专题二 牛顿运动定律在直线运动中的应用
牛顿第二定律及应用(解析版)

牛顿第二定律及应用一、力的单位1.国际单位制中,力的单位是牛顿,符号N。
2.力的定义:使质量为1 kg的物体产生1 m/s2的加速度的力,称为1 N,即1 N=1kg·m/s2。
3.比例系数k的含义:关系式F=kma中的比例系数k的数值由F、m、a三量的单位共同决定,三个量都取国际单位,即三量分别取N、kg、m/s2作单位时,系数k=1。
小试牛刀:例:在牛顿第二定律的数学表达式F=kma中,有关比例系数k的说法,不正确的是()A.k的数值由F、m、a的数值决定B.k的数值由F、m、a的单位决定C.在国际单位制中k=1D.取的单位制不同, k的值也不同【答案】A【解析】物理公式在确定物理量之间的数量关系的同时也确定了物理量的单位关系,在F=kma中,只有m的单位取kg,a的单位取m/s2,F的单位取N时,k才等于1,即在国际单位制中k=1,故B、C 、D正确。
二、牛顿第二定律1.内容:物体加速度的大小跟作用力成正比,跟物体的质量成反比.加速度的方向与作用力方向相同.2.表达式:F=ma.3.表达式F=ma的理解(1)单位统一:表达式中F、m、a三个物理量的单位都必须是国际单位.(2)F的含义:F是合力时,加速度a指的是合加速度,即物体的加速度;F是某个力时,加速度a是该力产生的加速度.4.适用范围(1)只适用于惯性参考系(相对地面静止或匀速直线运动的参考系).(2)只适用于宏观物体(相对于分子、原子)、低速运动(远小于光速)的情况.小试牛刀:例:关于牛顿第二定律,下列说法中正确的是()A.牛顿第二定律的表达式F= ma在任何情况下都适用B.物体的运动方向一定与物体所受合力的方向一致C.由F= ma可知,物体所受到的合外力与物体的质量成正比D.在公式F= ma中,若F为合力,则a等于作用在该物体上的每一个力产生的加速度的矢量和【答案】D【解析】A、牛顿第二定律只适用于宏观物体,低速运动,不适用于物体高速运动及微观粒子的运动,故A错误;B、根据Fam合,知加速度的方向与合外力的方向相同,但运动的方向不一定与加速度方向相同,所以物体的运动方向不一定与物体所受合力的方向相同,故B错误;C、F= ma表明了力F、质量m、加速度a之间的数量关系,但物体所受外力与质量无关,故C错误;D、由力的独立作用原理可知,作用在物体上的每个力都将各自产生一个加速度,与其它力的作用无关,物体的加速度是每个力产生的加速度的矢量和,故D正确;故选D。
2牛顿运动定律

第二章 牛顿运动定律(Newton’s Laws of Motion )§1 牛顿运动定律▲第一定律(惯性定律)(First law ,Inertia law ): 任何物体都保持静止或作匀速直线运动的状态,除非作用在它上面的力迫使它改变这种状态。
⎩⎨⎧概念定性给出了力与惯性的定义了“惯性系” 惯性系(inertial frame ):牛顿第一定律成立的参考系。
力是改变物体运动状态的原因,而并非维持物体运动状态的原因。
▲第二定律(Second lawF ρ:物体所受的合外力。
m :质量(mass ),它是物体惯性大小的量度,也称惯性质量(inertial mass )。
若m = const. ,则有:a m F ρρ= a ρ:物体的加速度。
第一定律▲第三定律(Third Law ):2112F F ρρ-=说明:1.牛顿定律只适用于惯性系;2.牛顿定律是对质点而言的,而一般物体可认为是质点的集合,故牛顿定律具有普遍意义。
Δ§2 SI 单位和量纲(书第二章第2节)Δ§3 技术中常见的几种力(书第二章第3节)Δ§4基本自然力(书第二章第4节)m 1 m 2 F 12 F 21§5 牛顿定律应用举例书第二章第2节的各个例题一定要认真看,下面再补充一例,同时说明作题要求。
已知:桶绕z轴转动,ω= const.水对桶静止。
求:水面形状(z - r关系)解:▲选对象:任选表面上一小块水为隔离体m ;▲看运动:m作匀速率圆周运动raρρ2ω-=;▲查受力:受力gmρ及Nρ,水面⊥Nρ(∵稳定时m受周围水及空气的切向合力为零);▲列方程:⎩⎨⎧-=-=-)2(sin)1(cos2rmNrmgNzωθθ向:向:θtg为z(r)曲线的斜率,由导数关系知:rzddtg=θ(3)由(1)(2)(3)得:rgrz2ddtgωθ==分离变量: r r gz d d 2ω= 积分: ⎰⎰=zz rr r g z 002d d ω得: 0222z r g z +=ω(旋转抛物面) 若已知不旋转时水深为h ,桶半径为R ,则由旋转前后水的体积不变,有: ⎰=⋅R h R r r z 02d 2ππ⎰=+Rh R r r z r g 02022d 2)2(ππω 得 g R h z 4220ω-=▲验结果: 0222z r g z +=ω ·单位:[2ω]=1/s 2 ,[r ]=m ,[g ]=m/s 2][m m/sm )/s 1(]2[2222z g ==⋅=ω,正确。
物理学 第二章 牛顿运动定律

g sin a2 tg( ) g cos
g sin a2 arc tg g cos
讨论:如果=0,a1=a2 ,则实际上是小车在水平 方向作匀加速直线运动;如果=0,加速度为零, 悬线保持在竖直方向。
例题2-3 一重物m用绳悬起,绳的另一端系在天花板上, 绳长l=0.5m,重物经推动后,在一水平面内作匀速率圆 周运动,转速n=1r/s。这种装置叫做圆锥摆。求这时绳 和竖直方向所成的角度。
2m1m2 T g m1 m2
(2)电梯加速下降时,a<0,即得到
m1 m2 ar ( g a) m1 m2
a=g,即得到
2m1m2 T ( g a) m1 m2
ar 0,
T 0
例题2-2 一个质量为m、悬线长度为l的摆锤,挂在架子上, 架子固定在小车上,如图所示。求在下列情况下悬线的方 向(用摆的悬线与竖直方向所成的角表示)和线中的张力: (1)小车沿水平方向以加速度a1作匀加速直线运动。 (2)当小车以加速度a2沿斜面(斜面与水平面成角)向上作 匀加速直线运动。
自然坐标系中的分量形式
2
dv Ft mat m dt
Fn man m
v
2
2、牛顿第二定律的微分形式
牛顿第二定律原文意思:运动的变化与所加的动力成正 比,并且发生在这力所沿直线的方向上。 这里的“运动”指物体的质量和速度矢量的乘积。
p mv
牛顿第二定律实质上是:
dp F dt
g cos 2 2 0.497 4 n l
60 13
可以看出,物体的转速n愈大, 也愈大,而 与重物的质量m无关。
l
牛顿运动定律--两类动力学问题

3.2 牛顿运动定律的应用----两类动力学问题一、设计思想牛顿第二定律将力学和运动学有机地结合在一起,是动力学中的核心内容,通过这部分知识的复习,有利于巩固学生对力和运动的关系,这部分知识不仅是力学也是许多电学分析的基础,是高考的必考内容,因此深刻地认识和掌握这部分内容具有十分重要的意义,有利于培养学生的一些解题方法。
在教学上,主要采取以学生交流解题方法为主,指导学生主动复习。
二、知识与技能:1、掌握力学基础知识,能够熟练进行受力分析。
2、能够熟练的将力、加速度等相关矢量正交分解,列出相对应的方程。
3、熟练应用牛顿力学解决相关的动力学问题。
4、掌握两类动力学问题基本方法和步骤。
三、过程与方法:1、利用牛顿第二定律解决动力学问题的关键是利用加速度的“桥梁”作用,将运动学规律和牛顿第二定律相结合,寻找加速度和未知量的关系,是解决这类问题的思考方向.2、通过学生积极思考、讨论,并在教师的引导下完成教学四、情感态度与价值观:培养学生严谨分析问题的态度和良好的思维能力。
五、教学重点:解答两类动力学问题的基本方法和步骤六、教学难点:1、合理的选取研究对象(整体法、隔离法),准确的受力分析,恰当的进行力的分解。
2、对动力学问题求解的思路的理解和列方程运算求解的掌握。
对问题过程的分析,明确物理情景,以及相关的多解性问题。
七、教学方法:启发、讨论、推理、讲授课前自学一、牛顿第二定律1.内容:物体加速度的大小跟作用力成,跟物体的质量成,加速度的方1向与 ____________________。
2.表达式:。
3.适用范围(1)牛顿第二定律只适用于参考系(相对地面静止或的参考系).(2)牛顿第二定律只适用于物体(相对于分子、原子)、低速运动(远小于光速)的情况.特别提醒1.牛顿第二定律F=ma在确定a与m、F的数量关系的同时,也确定了三个量间的单位关系及a和F间的方向关系.122.应用牛顿第二定律求a时,可以先求F合,再求a,或先求各个力的加速度,再合成求出合加速度。
2.第二章牛顿运动定律

例1(补): 复式阿特武德机 三个物体质量已知 滑轮质 补 复式阿特武德机. 三个物体质量已知, 量不计, 轴处无摩擦力.求释放后 求释放后m 量不计 轴处无摩擦力 求释放后 1的加速度 a1和m2对B 的加速度a. 的加速度 解:以地为参照系, 分别建立坐标系 以地为参照系 如图所示
A T1
m1 T2 m2
r r r r F → a,v, r r r r r r →v, a → F
r rr r r a →v, r 重点是a, F
r r r (2)受变力, F(r )(万有引力或弹性力等 , F(t ) 受变力, 受变力 万有引力或弹性力等), 万有引力或弹性力等 r r (碰撞或强迫振动等 ,或 F(v)(粘滞力等 , 碰撞或强迫振动等), 粘滞力等), 碰撞或强迫振动等 粘滞力等
τ v0
n
r N r
rr
R
fµ
t µ dv ∫v0 − v2 = ∫0 Rdt v
v dv −µ = R dt
得
dS Q v= dt S t t Rv0 R t d(R + µv0t) ∫0 dS = ∫0 vdt = ∫0 R+ µv0tdt = µ ∫0 R+ µv0t
R + µ v0t S = ln µ R R
几种常见的力(自学) §2-2 几种常见的力(自学)
力 接触力: 接触力: 弹性力和摩擦力 非接触力(场力): 万有引力, 非接触力(场力): 万有引力, 电力和磁力
1. 万有引力
m1m2 F =G 2 r
m1
r
m2
说明: 两个有一定形状大小的物体间的万有引力, 说明: 两个有一定形状大小的物体间的万有引力,是构成物 体所有质点间的引力的合力. 体所有质点间的引力的合力. 重力: 地球对表面物体的万有引力mg 重力: 地球对表面物体的万有引力
牛顿第二定律应用实例

[典例1]
• 用30 N的水平外力F拉一静 止在光滑的水平面上质量为20 kg 的物体。力F作用3 s后消失,则 第5 s末物体的速度和加速度分别 是多大?
解析:设物体运动的加速度大小为a, 则对物体应用牛顿第二定律可得: F=ma a=F/m=30N/20Kg=1.5 m/s2 3s末汽车的速度v =at=1.5 m/s2X3s=4.5 m/s 5s末外力已撤除,加速度为0
fmaafm30n20kg15ms23s末汽车的速度vat15ms2x3s45ms5s末外力已撤除加速度为04结合物体运动的初始条件选择运动学公式求出所需求的运动学量任意时刻的位移和速度以及运动轨迹等如果已知物体的运动情况根据运动学公式求出物体的加速度再根据牛顿第二定
人教版物理必修一 第四章 牛顿运动定律
解析:汽车的速度 v0=90 km/h=25 m/s 设汽车匀减速的加速度大小为 a,则 a=vt0=5 m/s2 对乘客应用牛顿第二定律可得: F=ma=70×5 N=350 N.
1.解题思路. 从物体的运动情况入手,应用运动学公式求得物体的加 速度,再应用牛顿第二定律求得所受的合外力,进而求得所 求力. 2.解题步骤. (1)确定研究对象. (2)对研究对象进行受力分析,并画出物体受力示意图. (3)根据相应的运动学公式,求出物体的加速度. (4)根据牛顿第二定律列方程求出物体所受的力. (5)根据力的合成和分解方法,求出所需求解的力.
联立解得 θ=30°,μ =153
总结:
更多精彩练习请参考配套习题
加速度a
加速度a是联系力和运动的桥梁
可以用牛顿运动定律解决两类问题:
一 由受力情况求解运动情况 二 由运动情况确定受力情况
动力学两类基本问题的思维程序图:
【高考真题】物理试题分项精析:专题07 牛顿第二定律的应用(含解析)
一、单项选择题1.【2015·上海·3】如图,鸟沿虚线斜向上加速飞行,空气对其作用力可能是()A .1FB .2FC .3FD .4F【答案】B【考点定位】牛顿第二定律.2.【2013·海南卷】一质点受多个力的作用,处于静止状态,现使其中一个力的大小逐渐减小到零,再沿原方向逐渐恢复到原来的大小。
在此过程中,其他力保持不变,则质点的加速度大小a 和速度大小v 的变化情况是()A .a 和v 都始终增大B .a 和v 都先增大后减小C .a 先增大后减小,v 始终增大D .a 和v 都先减小后增大 【答案】C【解析】初始状态质点所受合力为零,当其中一个力的大小逐渐减小到零时,质点合力逐渐增大到最大,a 逐渐增大到最大,质点加速;当该力的大小再沿原方向逐渐恢复到原来的大小时,质点合力逐渐减小到零,a 逐渐减小到零,质点仍然加速。
可见,a 先增大后减小,由于a 和速度v 始终同向,质点一直加速,v 始终增大,故C 正确。
【考点定位】考查对牛顿第二定律及对速度时间关系的定性分析的理解。
3.【2011·福建卷】如图,一不可伸长的轻质细绳跨过滑轮后,两端分别悬挂质量为1m 和2m 的物体A 和B 。
若滑轮有一定大小,质量为m 且分布均匀,滑轮转动时与绳之间无相对滑动,不计滑轮与轴之间的磨擦。
设细绳对A 和B 的拉力大小分别为1T 和2T ,已知下列四个关于1T 的表达式中有一个是正确的,请你根据所学的物理知识,通过一定的分析判断正确的表达式是()A.21112(2)2()m m m gTm m m+=++B.12112(2)4()m m m gTm m m+=++C.21112(4)2()m m m gTm m m+=++D.12112(4)4()m m m gTm m m+=++【答案】C【考点定位】牛顿第二定律.4.【2011·天津卷】如图所示,A、B两物块叠放在一起,在粗糙的水平面上保持相对静止地向右做匀减速直线运动,运动过程中B受到的摩擦力()A.方向向左,大小不变B.方向向左,逐渐减小C.方向向右,大小不变D.方向向右,逐渐减小【答案】A【解析】A、B两物块叠放在一起共同向右做匀减速直线运动,对A、B整体根据牛顿第二定律有()A BA Bm m ga gm mμμ++==,然后隔离B,根据牛顿第二定律有AB B Bf m a m gμ==大小不变,物体B做速度方向向右的匀减速运动,故而加速度方向向左,摩擦力向左;【考点定位】牛顿第二定律5.【2012·安徽卷】如图所示,放在固定斜面上的物块以加速度a沿斜面匀加速下滑,若在物块上再施加一竖直向下的恒力F,则()A.物块可能匀速下滑B.物块仍以加速度a匀加速下滑C.物块将以大于a的加速度匀加速下滑D.物块将以小于a的加速度匀加速下滑【答案】C【考点定位】考查力的分解、牛顿运动定律及其相关知识.6.【2011·北京卷】“蹦极”就是跳跃者把一端固定的长弹性绳绑在踝关节等处,从几十米高处跳下的一种极限运动。
物理牛顿运动定律的应用练习题20篇及解析
对
B: a2' /
s2
经分析,B 先停止运动,A 最后恰滑至 B 的最右端时速度减为零,故 v2 v2 L 2a1 2a2 ' 2
【详解】
(1)A、B 间恰要相对滑动的临界条件是二者间达到最大静摩擦力,
对 A,由牛顿第二定律可知,加速度 a 1g 2m / s2 ;
对 B,由牛顿第二定律可知, Fmin 2 m M g 1mg Ma ,
/
解得 Fmin 18N
(2)F=20N>18N,二者间会相对滑动,对 B,由牛顿第二定律;
(1)若 A、B 间相对滑动,F 的最小值;
(2)当 F=20N 时,若 F 的作用时间为 2s,此时 B 的速度大小;
/
(3)当 F=16N 时,若使 A 从 B 上滑下,F 的最短作用时间.
【答案】(1) Fmin 18N (2) v2 20m / s (3) t2 1.73s
【解析】
【分析】
(1)对铅块、木板根据牛顿第二定律求解加速度大小;(2)从开始到滑落过程,铅块和 木板的位移之差等于 L,求解时间;(3)根据两种临界态:到右端恰好共速以及共速后不 能从左侧滑下求解力 F 的范围; 【详解】
(1)铅块: 1mg ma1
解得 a1=4m/s2; 对木板: 1mg 2 (M m)g Ma2 解得 a2=2m/s2
1 2
a1t12
1 2
a2t12
1.25m
撤掉 F 后:物块相对于木板上滑,加速度仍未 a1=8m/s2,减速上滑
而木板: Mg sin 2 (M m)g cos 1mg cos Ma2
则: a2 12m/s2 ,方向沿斜面向下,减速上滑
由于: Mg sin 1mg cos 2 (M m)g cos
创新设计《高考物理总复习》第章
[高考导航]基础课1牛顿第一定律牛顿第三定律知识点一、牛顿第一定律1.内容一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态。
2.意义(1)指出力不是维持物体运动的原因,而是改变物体运动状态的原因,即力是产生加速度的原因。
(2)指出了一切物体都有惯性,因此牛顿第一定律又称惯性定律。
3.惯性(1)定义:物体具有保持原来匀速直线运动状态或静止状态的性质。
(2)性质:惯性是一切物体都具有的性质,是物体的固有属性,与物体的运动情况和受力情况无关。
(3)量度:质量是物体惯性大小的唯一量度,质量大的物体惯性大,质量小的物体惯性小。
知识点二牛顿第三定律1.内容两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在同一条直线上。
2.意义建立了相互作用物体之间的联系及作用力与反作用力的相互依赖关系。
[思考判断](1)牛顿第一定律是实验定律。
()(2)牛顿第一定律指出,当物体受到的合外力为零时,物体将处于静止状态。
()(3)物体运动必须有力的作用,没有力的作用,物体将静止。
()(4)运动的物体惯性大,静止的物体惯性小。
()(5)惯性是物体抵抗运动状态变化的性质。
()(6)作用力与反作用力的效果可以相互抵消。
()(7)人走在松软土地上下陷时,人对地面的压力大于地面对人的支持力。
()答案(1)×(2)×(3)×(4)×(5)√(6)×(7)×对牛顿第一定律的理解与应用1.牛顿第一定律:牛顿第一定律不是实验定律,它是在可靠的实验事实(如伽利略斜面实验)基础上采用科学的逻辑推理得出的结论;物体不受外力是牛顿第一定律的理想条件,其实际意义是物体受到的合外力为零。
2.惯性:惯性是物体保持原来运动状态的性质,与物体是否受力、是否运动及所处的位置无关,物体的惯性只与其质量有关,物体的质量越大其惯性越大。
3.惯性的两种表现形式(1)物体的惯性总是以保持“原状”或反抗“改变”两种形式表现出来。
2013高考物理二轮复习教案人教版 专题2 力与物体的直线运动
专题二 力与物体的直线运动一. 专题要点第一部分:匀变速直线运动在力学中的应用1.物体或带电粒子做直线运动的条件是物体所受的合外力与速度方向平行。
2.物体或带电粒子做匀变速直线运动的条件是物体所受的合外力为恒力且与速度方向平行。
3.牛顿第二定律的内容是:物体运动时的加速度与物体所受的合外力成正比,与物体的质量成反比,加速度的方向与所受合外力的方向相同,且二者具有瞬时对应关系,此定律可以用控制变量法进行实验验证。
4.速度时间关系图像的斜率表示物体运动的加速度,图像所包围的面积表示物体运动的位移。
在分析物体的运动时常利用v-t 图像帮助分析物体的运动情况。
5.超重或失重时,物体的重力并未发生变化,只是物体对支持物的压力(或对悬挂物的拉力)发生了变化。
当a=g 时物体完全失重。
6.匀变速直线运动的基本规律为 速度公式:at v v t +=0 位移公式:2021at t v x +⋅= 速度与位移关系式:ax v v t 2202=- 7.匀变速直线运动 平均速度:20t v v t x v +=或 位移中点的瞬时速度2220tv v v +=中点第二部分:匀变速直线运动在电学中的应用1. 带电粒子在电场中直线运动的问题:实质是在电场中处理力学问题,其分析方法与力学中相同。
首先进行受力分析,然后看物体所受的合外力与速度方向是否一致,其运动类型有电场加速运动和交变的电场内往复运动2. 带电粒子在磁场中直线运动问题:洛伦兹力的方向始终垂直于粒子的速度方向。
3. 带电粒子在复合场中的运动情况一般较为复杂,但是它仍然是一个力学问题,同样遵循力和运动的各条基本规律。
4. 若带电粒子在电场力、重力和洛伦兹力共同作用下做直线运动,如果是匀强电场和匀强磁场,那么重力和电场力都是恒力,洛伦兹力与速度方向垂直,而其大小与速度大小密切相关。
只有带电粒子的速度大小不变,才可能做直线运动,也即匀速直线运动。
二. 考纲要求考点要求 考点解读参考系、质点 Ⅰ 本专题知识是整个高中物理的基础,高考对本部分考查的重点是匀变速直线运动的公式及应用;v- t 图像的理解及应用,其命题情景较为新颖,(如高速公路上的车距问题、追及相遇问题)竖直上抛与自由落体运动的规律及其应用;强调对牛顿第二定律分析、计算和应用考查,而牛顿第三定律贯穿于综合分析过程中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题二 牛顿运动定律在直线运动中的应用 【考纲要求】 内 容 要求 说 明 1.质点 参考系和坐标系 Ⅰ 非惯性参考系不作要求 2.路程和位移 时间和时刻 Ⅱ 3.匀速直线运动 速度和速率 Ⅱ 4.变速直线运动 平均速度和瞬时速度 Ⅰ 5.速度随时间的变化规律(实验、探究) Ⅱ 6.匀变速直线运动 自由落体运动 加速度 Ⅱ 11.牛顿运动定律及其应用 Ⅱ 加速度不同的连接体问题不作要求;在非惯性系内运动的问题不作要求 12.加速度与物体质量、物体受力的关系(实验、探究) Ⅱ
【重点知识梳理】 一.物体运动的描述 1.几个易混淆概念的区别 (1)路程与位移:路程是指物体运动__________,位移是表示物体位置变化的物理量,是从________到_________的一条_____线段。 (2)时间与时刻:时刻是时间轴上的一个______,与______(填“状态量”或“过程量”)相对应;时间是时间轴上的一条______,与__________(填“状态量”或“过程量”)相对应。 (3)平均速度与平均速率:平均速度是________与所用时间的比值,是矢量;平均速率是________与所用时间的比值,是矢量。 (4)速度变化、速度变化率、速度快慢: 2.加速度(a) (1)物理意义:________________________________________________________ (2)定义式:________________________________________________________ (3)决定加速度的因素:__________________________;__________________________。 3.匀变速直线运动的规律: (1)速度时间公式:_____________________(2)位移时间公式:_____________________ (3)位移速度公式:_____________________(4)中点时刻的瞬时速度:______________________ 4.运动图象——读懂物理图象的“三步曲”: (1)看明白坐标轴的所表示的物理量; (2)弄清楚纵截距与横截距的物理意义。 (3)研究图线的形状(斜率、面积); 二.牛顿运动定律 1.牛顿第一定律:定性的描述了力与运动的关系,力不是________________________的原因,是________________________的原因。 2.牛顿第二定律:定量的描述了力与运动的关系:_______________(公式) 3.牛顿第三定律:为我们转换研究对象提供了理论依据。 三.牛顿运动定律与直线运动 1.物体做直线运动的条件:_________________________________。 2.探究加速度与力、质量的关系:实验中应思考解决好以下三个问题: (1)怎样测量(或比较)物体的加速度 (2)怎样提供和测量物体所受的恒力 (3)怎样由实验数据得出结论。 【分类典型例题】 题型一:运动基本概念的辨析与匀变速直线运动基本规律的应用 解决这类问题需要注意:这类习题最大的特点就是解法较多,选择一个较好的方法可以又快又准确地得到回答,关键是对基本概念、基本规律深入的理解与掌握。 虽然这类习题在高考试题中单独出现的可能性较小,但是在综合题中却是非常重要的环节,是完整给出正确答案的基础。 [例1]做匀加速直线运动的物体,依次通过A、B、C三点,位移sAB=sBC,已知物体在AB段的平均速度大小为3m/s,在BC段的平均速度大小为6m/s,那么物体在B点的瞬时速度大小为 A.4m/s B.4.5m/s C.5m/s D.5.5m/s [解析]设A点的速度为vA、B点的速度为vB、C点的速度为vC,由平均速度的定义可知:AC段的平均速度为m/s42)()(2121213vvvvvsvsssvBCAB
BCAB,由匀变速直线运动的规律可知:21BAvvv,22CBvvv,
23ACvvv。解得:vA=1m/s,vB=5m/s,vC=7m/s。答案为B。
[变式训练1]物体以速度v匀速通过直线上的A、B两点间,需时为t。现在物体由A点静止出发,匀加速(加速度为a1)运动到某一最大速度vm后立即作匀减速运动(加速度为a2)至B点停下,历时仍为t,则物体的 A.vm只能为2v,无论a1、a2为何值 B.vm可为许多值,与a1、a2的大小有关
C.a1、a2值必须是一定的 D.a1、a2必须满足tvaaaa22121 题型二:追及与相遇的问题 解决这类问题需要注意:画出示意图来表明两个物体追及过程中的空间关系,特别注意的是两个物体相遇时的临界条件。 [例2]在一条平直的公路上,乙车以10m/s的速度匀速行驶,甲车在乙车的后面做初速度为15m/s,加速度大小为0.5m/s2的匀减速运动,则两车初始距离L满足什么条件可以使(1)两车不相遇;(2)两车只相遇一次;(3)两车能相遇两次(设两车相遇时互不影响各自的运动)。
[解析]设两车的速度相等经历的时间为t,则甲车恰能追及乙车,应有Ltvattv乙甲221,其中atvv甲乙,解得:L=25m。若L>25m,则两车等速时也未追及,以后间距会逐渐增大。若L=25m时,则两车等速时恰追及,两车只相遇一次,以后间距会逐渐增大。若L<25m,则两车等速时,甲车已运动到乙车的前面,以后还能再相遇一次。 [变式训练2]一木箱可视为质点,放在汽车水平车厢的前部,如图所示,已知木箱与汽车车厢底板之间的动摩擦因数为。初始时,汽车和木箱都是静止的。现在使汽车以恒定的加速度a0开始启动沿直线运动。当其速度达到v0后做匀速直线运动。要使木箱不脱离车厢,距汽车车厢尾部的距离应满足什么条件?
题型三:牛顿定律与图象的综合应用。 解决这类问题需要注意: 利用图象分析研究对象的受力特点是及运动性质,然后结合题意运用牛顿第二定律。 [例3]固定光滑细杆与地面成一定倾角,在杆上套有一个光滑小环,小环在沿杆方向的推力F作用下向上运动,推力F与小环速度v随时间变化规律如图所示,取重力加速度g=10m/s2。求: (1)小环的质量m; (2)细杆与地面间的倾角。 [解析](1)前2s:mamgFsin1 ①
由v—t图象可知2m/s5.0tva 2s以后:sin2mgF ② 由①②得:kg121aFFm
(2)由②式21sin2mgF,所以=30°。 [变式训练3]放在水平面上的物块,受到方向不变水平推力F的作用,F与时间t的关系和物块速度v与时间t的关系如图所示,取重力加速度g=10 m/s2。由此两图线可以求得物块的质量m和物块与地面之间的动摩擦因数分别为 A.m=0.5kg,=0.4
L 木箱
F 0 2 4 6 t/s FN
5.5 5
0 2 4 6 v/m·s–1 t/s 1
O 2 4 6 t/s F/N 1 2 3 O 2 4 6 t/s v/(m·s–1) 2 4 B.m=1.5kg,=152 C.m=0.5kg,=0.2 D.m=1kg,=0.2
题型四:连接体问题 解决这类问题需要注意:若连接体内(即系统内)各物体具有相同的加速度时,应先把连接体当成一个整体(即看成一个质点),分析其受到的外力及运动情况,利用牛顿第二定律求出加速度.若连接体内各物体间有相互作用的内力,则把物体隔离,对某个物体单独进行受力分析(注意标明加速度的方向),再利用牛顿第二定律对该物体列式求解。 [例4]如图所示,一辆汽车A拉着装有集装箱的拖车B,以速度v1=30 m/s进入向下倾斜的直车道。车道每100 m下降2 m。为了使汽车 速度在s=200 m的距离内减到v2=10 m/s,驾驶员必须刹车。假定刹车时地面的摩擦阻力是恒力,且该力的70%作用于拖车B,30%作用于汽车A。已知A的质量m1=2000 kg,B的质量m2=6000 kg。求汽车与拖车的连接处沿运动方向的相互作用力。取重力加速度g=10 m/s2。
asvv22122 [解析]汽车沿倾斜车道作匀减速运动,有:
用F表示刹车时的阻力,根据牛顿第二定律得: ammgmmF)(sin)(2121
式中:02.01002sin 设刹车过程中地面作用于汽车的阻力为f,依题意得:Ff3.0 用fN表示拖车作用汽车的力,对汽车应用牛顿第二定律得:amgmffN11sin 联立以上各式解得:N880)sin()sin)((3.0121gamgammfN。 [变式训练4]如图所示,在粗糙水平桌面上放有A、B两个物体,A、B间用一根轻质硬杆C 相连,已知物体A的质量是m1=5kg,B的质量是m2=3kg。A与桌面的动摩擦因数是 μ1=0.2,B与桌面间的动摩擦因数是μ2=0.5。现在A上施加水平向右的拉力F,使它们以v=10m/s的速度沿水平面向右
匀速运动。已知g取10m/s2,求: (1)水平向右的拉力F的大小及轻杆C上的弹力大小; (2)若在某时刻突然撤去拉力F,则A、B在水平面上滑动的距离是多大?
题型五:弹簧变化过程中运动分析 解决这类问题需要注意: 弹簧的弹力是一种由形变决定大小和方向的力,注意弹力的大小与方向时刻要与当时的形变相对应。一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置及临界位置,找出形变量x与物体空间位置变的几何关系,分析形变所对应的弹力大小、方向,弹性势能也是与原长位置对应的形变量相关。从此来分析计算物体运动状态的可能变化。 通过弹簧相联系的物体,有运动过程中经常涉及临界极值问题:如物体的速度达到最大;弹簧形变量达到最大;使物体恰好离开地面;相互接触的物体恰好脱离等。此类问题的解题关键是利用好临界条件,得到解题有用的物理量和结论。 [例5]如图所示,A、B两木块叠放在竖直轻弹簧上,已知木块A、B质量分别为0.42kg和0.40kg,弹簧的劲度系数k=100N/m,若在木块A上作用一个竖直向上的力F,使A由静止开始以0.5m/s2的加速度竖直向上做匀加速运动(g=10m/s2)。求: (1)使木块A竖直做匀加速度运动的过程中,力F的最大值; (2)若木块由静止开始做匀加速运动,直到A、B分离的过程中,弹簧的弹性势能减少了0.248J,求这一过程中F对木块做的功。 [解析]此题难点在于能否确定两物体分离临界点。 当F=0(即不加竖直向上F力)时,设木块A、B叠放在弹簧上处于平衡时弹簧原压缩量为x,有 kx=(mA+mB)g
B A C v A B