的KCL,KVL: ①用A阵表示的KCL(矩阵形式): ①
② 3 4
6 2 ④
Ai=0
其中: i i1 i2 ib 支路电流列向量。 例如 以结点④为参考结点 i1
T
5 1

n-1个独立方程
Ai =
-1 -1 1 0 0 0 0 0 -1 -1 0 1 1 0 0 1 1 0
第15章 电路方程的矩阵形式
本章重点
15.1 15.2 15.3* 15.4 15.5 15.6* 15.7* 割集 关联矩阵、回路矩阵、割集矩阵 矩阵A、Bf 、Qf 之间的关系 回路电流方程的矩阵形式 结点电压方程的矩阵形式 割集电压方程的矩阵形式 列表法 首页
重点 1. 关联矩阵、割集矩阵、基本回路矩 阵和基本割集矩阵的概念
3 ① 4
注意
u A un
T
6 2 ④
返 回
体现了结点法的基本思想。
5 1
上 页

下 页
用关联矩阵A表示的KCL,KVL: ①用A阵表示的KCL(矩阵形式): n-1个独立方程
Ai=0
其中: i i1 i2 ib
T
,支路电流列向量。 体现了结点法 的基本思想
②用A阵表示的KVL(矩阵形式):
3 Ⅰ1 2 ④ Ⅲ 6 4 Ⅱ 5
B u = 0, 或 Bf u = 0
例如
Bu =
1 1 1 0 0 0 -1 0 0 1 1 0 1 0 1 0 -1 1
0 u1 u2 u3 u1 u4 u5 0 0 u1 u3 u5 u6

电路第15章电路方程的矩阵形式

元件参数的识别
利用矩阵形式的电路方程,可以对电路中的元件参数进行 识别和估计,例如通过测量节点电压和支路电流来计算元 件的电阻、电容、电感等参数。
系统分析和控制
矩阵形式的电路方程可以用于系统分析和控制,例如稳定 性分析、频率响应分析、最优控制等。
02 电路元件的矩阵表示
电阻元件的矩阵表示
总结词
电阻元件在矩阵形式中表示为对角线矩阵,对角线上的元素为电阻值。
矩阵元素的选取
矩阵中的元素根据电路元件的类 型和连接方式进行选取,通常包 括电阻、电容、电感等元件的参 数。
矩阵形式的优点
矩阵形式能够简化电路的分析和 计算过程,提高计算效率和精度, 适用于大规模复杂电路的分析。
矩阵形式的电路方程
节点电压方程
在电路中选取节点电压作为未知 量,根据基尔霍夫定律建立节点 电压方程,并将其表示为矩阵形
线性
电路的输出信号与输入信号成正比,满足叠加定 理。
3
时不变
电路的参数不随时间变化。
线性时不变电路的矩阵形式
矩阵形式的电路方程
将电路中的元件参数和连接关系表示为矩阵形式,以便于分析和 计算。
状态变量
描述电路中电压和电流变化的变量,通常用向量表示。
状态方程
描述电路中状态变量之间关系的方程,通常表示为矩阵形式。
矩阵形式的电路方程广泛应用于电子工程、通信工程、控制工程等多个领域,尤其在处理大规模复杂电 路时表现出显著的优势。
电路方程的矩阵形式的展望
01
矩阵形式的进一步研究
随着电子技术和计算机技术的不断发展,对电路方程的矩 阵形式的研究将更加深入。未来研究将更加注重矩阵形式 的数学基础、算法优化和数值稳定性等方面。
02 03

第15章 电路方程的矩阵形式

Chapter 15 电路方程的矩阵形式主要内容 1.关联矩阵,回路矩阵,割集矩阵; 2.KCL, KVL 的矩阵形式;3.回路电流(网孔电流)方程、结点电压方程、割集电压方程的矩阵形式;§15-1 割集KCL 和KVL 所表示的电路中各电压、电流之间的约束关系取决于电路中各元件的连接方式。

电路的拓扑 ---- 电路中各元件的连接方式。

电路拓扑性质用图论及矩阵代数进行研究(图,回路,树,割集等)。

1. 割集:是G 的一个支路集合,移去这些支路,将使G 分离为两个部分,如果少移去其中任意一条支路,图仍将是连通的。

可以用在连通图G 上作闭合面的方法来判断确定一个割集,与闭合面相切割的所有支路构成一个割集(因移去这些支路,G 被分离为两部分)。

割集:),,,( ),,,,( ),,,,( ),,,( ),,,( ),,,( ),,,(d c b a f c e a f d e b c e d f c b b e a f d a 非割集:),,,(),,,(c b e a e d aKCL 适用于任何一个闭合面,属于同一割集的所有支路的电流满足KCL ,若一个割集的所有支路都连接在同一个接点上,割集的KCL 方程即变为结点上的KCL 方程2. 独立割集:一组线性独立的KCL 方程对应的割集。

应用割集法,首先必须选择一组独立割集。

① 选定连通图的一个树,则任何连支集合不能构成一个割集;因移去全部连支,剩下的子图(树)仍是连通的,故任何连支集合不能构成割集.② 连通图的每一个树支与一些相应的连支可以构成一个割集。

因移去全部连支,剩下子图为树,再移去一个树支,则树被分离成 21 T T 和两部分,于是联结 21 T T 和的那些连支和这条树支必构成一个割集。

③ 单树支割集(基本割集)由树的一条树支与相应的一些连支所构成的割集为单树支割集。

如下图中 ),,( ),,,( ),,,(d f a f c b e b a④n 个结点和b 条支路的连通图,其树支数为 (n -1),有(n -1)个单树支割集,称为基本割集组。

第十五章 电路方程的矩阵形式


u (支路方向与回路绕向一致为正,反之为负)
由KVL可知,任一闭合回路电压的代数和恒为零
即有 B f u 0 或 Bf U 0 称为矩阵形式的KVL。
如上图中,u u1 u2 u3 u4 u5 u6 T
1 1 1 1 0 0
4
Bf 1 1 0 0 1 0
1 l1
l2
6
0
1
100 u1
1
5 2 3 l3
us5 -
R5
b5
1
b1 2 b2 3
Is1
R2
+
+
b4
b3
b6
u4 - R4
R3
kuu4 _
4
电路
拓扑图(线图)
支路电压和支路电流的正方向与支路方向一致-----
有向图
连通图:是指拓扑图中任意两节点间都至少有一条通路。
子图:是指原拓扑图的一部分,可包括原图的一些边和顶 点。
树:在连通图中包含连通图中的全部节点和部分支路,不 包含回路。
b4
b5 b3
4
特点:
a.每一列的代数和均为零。其中的行不是彼 此独立的,其任意一行都与(n-1)行的和 的相反的数相等。
b.去掉以任意一个节点为参考节点所对应的 一行后记为(n-1) b阶矩阵称为降阶的关 联矩阵 简称关联矩阵 。用符号 A 表示。
在 Aa 中划去的行对应的节点即为参考节点。
如上图选节点④为参考节点则有:
b1 b5
b2
Q1
b4
b3
Q3 b6
Q2
规定基本割集的方向与其中的树支方向一致。
若将切割线Q1,Q2,Q3延伸成闭合面则有:
ib1 ib2 ib4 ib6 0 ib2 ib5 ib6 0 ib3 ib4 ib6 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

u4
0
0
1
1
1 0 1 1
0
1
0
1
u4 u5 u6
u4
u5 u6 u4 u5
u5
u6
u5
u6
u1
u2
0 1 1
u5 u6 u3
KVL的另一种形式
[u]
ut
ul
QTut
1
QTl
ut
ul
Q
T l
ut
用树支电压表示连支电压
i6
0
i1
i2
i5
i2 i3 i6
矩阵形式的KCL A i = 0
1

4

2
5 3

6
矩阵形式KVL

节支 1 2 3 4 5 6
1 1 0 0 -1 0 1 A= 2 -1 -1 0 0 1 0
3 0 1 1 0 0 -1
1
0
0
1
0 1
1 1 0 0 1 0
0
1 1 0 0
由一条树支和部分连支可以构成割集。对于一个有n个 节点和b条支路组成的电路,树支数有(n-1)个,因此可 以构成(n-1)单树支割集。称之为基本割集组。



1
2
①5

43 ④6
Q1: { 2 , 3 , 6 }
1
2
①5

43 ④6
Q2: { 3 , 5 , 4}
1
2
①5

43 ④6
Q3: { 1 , 5 ,3 , 6 }
图中的方向表示原电路中支路电压和 电流关联参考方向。
§15-2. 回路、树、割集
一. 回路
回路L是连通图G的一个子图。
具有下述性质
(1)连通; (2)每个节点关联支路数恰好为2。
123 75
6 84
23 5 回路
12 5
78 4 不是回路
二 . 树 (Tree)
树T是连通图G的一个子图,具有下述性质:
矩阵形式的KCL: Qi =0
矩阵形式的KCL的另一种形式
Qi =0 可写成
[Qt
Ql
]iilt
[1
Ql
]iilt
0
it Ql il 用连支电流表示树支电流
回路矩阵表示时 it BTt il
回路矩阵和割集矩阵的关系
Ql
B
T t
矩阵形式的KVL QTut=u





1
1 0 0
u4
关联矩阵
aij = 1 aij aij= -1
aij =0
Aa={aij}n b
节点数 支路数
有向支路 j 与节点 i 关联且背离节点 i 有向支路 j与节点 i 关联且指向节点 i j 支路与i节点无关

1
2
节支 1 2 3 4 5 6 1 1 0 0 -1 0 1

5

Aa=
2 3
-1 -1 0 0 1 0 0 1 1 0 0 -1
3、当电路中含有与无源元件串联的受控电压源时(控制量 为其它支路无源元件的电压或电流), Z不再是对角阵。
三. 回路方程
KVL BU 0
Ik
Iek USk
KCL I BT Il
Zk IS
VCR U ZI ZIS US
Uk
BU BZI BZIS BUS 0
BZB T Il BUS BZIS
第十五章 电路方程的矩阵形式
本章重点 (1)图的矩阵表示 关联矩阵A 单连支回路矩阵B 单树支割集矩阵Q (2)矩阵形式的 KCL、KVL (3)节点电压方程的建立
§15-1 图的基本概念
i1 i2 i3 i1 i2 i3 i = 0
抽象
i1 i2 i3
+
抽象
支路
-

一. 图的基本概念
抽象

L

uS
i1
i2
i
i3 i4
i5
i6
u1
支路电压
u2
u
u3 u4
u5
u6
节点电压 un1
un
un
2
un3

i1
1

2
i2
5
1 0 0 -1 0 1
③ Ai = -1 -1 0 0 1 0
i3
0 1 1 0 0 -1 i4
4
3

6
i5
i1 i4 i6
il
用连支电流表示树支电流
三. 基本割集矩阵Q
用矩阵形式描述基本割集和支路的关联性质


Q = { q i j } n-1 b

基本割集数 支路数

6 约定 (1) 割集方向与树支方向相同。
1
(2)支路排列顺序先树(连)支, 后连(树)支。
1 j支路在割集i中且与割集i方向一致
qij= -1 j支路在割集i中且与割集i方向相反
由于KCL适用于任何一个闭合面,对于每一个割集来说, 组成割集的所有支路的电流应满足KCL。
对于一个连通图,可有多个割集,可以列出与割集数相等 的KCL方程。这些方程彼此之间并不独立。
借助于“树”来确定独立割 集。
单树支割集(基本割集)
连支集合不能构成割集。即使所有连支都去掉,剩下 的树支仍然构成连通图,与割集的定义矛盾。
0 j 支路不在割集i中


C1:{1,2,4} C2:{1,2,3,5} C3:{2,3,6}



1
割集支 4
C1 1
Q= C2 0
C3 0

[i] [i4 i5 i6 i1 i2 i3 ]T
56123
0 0 -1 -1 0
1 0 1 1 -1
0 1 0 -1 1
Qt
Ql
ut=[ u4 u5 u6 ]T
(1)连通; (2)包含G的所有节点和部分支路; (3)不包含回路。
树支:组成树的支路 连支:属于G而不属于T的支路
16个 树不唯一
树支数 bt= n-1
连支数 bl=b-(n-1)
单连支回路(基本回路)
4
1 3 56
2
树支数 4 连支数 3
7 单连支回路
独立回路
4 1
5
三. 割集
割集Q是连通图G中一个支路的集合,具有下述性质: (1) 把Q 中全部支路移去,将图分成两个分离部分;
每一支路,连接在两个节 点上,必然要背离一个节 点,指向另一节点。
设④为参考节点
称A为降阶关联矩阵 (n-1)b , 表征独立节点与支路的关联性质

1
2
节支 1 2 3 4 5 6

5

1 1 0 0 -1 0 1
4
3
A= 2 -1 -1 0 0 1 0 3 0 1 1 0 0 -1

6
设:
支路电流
1、电感之间无耦合情况
.
.
.
.
U k Zk ( I k I s ) U sk
对于整个电路有:
U ZI ZIS US
Ik
Iek USk
Zk IS
Uk
Rk
Zk
jLk
1
jCk
Z 为支路阻抗矩阵,它是一个对角阵。
2、电感之间存在耦合时,方程中还应考虑互感电压的作用, 比较复杂。此时,Z不再是对角阵。
0
1
0
0
1 1 1 0 1 0
0
1
1
0
0
1
i1
i2
i3
i1 i2 i1 i2 i2 i3
i1 i2 i3
i3
i4
i5
i6
i1
i2
i3
KCL的另一种形式
B=[ Bt 1 ]
it
B
T t
il
BT
B1Tt
B1Tt
il
it
Ik
Iek
USk
Yk IS
Uk
4. US 5 0 0 0 0 0 T 5. IS 0 0 0 1 3 0 T ①
小结:
A
B
KCL Ai=0
KVL ATun=u
Ql
B
T t
BTil=i
it BTt il
Bu=0 ul = - Btut
Q
Qi=0 it Qlil
QTut=u
ul
Q
T l
ut
§15-4 回路电流方程的矩阵形式
一. 复合支路
由RLC、电压源、电流源组成 参考方向如图所示 不存在无伴电流源
二. 复合支路约束方程
(2)保留Q 中的一条支路,其余都移去, G还是连通的。

2
1
2
①5

1
5

43
4

6 6
Q1: { 2 , 5 , 4 , 6 }


3


1
2
①5

43 ④6
Q2: { 2 , 3 , 6 }

1
2
①5

43 ④6
Q3: { 1 , 5 , 4}

1
2
①5

43 ④6
Q4: { 1 , 5 , 2 }
Ik
Iek USk
Zk IS
Uk
I1
相关文档
最新文档