光学教程第2章_参考答案
《光学教程》(姚启钧)课后习题解答

《光学教程》(姚启钧)习题解答第一章 光的干涉1、波长为500nm 的绿光投射在间距d 为0.022cm 的双缝上,在距离180cm 处的光屏上形成干涉条纹,求两个亮条纹之间的距离。
若改用波长为700nm 的红光投射到此双缝上,两个亮纹之间的距离为多少?算出这两种光第2级亮纹位置的距离。
解:1500nm λ= 7011180500100.4090.022r y cm d λ-∆==⨯⨯= 改用2700nm λ= 7022180700100.5730.022r y cm d λ-∆==⨯⨯= 两种光第二级亮纹位置的距离为: 21220.328y y y cm ∆=∆-∆=2、在杨氏实验装置中,光源波长为640nm ,两狭缝间距为0.4mm ,光屏离狭缝的距离为50cm ,试求:⑴光屏上第1亮条纹和中央亮纹之间的距离;⑵若P 点离中央亮纹为0.1mm 问两束光在P 点的相位差是多少?⑶求P 点的光强度和中央点的强度之比。
解:⑴ 7050640100.080.04r y cm d λ-∆==⨯⨯= ⑵由光程差公式210sin yr r d dr δθ=-== 0224y dr πππϕδλλ∆==⋅= ⑶中央点强度:204I A =P 点光强为:221cos4I A π⎛⎫=+ ⎪⎝⎭012(1)0.8542I I =+=3、把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置变为中央亮条纹,试求插入的玻璃片的厚度。
已知光波长为7610m -⨯解: 1.5n =,设玻璃片的厚度为d由玻璃片引起的附加光程差为:()1n d δ'=- ()15n d λ-= ()7645561061061010.5d m cm n λ---==⨯⨯=⨯=⨯-4、波长为500nm 的单色平行光射在间距为0.2mm 的双缝上。
通过其中一个缝的能量为另一个的2倍,在离狭缝50cm 的光屏上形成干涉图样,求干涉条纹间距和条纹的可见度。
《光学教程》(姚启钧)课后习题解答

《光学教程》(姚启钧)习题解答第一章 光的干涉1、波长为500nm 的绿光投射在间距d 为0.022cm 的双缝上,在距离180cm 处的光屏上形成干涉条纹,求两个亮条纹之间的距离。
若改用波长为700nm 的红光投射到此双缝上,两个亮纹之间的距离为多少?算出这两种光第2级亮纹位置的距离。
解:1500nm λ= 改用2700nm λ=两种光第二级亮纹位置的距离为:2、在杨氏实验装置中,光源波长为640nm ,两狭缝间距为0.4mm ,光屏离狭缝的距离为50cm ,试求:⑴光屏上第1亮条纹和中央亮纹之间的距离;⑵若P 点离中央亮纹为0.1mm 问两束光在P 点的相位差是多少?⑶求P 点的光强度和中央点的强度之比。
解:⑴7050640100.080.04r y cm d λ-∆==⨯⨯= ⑵由光程差公式⑶中央点强度:204I A = P 点光强为:221cos4I A π⎛⎫=+ ⎪⎝⎭3、把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置变为中央亮条纹,试求插入的玻璃片的厚度。
已知光波长为7610m -⨯解: 1.5n =,设玻璃片的厚度为d 由玻璃片引起的附加光程差为:()1n d δ'=-4、波长为500nm 的单色平行光射在间距为0.2mm 的双缝上。
通过其中一个缝的能量为另一个的2倍,在离狭缝50cm 的光屏上形成干涉图样,求干涉条纹间距和条纹的可见度。
解:7050500100.1250.02r y cm d λ-∆==⨯⨯= 由干涉条纹可见度定义: 由题意,设22122A A =,即12A A =5、波长为700nm 的光源与菲涅耳双镜的相交棱之间距离为20cm ,棱到光屏间的距离L 为180cm ,若所得干涉条纹中相邻亮条纹的间隔为1mm ,求双镜平面之间的夹角θ。
解:700,20,180,1nm r cm L cm y mm λ===∆= 由菲涅耳双镜干涉条纹间距公式6、在题1.6 图所示的劳埃德镜实验中,光源S 到观察屏的距离为1.5m ,到劳埃德镜面的垂直距离为2mm 。
光学教程第二章

第二章理想光学系统2-1 作图:(1)作轴上实物点A的像A'(2)作轴上虚物点A的像A'A'(3)作垂轴实物AB的像BA'(4)作垂轴虚物AB的像B(5)画出焦点F、F'的位置(6)画出焦点F、F'的位置2-2 单透镜成像时,若其共轭距(物与像之间距离)为250mm ,求下列情况透镜焦距:(1) 实物,4-=β;(2)实物,41-=β;(3)虚物,4-=β。
解:(1)实物成像时,由题意:250=-'l l 又∵4-='=ll β∴50-=l mm 200='l mm由单透镜高斯公式:f l l '=-'111 得单透镜的焦距为:40='f mm(2)实物成像时,由题意:250=-'l l 又∵41-='=l l β ∴200-=l mm 50='l mm 由单透镜高斯公式:fl l '=-'111 得单透镜的焦距为:40='f mm(3)虚物成像时,由题意:250='-l l 又∵4-='=ll β ∴50=l mm 200-='l mm 由单透镜高斯公式:f l l '=-'111 得单透镜的焦距为:40-='f mm2-3 有一薄正透镜对某一实物成一倒立实像,像高为物高的一半,今将物向透镜移近100mm ,则所得的像与物同样大小,求该薄正透镜的焦距。
解:物体未移动时,由题意:xf '=-=21β 移动后:1001+'=-=x f β解之得:100='f mm 200-=x mm2-4 一个薄透镜对某一物体成实像,放大率为-1,今以另一透镜紧贴在第一透镜上,则见像向透镜方向移动20mm ,放大率为原先的3/4倍,求两块透镜的焦距。
解:单透镜成像时:1-='=ll β 组合透镜成像时,由题意:4320-=-'=l l β 解之得:80-=l mm 80='l mm对于单透镜成像,设其焦距为'1f ,则有高斯公式:1111f l l '=-' 求得第一块透镜的焦距为:401='f mm对于组合透镜成像,设组合焦距为'f ,则有高斯公式:f l l '=--'11201求得组合透镜的焦距为:7240='f mm ∵两透镜紧贴,设第二块透镜的焦距为'2f ,则:'+'''='2121f f f f f ∴'-'='12111f f f∴第二块透镜的焦距为:2402='f mm2-5 一透镜对无限远处和物方焦点前5m 处的物体成像时,二像的轴向间距为3mm ,求透镜的焦距。
《光学教程》(姚启钧)课后习题解答

《光学教程》(姚启钧)习题解答第一章光的干涉1、波长为500nm 的绿光投射在间距d 为0.022cm 的双缝上,在距离180cm 处的光屏上形成干涉条纹,求两个亮条纹之间的距离。
若改用波长为700nm 的红光投射到此双缝上,两个亮纹之间的距离为多少?算出这两种光第2级亮纹位置的距离。
解:1500nm λ=7011180500100.4090.022r y cm d λ-∆==⨯⨯= 改用2700nm λ=7022180700100.5730.022r y cm d λ-∆==⨯⨯= 两种光第二级亮纹位置的距离为:21220.328y y y cm ∆=∆-∆=2、在杨氏实验装置中,光源波长为640nm ,两狭缝间距为0.4mm ,光屏离狭缝的距离为50cm ,试求:⑴光屏上第1亮条纹和中央亮纹之间的距离;⑵若P 点离中央亮纹为0.1mm 问两束光在P 点的相位差是多少?⑶求P 点的光强度和中央点的强度之比。
解:⑴7050640100.080.04r y cm d λ-∆==⨯⨯= ⑵由光程差公式210sin yr r d dr δθ=-== 0224y dr πππϕδλλ∆==⋅=⑶中央点强度:204I A =P 点光强为:221cos4I A π⎛⎫=+ ⎪⎝⎭012(1)0.8542I I =+=3、把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置变为中央亮条纹,试求插入的玻璃片的厚度。
已知光波长为7610m -⨯解: 1.5n =,设玻璃片的厚度为d由玻璃片引起的附加光程差为:()1n d δ'=-()15n d λ-=()7645561061061010.5d m cm n λ---==⨯⨯=⨯=⨯-4、波长为500nm 的单色平行光射在间距为0.2mm 的双缝上。
通过其中一个缝的能量为另一个的2倍,在离狭缝50cm 的光屏上形成干涉图样,求干涉条纹间距和条纹的可见度。
光学课程:第二章部分习题解答

26.6
mv
17 在下图中,设SC=PK=SQ=PQ=1m,
λ=0.5μm,试计算与G点距离为x的X点所对应的
光程(SX+XP)与G点对应的光程(SG+GP)
之差;并估算当此光程差所产生的相位差为
π/2时的x值
解:如图以镜面为X
Y
轴,法线为Y轴,建立
S(-1,1) P(1,1) 坐标,G为原点
X(x,0)
SX XP 1 (x 1)2 (1 x)2 1
2( 1 x 1 x)
C
G
K x 泰勒级数展开:
SX XP 2(1 1 x 1 x2 1 1 x 1 x2 )
28
28
SX XP 2(1 1 x 1 x2 1 1 x 1 x2 )
28
28
略去x2后的高阶项
SX XP 2 2 2 x2 4
1.61018个
光脉冲动量
p nh / E / c 1109 kg m / s
10 试求红外线、可见光、紫外线和X射 线光子的能量、动量和质量
解:
E h hc (J ) hc (eV )
e
Ph/ E/c
m E / c2 h / c
13 已知铯的脱出功为1.9ev,测得从铯表 面发出光电子的最大动能为2.1ev,问入射光的 波长为多少?它属于什么波段?光强为1W/m2 的光束中,1m3内的光子数为多少?若光电转 换的量子效率为0.1(即平均每10个光子可产生 1个光电子)则它照射在面积为1 cm2的铯表面 时产生的光电流为多大?
N cSn 1.56 1014个 光电子数为
N 1.56 1014 0.1 1.56 1013个
产生光电流
I Ne 2.5106 A 2.5A
光学教程答案(第二章)

1. 单色平面光照射到一小圆孔上,将其波面分成半波带。
求第к个带的半径。
若极点到观察点的距离r 0为1m ,单色光波长为450nm ,求此时第一半波带的半径。
解:2022rr k k +=ρ 而20λkr r k +=20λk r r k =-20202λρk r r k =-+将上式两边平方,得422020202λλρk kr r r k++=+ 略去22λk 项,则 λρ0kr k=将cm104500cm,100,1-80⨯===λr k 带入上式,得cm 067.0=ρ2. 平行单色光从左向右垂直射到一个有圆形小孔的屏上,设此孔可以像照相机光圈那样改变大小。
问:(1)小孔半径满足什么条件时,才能使得此小孔右侧轴线上距小空孔中心4m 的P 点的光强分别得到极大值和极小值;(2)P 点最亮时,小孔直径应为多大?设此时的波长为500nm 。
解:(1)根据上题结论ρρ0kr k =将cm105cm,400-50⨯==λr 代入,得cm 1414.01054005k k k =⨯⨯=-ρ 当k 为奇数时,P 点为极大值; k 为偶数时,P 点为极小值。
(2)P 点最亮时,小孔的直径为 cm2828.02201==λρr3.波长为500nm 的单色点光源离光阑1m ,光阑上有一个内外半径分别为0.5mm 和1mm 的透光圆环,接收点P 离光阑1m ,求P 点的光强I 与没有光阑时的光强度I 0之比。
解:根据题意m 1=R 500nmmm 1R mm 5.0R m 121hk hk 0====λr有光阑时,由公式⎪⎪⎭⎫ ⎝⎛+=+=R r R R r r R R k h h 11)(02002λλ得11000110001105005.011620211=⎪⎭⎫ ⎝⎛+⨯=⎪⎪⎭⎫ ⎝⎛+=-R r R k hk λ4100011000110500111620222=⎪⎭⎫ ⎝⎛+⨯=⎪⎪⎭⎫ ⎝⎛+=-R r R k hk λ按圆孔里面套一个小圆屏幕()13221312121212121a a a a a a a a p =+=⎥⎦⎤⎢⎣⎡+-+=没有光阑时210a a =所以 42/211200=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=a a a a I I p4.波长为632.8nm 的平行光射向直径为2.76mm 的圆孔,与孔相距1m 处放一屏。
光学教程第2章_参考答案

2.1 单色平面光照射到一个圆孔上,将其波面分成半波带,求第k 各带的半径。
若极点到观察点的距离r 0为1m ,单色光波长为450nm ,求此时第一半波带的半径。
解:由菲涅耳衍射,第k 个半波带满足关系式)11(02R r R k hk +=λ,当∞→R 时,0r k R hk λ=。
第一半波带半径067.011045001100=⨯⨯⨯==-r k R hk λcm 。
2.2平行单色光从左向右垂直射到一个有圆形小孔的屏上,设此孔可以像摄像机光圈那样改变大小.问:(1)小孔半径应满足什么条件时,才能使得此小孔右侧轴线上距小孔中心4 m 的P 点的光强分别得到极大值和极小值;(2)P 点最亮时,小孔直径应为多大?设此光的波长为500nm 。
解:(1)由菲涅耳衍射,第k 个半波带满足关系式)11(02R r R k hk +=λ,当∞→R 时,k k r k R hk 414.14105000100=⨯⨯⨯==-λmm 。
K 为奇数时,P 点光强为极大值; K 为偶数时,P 点光强为极小值。
(2)P 点最亮时,由p 点的振幅)(211k k a a a +=,所以当k=1时,k a 为最大所以2828.021==h R d cm 。
2.3 波长为500nm 的单色点光源离光阑1m ,光阑上有一个内外半径分别为0.5 mm 和1 mm 的透光圆环,接收点P 离光阑1 m ,求P 点的光强I 与没有光阑时的光强度I 0之比。
解:由菲涅耳衍射,第k 个半波带满足关系式)11(02Rr R k hk +=λ,圆环内径对应的半波带数1)1111(105000)105.0()11(10230211=+⨯⨯=+=--R r R k h λ圆环外径对应的半波带数4)1111(105000)101()11(10230212=+⨯⨯=+=--R r R k h λ 由题意可知,实际仅露出3各半波带,即142)(21a a a a k ≈+=,而1121)(21a a a a ≈+=∞∞所以光强之比4220==∞a a I I k。
《光学教程》(姚启钧)课后习题解答

《光学教程》(姚启钧)课后习题解答《光学教程》(姚启钧)习题解答第一章 光的干涉1、波长为500nm 的绿光投射在间距d 为0.022cm 的双缝上,在距离180cm 处的光屏上形成干涉条纹,求两个亮条纹之间的距离。
若改用波长为700nm 的红光投射到此双缝上,两个亮纹之间的距离为多少?算出这两种光第2级亮纹位置的距离。
解:1500nm λ=7011180500100.4090.022r y cmd λ-∆==⨯⨯= 改用2700nm λ=7022180700100.5730.022r y cmd λ-∆==⨯⨯=两种光第二级亮纹位置的距离为:21220.328y y y cm ∆=∆-∆=2、在杨氏实验装置中,光源波长为640nm ,两狭缝间距为0.4mm ,光屏离狭缝的距离为50cm ,试求:⑴光屏上第1亮条纹和中央亮纹之间的距离;⑵若P 点离中央亮纹为0.1mm 问两束光在P 点的相位差是多少?⑶求P 点的光强度和中央点的强度之比。
解:⑴7050640100.080.04r y cm d λ-∆==⨯⨯=⑵由光程差公式210sin yr r d dr δθ=-==由题意,设22122A A =,即122A A=220.943V ==5、波长为700nm 的光源与菲涅耳双镜的相交棱之间距离为20cm ,棱到光屏间的距离L 为180cm ,若所得干涉条纹中相邻亮条纹的间隔为1mm ,求双镜平面之间的夹角θ。
解:700,20,180,1nm r cm L cm y mm λ===∆= 由菲涅耳双镜干涉条纹间距公式()()()72sin 20180sin 700100.003522200.1r L y r r L r y λθθλ-+∆=++==⨯⨯=∆⨯⨯180sin 0.003560123.14θθ'≈=⨯⨯6、在题1.6 图所示的劳埃德镜实验中,光源S 到观察屏的距离为1.5m ,到劳埃德镜面的垂直距离为2mm 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1 单色平面光照射到一个圆孔上,将其波面分成半波带,求第k 各带的半径。
若极点到观察点的距离r 0为1m ,单色光波长为450nm ,求此时第一半波带的半径。
解:由菲涅耳衍射,第k 个半波带满足关系式)11(02R r R k hk +=λ,当∞→R 时,0r k R hk λ=。
第一半波带半径067.011045001100=⨯⨯⨯==-r k R hk λcm 。
2.2平行单色光从左向右垂直射到一个有圆形小孔的屏上,设此孔可以像摄像机光圈那样改变大小.问:(1)小孔半径应满足什么条件时,才能使得此小孔右侧轴线上距小孔中心4 m 的P 点的光强分别得到极大值和极小值;(2)P 点最亮时,小孔直径应为多大?设此光的波长为500nm 。
解:(1)由菲涅耳衍射,第k 个半波带满足关系式)11(02R r R k hk +=λ,当∞→R 时,k k r k R hk 414.14105000100=⨯⨯⨯==-λmm 。
K 为奇数时,P 点光强为极大值; K 为偶数时,P 点光强为极小值。
(2)P 点最亮时,由p 点的振幅)(211k k a a a +=,所以当k=1时,k a 为最大所以2828.021==h R d cm 。
2.3 波长为500nm 的单色点光源离光阑1m ,光阑上有一个内外半径分别为0.5 mm 和1 mm 的透光圆环,接收点P 离光阑1 m ,求P 点的光强I 与没有光阑时的光强度I 0之比。
解:由菲涅耳衍射,第k 个半波带满足关系式)11(02Rr R k hk +=λ,圆环内径对应的半波带数1)1111(105000)105.0()11(10230211=+⨯⨯=+=--R r R k h λ圆环外径对应的半波带数4)1111(105000)101()11(10230212=+⨯⨯=+=--R r R k h λ 由题意可知,实际仅露出3各半波带,即142)(21a a a a k ≈+=,而1121)(21a a a a ≈+=∞∞所以光强之比4220==∞a a I I k。
2.4波长为632.8 nm 的平行光射向直径为2.76 mm 的圆孔,与孔相距l m 处放一屏,试问:(1)屏上正对圆孔中心的P 点是亮点还是暗点?(2)要使P 点变成与(1)相反的情况,至少要把屏幕分别向前或向后移动多少?解:(1)由菲涅耳衍射,第k 个半波带满足关系式)11(02Rr R k hk +=λ,当∞→R 时,31106328)21076.2(102302≈⨯⨯⨯==--r R k hk λ。
由于k=3,为奇数,所以屏上正对圆孔中心的P 点时亮点。
(2)预使P 点变为暗点,即要使k 为偶数,即k=2or4 当k=2时5.12106328)21076.2('102320≈⨯⨯⨯==--k R r hk λm 5.0'00-=-=∆r r r m 即将屏向后移动0.5m 当k=2时75.04106328)21076.2('102320≈⨯⨯⨯==--k R r hk λm 25.0'00=-=∆r r r m即将屏向前移动0.25m2.5 一波带片由五个半波带组成,第一半波带为半径r 1的不透明圆盘,第二半波带是半径r 1至r 2的透明圆环,第三半波带是r 2至r 3的不透明圆环,第四半波带是r 3至r 4的透明圆环,第五半波带是r 4至无穷大的不透明区域.已知r 1:r 2:r 3:r 4=l :2:3:4,用波长500nm 的平行单色光照明,最亮的像点在距波带片1 m 的轴上.试求:(1)r1;(2)像点的光强;(3)光强极大值出现在轴上哪些位置上。
解:(1)由菲涅耳衍射,第k 个半波带满足关系式)11(02R r R k hk +=λ,当∞→R 时,λk r R hk 0=,由于500=λnm ,0r =1m , 所以k R hk 101050001-⨯⨯=由题意可知43214321:4:3:2:1:::k k k k R R R R h h h h ::== 所以1k =1,2k =2,3k =3,4k =4。
707.011050001101=⨯⨯⨯=-h R mm 。
由题意可知,屏对于波带片只让偶数的半波带透光,所以‘ 2422a a a a k ≈+=而221a a ≈∞所以0222216164I a a a I k ===≈∞(3)因为1'20===λk Rr f h m ——主焦点它还有次焦点:'31f 、'51f 、'71f ……故光强极大点出现在轴上31、51、71……2.6波长为λ的点光源经波带片成一个像点,该波带片有100个透明奇数半波带(1,3,5,…,199).另外100个不透明偶数半波带.比较用波带片和换上同样焦距和口径的透镜时,该像点的强度比0:I I 。
解:由题意可知,将所有偶数半波带挡住了,二只有奇数的半波带透过 所以在考察点的振幅为119919731100a a a a a a k ≈++++= ,即21210000a a I k =≈ 当换上同样焦距的口径的透镜时,透镜对所有光波的相位延迟一样,所以1a 、2a 、3a …199a 、200a 的方向时一致的,即12001994321200a a a a a a a a k ≈+++++=强度212040000a a I k =≈所以40=I I2.7 平面光的波长为480 nm ,垂直照射到宽度为0.4 mm 的狭缝上,会聚透镜的焦距为60 cm ,分别计算当缝的两边到P 点的相位差为2π和6π时,P 点离焦点的距离。
解:如图所示'2tan 2sin 2f y bb b λπθλπθλπϕ=≈=∆, 所以ϕπλ∆=bf y 2'18.02104.021*********'32911=⨯⨯⨯⨯⨯⨯=∆=---ππϕπλb f y mm 06.06104.021*********'32911=⨯⨯⨯⨯⨯⨯=∆=---ππϕπλb f y mm2.8 白光形成的单缝衍射图样中,其中某一波长的第三个次最大值与波长为600nm 的光波的第二各次最大值重合,求该光波的波长。
解:由单缝衍射出现次最大值的条件为λθ43.1sin 10≈b λθ46.2sin 20≈b λθ47.3sin 30≈b由题意可知046.247.3λλ=,即91060046.247.3-⨯⨯=λ,9104.425-⨯=λm2.9 波长为546.1nm 的平行光垂直地射在l mm 宽的缝上,若将焦距为100 cm 的透镜紧贴于缝的后面,并使光聚焦到屏上,试问衍射图样的中央到(1)第一最小值;(2)第一最大值;(3)第三最小值的距离分别为多少?解:(1)由单缝衍射出现最小值的条件为λθk b k =sin而θθsin 'tan 'f f y ≈=所以bk f y λ'=,所以63921101.546101101.54610100'----⨯=⨯⨯⨯⨯==b f y λm (2) 由单缝衍射出现第一级最大值的条件为λθ43.1sin =k b而θθsin 'tan 'f f y ≈=所以b f y λ43.1'•=,所以63921109.780101101.5461010043.1'43.1'----⨯=⨯⨯⨯⨯⨯=⨯=b f y λ (3) 由单缝衍射出现最小值的条件为λθk b k =sin而θθsin 'tan 'f f y ≈= 所以b kf y λ'=, 所以63921103.1638101101.546101003'3----⨯=⨯⨯⨯⨯⨯==b f y λm2.10钠光通过宽0.2 mm 的狭缝后,投射到与缝相距300cm 的照相底片上.所得的第一最小值与第二最小值间的距离为0.885 cm ,试问钠光的波长为多少?若改用X 射线(λ=0.1 nm)做此实验,问底片上这两个最小值之间的距离是多少? 解:由单缝衍射出现最小值的条件为λθk b k =sin 而θθsin 'tan 'f f y ≈=所以bkf y λ'=,由题意可得bf y y y λ)12('12-=-=∆322102.0)12(1030010885.0---⨯-⨯⨯=⨯λ10105900-⨯=λm若改用X 射线作此实验,底片上这两个最小值之间的距离639212105.1102.0101.0)12(10300)12('----⨯=⨯⨯-⨯⨯=-=-=∆b f y y y λm2.11 以纵坐标表示强度,横坐标表示屏上的位置,粗略地画出三缝的夫琅禾费衍射(包括缝与缝之间的干涉)图样,设缝宽为b ,相邻缝间的距离为d ,d=3b ,注意缺级问题。
解:2.12 一束平行白光垂直入射在每毫米50条刻痕的全息光栅上,问第一级光谱的末端和第二光谱的始端的衍射角θ之差为多少?(设可见光中最短的紫光波长为400 nm ,最长的红光波长为760nm)解:由光栅方程λθj d k =sin (j=0,±1 、±2、±3… )由题意可知光栅常数53102501011--⨯=⨯==N d m 对于白光,第一级的末端为红光,对应波长为760nm2591108.3102107601sin ---⨯=⨯⨯⨯==d j λθrad 第二级的始端为紫光,对应波长为400nm2592100.4102104002sin ---⨯=⨯⨯⨯==d j λθrad 所以衍射角之差为rad 100.2)10arcsin(3.8)10arcsin(4.0Δθ222---⨯≈⨯-⨯='7180102.02=︒⨯⨯=-π2.13 用可见光(760-400nm)照射全息光栅,一级光谱和二级光谱是否重叠?二级和三级怎样?若重叠,则重叠范围是多少?解:由光栅方程λθj d k =sin (j=0,±1 、±2、±3… )对于白光,第一级的末端为红光,对应波长为760nmdd d j 99110760107601sin --⨯=⨯⨯==λθrad第二级的始端为紫光,对应波长为400nmdd d j 99210800104002sin --⨯=⨯⨯==λθrad所以12θθ>,所以第一级与第二级之间是不会重叠的 第二级末端的红光,对应的衍射角由dd d j 992101520107602sin --⨯=⨯⨯==λθrad第三级始端的紫光,对应的衍射角dd d j 993101200104003sin --⨯=⨯⨯==λθrad23θθ<,所以第二级与第三级之间是会重叠的对于重叠范围如下计算32sin sin θθ=时,即为重叠部分故有dd 9910)760~400(310)760~400(2--⨯⨯=⨯⨯,即)760~400(3)760~400(2⨯=⨯ )2280~1200()1520~800(=可见重叠部分为1520~12001520~1200= 对于第二级对应波长为600~760nm 对于第三级对应的波长为400~506.7nm即第二级光谱的600~760nm 与第三级的400~506.7nm 重合。