第15章 电路方程的矩阵形式

合集下载

电路方程的矩阵形式

电路方程的矩阵形式
回路序号与对应连支所在列的序号相同; 回路绕向与连支方向相同 2 用回路矩阵B表示的KCL、KVL矩阵方程 用回路矩阵表示的KVL矩阵方程: 用回路矩阵表示的KCL矩阵方程:
用回路矩阵表示的KVL矩阵方程
用回路矩阵表示的KCL矩阵方程
三、割集矩阵及用割集矩阵表示的KCL、KVL矩阵方程 1 割集矩阵:表示支路和割集关联性质的矩阵
比较回路电流方程的矩阵形式(15-16式)和 割集电压方程的矩阵形式(15-17式)
·对某些图有Qf=A;
·当选择的独立割集都由汇集在一个节点上的
支路组成时,割集电压法即节点电压法。
§6 网络的状态变量分析法
一、输入输出法与状态变量法
动态网络的时域分析法与运算电路法都 是输入输出法建立输入输出的关系
2 割集的方向
移去一个割集的所有 支路时,连通图分为 两部分,从其中一部 分指向另一部分的方 向
树的概念
树支:连接所有节点,不构成闭合回路的支路与节点相互连通 的图。图G的树为:(a)、(b)、(c)。(d)、(e)不是树
割 集 的 定 义
adf, bcf, abe,def,bdef, acef,abcd七种是割集, adef ,abcde不是割集。
状态变量 列向量
状态变量
三、列状态方程
对线性时不变动态网络,独立的电容电压和 电感电流就是能满足上述条件的一组变量, 可作为网络的一组状态变量。举例见P357
对于复杂的电路宜用树的概念列写状态方程
对常态网络(不含纯电容回路和纯电感割集 的网络),借用特有树(常态树),分别列 出电容树支对应的基本割集的KCL方程和电 感连支的基本回路的KVL方程。P360
支路间约束---支路间KCL、KVL约束(用关联矩阵表 示)

天津理工电路习题及答案第十五章电路方程的矩阵形式

天津理工电路习题及答案第十五章电路方程的矩阵形式

天津理工电路习题及答案第十五章电路方程的矩阵形式(总13页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第十五章电路方程的矩阵形式内容总结——目的是建立计算机辅助分析复杂电路(网络)的数学模型1、教学基本要求初步建立网络图论的基本概念:图、连通图和子图的概念,树、回路与割集的拓扑概念,关联矩阵,基本回路,基本割集的概念,选取树和独立回路的方法。

关联矩阵,用降阶关联矩阵表示的KCL和KVL的矩阵形式。

回路与割集的拓扑概念,单连支回路,单树枝割集。

2、重点和难点(1) 关联矩阵(2) 结点电压方程的矩阵形式(3) 状态变量的选取及状态方程的建立方法(4) 电路状态方程列写的直观法和系统法.三种主要关联矩阵形式:①结点关联矩阵A:描述结点与支路的关联关系的矩阵。

设复杂电路(网络)有N个结点、B条支路,其结点关联矩阵A表示如下:(n-1)ⅹb其中任意元素a jk的定义为:a jk= +1,表示结点j与支路k相关联且支路方向流出结点;a= -1,表示结点j与支路k相关联且支路方向流入结jk点;a= 0,表示结点j与支路k不关联;jk②回路关联矩阵B:描述回路与支路的关联关系的矩阵。

设复杂电路(网络)有L个回路、B条支路,其回路关联矩阵B表示如下:lⅹb其中任意元素b jk的定义为:b jk= +1,表示回路j与支路k相关联且回路方向与支路方向一致;bjk= -1,表示回路j与支路k相关联且回路方向与支路方向向反;bjk= 0,表示回路j与支路k相不关联;③割集关联矩阵Q:描述割集与支路的关联关系的矩阵。

设复杂电路(网络)有Q个割集、B条支路,其割集关联矩阵Q表示如下:(n-1)ⅹb其中任意元素q jk的定义为:q jk= +1,表示割集j与支路k相关联且割集方向与支路方向一致;qjk= -1,表示割集j与支路k相关联且割集方向与支路方向向反;qjk= 0,表示割集j与支路k相不关联;注意:★对于结点关联矩阵有:基尔霍夫电流定律的矩阵形式:Ai = 0;i =[i i i2i3……i b]T。

电路方程的矩阵形式ppt课件

电路方程的矩阵形式ppt课件
第十五章 电路方程的矩阵形式
结束
重点
1. 掌握割集的概念,熟练写出电路关联矩 阵A、回路矩阵B、割集矩阵Q;
2. 掌握复合支路的概念; 3. 学会用矩阵形式列写回路电流方程、结
点电压方程和割集电压方程; 难点
割集电压方程的列写。
1
§15-1 割集
1. 定义 连通图G的一个割集是G的 一个支路集合,如果
称为基本割集组。
l1
l2
结束
bt l3
Q
而基本割集组是独 立割集组。
独立割集组不一 定是单树支割集。 就象独立回路不 一定是单连支回 路一样。
6
树支为2,3,4,6时的基本割集组
4
1
4
1
5 8
5 8
Q2
6
6
7
7
3
2 Q1 3
2
Q3
4
1
结束
5
8
6
3 7 Q4 2
Q1 (1,2,5,7,8) Q2 (1,3,5,8) Q3 (1,4,5) Q4 (5,6,7,8)
Q1
树支为
4
1
同一个图,有
5,6,7,8 Q4 时的基
5 8
6
Q2 许多不同的树, 因此能选出许
本割集 组。
7
3
2
Q3
多不同的基本 割集组。
7
§15-2 关联矩阵、回路矩阵、割集矩
阵 1. 关联矩阵的特点
描述结点与支路关联的矩阵。
是一个(n×b)阶的矩阵。
(1)Aa的元素定义 ajk= +1,支路k与结点j关
bjk= -1,支路k与回路j关联,且方向相反;
bjk= 0,支路k与回路j无关联。

第15章电路方程的矩阵形式

第15章电路方程的矩阵形式

(2)保留Q 中的一条支路,其于都移去, G还是连通的。

2
1
2
①5

1
5

43
4

6 6
Q1: { 2 , 5 , 4 , 6 }


3



1
2
①5

1
2
①5

43 ④6
43 ④6
Q2: { 2 , 3 , 6 }
Q3: { 1 , 5 , 4}
单树支割集(基本割集)


1
2
①5

43 ④6
Q1: { 2 , 3 , 6 }
设 I I1 I2 Ib T
IS IS1 IS 2 ISb T
15-3 结点电压方程的矩阵形式
Ik
Iek
U Sk
Yk ISk

U k

U U1 U 2 U b T
U S U S1 U S 2 U Sb T

基本回路
15.1 割集
基本割集
1
2
①5

43 ④6
{1,2,3,4} {1,4,5} {1,2,6}
{1,5,3,6} {2,3,6} {3,4,5}
2. 由某个连支bl确定的单连支回路应包含那些树支,每个
这种树支所构成的基本割集中含有bl 。

基本回路
基本割集
1
2
①5

43 ④6
{1,2,3,4} {1,4,5} {1,2,6}
u5

节点电压
un1
un

第015章_电路方程的矩阵形式

第015章_电路方程的矩阵形式
1 Bu 0 0 0 1 0 1 1 0 0 0 1 1 1 u3 0 1 u4 1 1 u 5 u6

u1 u2

6 1 3 6 31
i
i1 i2 i3 i4 i5 i6

i
这正是回路电流 法的基本思想。
i B T il
i i i

i i
i i i
即为用B表示 KCL的矩阵形式。
17
五、割集矩阵:
1、割集矩阵: 即独立割集矩阵,它反映电路的支 Q1 路与所取的独立割集的关联性。 矩阵元素的取值:
(2)某些列仅有一个非零元素,表示该支路与参考结点相关联。 ②A的物理意义:反映电路的拓扑结构
支路与结点的关联性。
11
3、用A表示的KL的矩阵形式: ①KCL:

i1 i
2 3 4 5 6
证明: G
T1
l1 l2 l3
bt
T2
而且,每一条树支与相应的连支都会构成一个单树支割集。 这种单树支割集又称为基本割集。对于一个G,树支数为 n -1, ∴有n -1个基本割集,称为对一个树的基本割集组。 基本割集组必是独立割集组,但独立割集组不一定是单树 支割集组,因树是一个相对概念,人家可以先(用树)定义一 组独立割集,而后又可以重新定义树。
② 4 6 5 ④ ③
0 k支路与 j 结点不关联 关联,且方向背离该结点 a jk 1 1 关联,但方向为指向结点
② 0 Aa ③ 1 ④ 0
1 ① -1 2 -1 0 3 1 4 0

电路第15章电路方程的矩阵形式

电路第15章电路方程的矩阵形式
元件参数的识别
利用矩阵形式的电路方程,可以对电路中的元件参数进行 识别和估计,例如通过测量节点电压和支路电流来计算元 件的电阻、电容、电感等参数。
系统分析和控制
矩阵形式的电路方程可以用于系统分析和控制,例如稳定 性分析、频率响应分析、最优控制等。
02 电路元件的矩阵表示
电阻元件的矩阵表示
总结词
电阻元件在矩阵形式中表示为对角线矩阵,对角线上的元素为电阻值。
矩阵元素的选取
矩阵中的元素根据电路元件的类 型和连接方式进行选取,通常包 括电阻、电容、电感等元件的参 数。
矩阵形式的优点
矩阵形式能够简化电路的分析和 计算过程,提高计算效率和精度, 适用于大规模复杂电路的分析。
矩阵形式的电路方程
节点电压方程
在电路中选取节点电压作为未知 量,根据基尔霍夫定律建立节点 电压方程,并将其表示为矩阵形
线性
电路的输出信号与输入信号成正比,满足叠加定 理。
3
时不变
电路的参数不随时间变化。
线性时不变电路的矩阵形式
矩阵形式的电路方程
将电路中的元件参数和连接关系表示为矩阵形式,以便于分析和 计算。
状态变量
描述电路中电压和电流变化的变量,通常用向量表示。
状态方程
描述电路中状态变量之间关系的方程,通常表示为矩阵形式。
矩阵形式的电路方程广泛应用于电子工程、通信工程、控制工程等多个领域,尤其在处理大规模复杂电 路时表现出显著的优势。
电路方程的矩阵形式的展望
01
矩阵形式的进一步研究
随着电子技术和计算机技术的不断发展,对电路方程的矩 阵形式的研究将更加深入。未来研究将更加注重矩阵形式 的数学基础、算法优化和数值稳定性等方面。
02 03

第十五章 电路方程的矩阵形式

第十五章 电路方程的矩阵形式

u (支路方向与回路绕向一致为正,反之为负)
由KVL可知,任一闭合回路电压的代数和恒为零
即有 B f u 0 或 Bf U 0 称为矩阵形式的KVL。
如上图中,u u1 u2 u3 u4 u5 u6 T
1 1 1 1 0 0
4
Bf 1 1 0 0 1 0
1 l1
l2
6
0
1
100 u1
1
5 2 3 l3
us5 -
R5
b5
1
b1 2 b2 3
Is1
R2
+
+
b4
b3
b6
u4 - R4
R3
kuu4 _
4
电路
拓扑图(线图)
支路电压和支路电流的正方向与支路方向一致-----
有向图
连通图:是指拓扑图中任意两节点间都至少有一条通路。
子图:是指原拓扑图的一部分,可包括原图的一些边和顶 点。
树:在连通图中包含连通图中的全部节点和部分支路,不 包含回路。
b4
b5 b3
4
特点:
a.每一列的代数和均为零。其中的行不是彼 此独立的,其任意一行都与(n-1)行的和 的相反的数相等。
b.去掉以任意一个节点为参考节点所对应的 一行后记为(n-1) b阶矩阵称为降阶的关 联矩阵 简称关联矩阵 。用符号 A 表示。
在 Aa 中划去的行对应的节点即为参考节点。
如上图选节点④为参考节点则有:
b1 b5
b2
Q1
b4
b3
Q3 b6
Q2
规定基本割集的方向与其中的树支方向一致。
若将切割线Q1,Q2,Q3延伸成闭合面则有:
ib1 ib2 ib4 ib6 0 ib2 ib5 ib6 0 ib3 ib4 ib6 0

第十五章 电路方程的矩阵形式

第十五章 电路方程的矩阵形式
割集与非割集示例
4 4 3 2 1 (a) 1 (b) (c) 6

4 3
5 6
(a)(b)为割集,(c)为非割集
1. 关联矩阵
一条支路连接两个结点,称该支路与这两个结点相关 联,结点和支路的关联性质可以用关联矩阵Aa描述。
N个结点b条支路的图用nb的矩阵描述 支路b
Aa=
结点n
n b
每一行对应一个结点,每一列对应一条支路, 矩阵Aa的每一个元素定义为:
1 0 0 0 1 0 0 0 1
1 -1 0 1 -1 1 0 1 -1
Bl
Bt
u u u u u u
1 2 3 4 5 6
u4 u5 u1 u4 u5 u6 u2 0 u5 u6 u3
矩阵形式的KVL: [ B ][ u ]= 0
Bl
= [ 1 Bt ]
Bt

引入回路矩阵[B]的作用: ① 用回路矩阵[B]表示矩阵形式的KVL方程 设

4 3
5 ③
[u ] [ u1 u 2 u3 u 4 u5 u6 ]T
u u
l



④1
t
[ B ][ u ]=
0 -1
关联矩阵Aa的特点: ① ② 每一列只有两个非零元素,一个是+1,一个是-1, Aa的每一列元素之和为零。 矩阵中任一行可以从其他n-1行中导出,即只有n-1 行是独立的。 支路b
引入降阶关联矩阵A A=
(n-1) b
结点(n-1)
② 4 ①
2 5
设④为参考节点,得降阶关联矩阵
③ 6
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第15章 电路方程的矩阵形式
本章重点 (1)图的矩阵表示 关联矩阵A 单连支回路矩阵B 单树支割集矩阵Q (2)矩阵形式的 KCL、KVL (3)节点电压方程的建立
§15-1 图的基本概念
i1 i2 i3 i1 i2 i3 i = 0
抽象
i1 i2 i3
+
抽象
支路
-

一. 图的基本概念
抽象

L

uS
由一条树支和部分连支可以构成割集。对于一个有n个 节点和b条支路组成的电路,树支数有(n-1)个,因此可 以构成(n-1)单树支割集。称之为基本割集组。



1
2
①5

43 ④6
Q1: { 2 , 3 , 6 }
1
2
①5

43 ④6
Q2: { 3 , 5 , 4}
1
2
①5

43 ④6
Q3: { 1 , 5 ,3 , 6 }
un1 un2
un3
1
un1 un2
un2
un3
un3 un1
un2
un1 un3
u1
u2
u3
u4
u5 u6
ATun u
结点电压
支路电压
二. 基本回路矩阵B 用矩阵形式描述基本回路和支路的关联性质





1
B = {b ij} lb
基本回路数 支路数 约定:
由于KCL适用于任何一个闭合面,对于每一个割集来说, 组成割集的所有支路的电流应满足KCL。
对于一个连通图,可有多个割集,可以列出与割集数相等 的KCL方程。这些方程彼此之间并不独立。
借助于“树”来确定独立割 集。
单树支割集(基本割集)
连支集合不能构成割集。即使所有连支都去掉,剩下 的树支仍然构成连通图,与割集的定义矛盾。
图中的方向表示原电路中支路电压和 电流关联参考方向。
§15-2. 回路、树、割集
一. 回路
回路L是连通图G的一个子图。
具有下述性质
(1)连通; (2)每个节点关联支路数恰好为2。
123 75
6 84
23 5 回路
12 5
78 4 不是回路
二 . 树 (Tree)
树T是连通图G的一个子图,具有下述性质:
(1)连通; (2)包含G的所有节点和部分支路; (3)不包含回路。
树支:组成树的支路 连支:属于G而不属于T的支路
16个 树不唯一
树支数 bt= n-1
连支数 bl=b-(n-1)
单连支回路(基本回路)
4
1 3 56
2
树支数 4 连支数 3
7 单连支回路
独立回路
4 1
5
三. 割集
割集Q是连通图G中一个支路的集合,具有下述性质: (1) 把Q 中全部支路移去,将图分成两个分离部分;
每一支路,连接在两个节 点上,必然要背离一个节 点,指向另一节点。
设④为参考节点
称A为降阶关联矩阵 (n-1)b , 表征独立节点与支路的关联性质

1
2
节支 1 2 3 4 5 6

5

1 1 0 0 -1 0 1
4
3
A= 2 -1 -1 0 0 1 0 3 0 1 1 0 0 -1

6
设:
支路电流
(2)保留Q 中的一条支路,其余都移去, G还是连通的。

2
1
2
①5

1
5

43
4

6 6
Q1: { 2 , 5 , 4 , 6 }


3


1
2
①5

43 ④6
Q2: { 2 , 3 , 6 }

1
2
①5

43 ④6
Q3: { 1 , 5 , 4}

1
2
①5

43 ④6
Q4: { 1 , 5 , 2 }
i6
0
i1
i2
i5
i2 i3 i6
矩阵形式的KCL A i = 0
1

4

2
5 3

6
矩阵形式KVL

节支 1 2 3 4 5 6
1 1 0 0 -1 0 1 A= 2 -1 -1 0 0 1 0
3 0 1 1 0 0 -1
1

0
0
1
0 1
1 1 0 0 1 0
0
1 1 0 0
i1
i2
i
i3 i4
i5
i6
u1
支路电压
u2
u
u3 u4
u5
u6
节点电压 un1
un
un
2
un3

i1
1

2
i2
5
1 0 0 -1 0 1
③ Ai = -1 -1 0 0 1 0
i3
0 1 1 0 0 -1 i4
4
3

6
i5
i1 i4 i6


1
1
B = 2 1 -1 1 0 1 0 3 0 1 -1 0 0 1
Bt
Bl
= [ Bt 1 ] 设
[u] [u4 u5u6 u1 u2u3 ]T
ut
ul
[i] [i4 i5 i6 i1 i2 i3 ]T
矩阵形式的KVL B u = 0
关联矩阵
aij = 1 aij aij= -1
aij =0
Aa={aij}n b
节点数 支路数
有向支路 j 与节点 i 关联且背离节点 i 有向支路 j与节点 i 关联且指向节点 i j 支路与i节点无关

1
2
节支 1 2 3 4 5 6 1 1 0 0 -1 0 1

5

Aa=
2 3
-1 -1 0 0 1 0 0 1 1 0 0 -1
R2 C
有 向
R1
抽象

连通图 图
不连通图
+
-
抽象 不连通图
+ -
二 . 名词和定义 1. 图 G={支路,节点}
抽象 连通图
① 1 ②
允许孤立节点存在
2.子图
路径:从图G的一个节点出发沿着一些支路连续移动到达 另一节点所经过的支路构成路经。
3. 连通图 图G的任意两节点间至少有 一条路经时称G为连通图。 4.有向图
单树支割集 单树支割集
1
独立割集 独立割集
3
2
4
{1,2,3,4} 割集
1
2
3
4
{1,2,3,4} 割集
三个分离部分
4 保留4支路,图不连通的。
§15- 3 关联矩阵、回路矩阵、割集矩阵
一. 关联矩阵A 一条支路连接于某两个结点,则称该支路与这两个结点 相关联。
用矩阵形式描述节点和支路的关联性质
4
3
4 0 0 -1 1 -1 0

6 节支 1 2 3 4 5 6
1 1 0 0 -1 0 1
Aa=
2 3
-1 -1 0 011
0 0
10 0 -1
4 0 0 -1 1 -1 0
节支 1 2 3 4 5 6
1 1 0 0 -1 0 1 A= 2 -1 -1 0 0 1 0
3 0 1 1 0 0 -1
1. 回路的绕行方向取连支电流方向。 2. 支路排列顺序为先连(树)支后树(连)支。
1 支路j在回路i中且与回路i关联,方向一致
bij= -1 支路j在回路i中且与回路i关联,方向相反 0 支路j 不在回路i中


2 33
选 4、5、6为树,连支顺序为1、2、3。
回支 4 5 6 1 2 3 1 1 -1 0 1 0 0
相关文档
最新文档