姚启钧光学第二章答案
光学-姚启钧第四版

k Rh2k ,
r0
Rhk
kr0
k 与P在轴上旳位置(r0)有关。
讨论:
▲ 对 P 点若 S 恰好提成 k 个半波带时:
Ak
1 2
(a1
ak
)
K 为奇数
Ak
1 2
(a1
ak
)
K 为偶数
Ak
1 2
(a1
ak
)
最大 最小
▲ 对 P 点若 S 中还具有不完整旳半波带时:
光强介于最大和最小之间
试验证明: 拟定观察点P,变化R,P点旳光强发生变化 拟定圆孔半径Rh ,P点在对称轴上移动,光
s
s’
直线传播规律
成功 很好旳解释光旳 反射折射规律
r = vt
之处
双折射现象
s
s’
不足 之处
不能解释光旳干涉、衍射现象
不能解释干涉、衍射光旳振幅大小变化 不能解释衍射光场中光强旳重新分布
惠更斯—菲涅耳原理
波面 S 上每个面元 ds 都可看成新旳振动中心,它们 发出次波,空间某一点 P 旳光振动是全部这些次波在该 点旳相干叠加。
▲ 若 对P点,圆孔仅够提成一种半波带
A1 a1 2 Ap 2 A
Rhk
I1 4 I p 4I
Rhk
▲ 要发生衍射,光源 O 旳线度要足够小。
2.2.4 圆屏衍射
P点旳振幅:
圆屏遮蔽了个K半波带
·O
B0
从K+1个半波带
P
到最终旳半波带(a∞→0)
在 P 点叠加,合振幅为:
A ak1 2
2r0h
kr0
2r0h
在ΔBAO中:
Rh2k R2 (R h)2 R2 R2 2Rh h2 2Rh
光学教程第四版姚启钧课后题答案

光学教程第四版姚启钧课后题答案第一章:光的自然现象与光的波动性第一节:光的自然现象光的自然现象是我们日常生活中常见的一种现象,例如光的折射、反射、散射等。
这些现象是由于光的特性造成的,其中最基本的特性之一就是光的波动性。
第二节:光的波动性光的波动性指的是光是一种电磁波,其传播过程符合波动方程。
光的波动性是由光的电场和磁场交替变化所引起的。
根据麦克斯韦方程组,光的传播速度为真空中的光速,即约为3.00×10^8 m/s。
第三节:光的波动方程光的波动方程描述了光波在空间中的传播情况。
光的波动方程可表示为d^2E/dt^2=c^2(d^2E/dx^2),其中E为电场强度,t为时间,x为空间坐标,c为光速。
通过解光的波动方程,我们可以得到光波的传播速度、传播方向等信息。
第二章:光的几何光学第一节:光的几何模型光的几何模型是基于光的直线传播特性而建立的模型。
根据光的几何模型,光线传播遵循直线传播路径,光的传播速度在不同介质中会发生改变。
第二节:光的反射定律光的反射定律是光的几何光学中的重要定律之一。
根据光的反射定律,入射角等于反射角,同时入射光线、反射光线和法线处于同一平面上。
光的反射定律在镜面反射和平面镜成像等方面有着重要应用。
第三节:光的折射定律光的折射定律是光的几何光学中的另一个重要定律。
根据光的折射定律,入射角的正弦与折射角的正弦之比在两个介质中是常数。
光的折射定律在透明介质之间的传播中起着关键作用,例如在棱镜的折射、光的全反射等现象中都能看到光的折射定律的应用。
第三章:光的色散現象與光的干涉第一节:光的色散現象光的色散現象是指不同频率的光在透明介质中传播时速度不同而产生的现象。
色散可以分为正常色散和反常色散两种。
正常色散是指频率越高的光速度越快,反常色散则相反。
第二节:光的干涉光的干涉是指两个或多个光波相遇并产生干涉现象的过程。
根据干涉的性质,干涉可以分为构成干涉和破坏干涉。
在构成干涉的情况下,光波叠加会增强或减弱光的强度,形成明暗相间的干涉条纹。
《光学教程》(姚启钧)课后习题解答之欧阳引擎创编

《光学教程》(姚启钧)习题解答欧阳引擎(2021.01.01)第一章光的干涉1、波长为500nm 的绿光投射在间距d 为0.022cm 的双缝上,在距离180cm 处的光屏上形成干涉条纹,求两个亮条纹之间的距离。
若改用波长为700nm 的红光投射到此双缝上,两个亮纹之间的距离为多少?算出这两种光第2级亮纹位置的距离。
解:1500nm λ= 改用2700nm λ=两种光第二级亮纹位置的距离为:2、在杨氏实验装置中,光源波长为640nm ,两狭缝间距为0.4mm ,光屏离狭缝的距离为50cm ,试求:⑴光屏上第1亮条纹和中央亮纹之间的距离;⑵若P 点离中央亮纹为0.1mm 问两束光在P 点的相位差是多少?⑶求P 点的光强度和中央点的强度之比。
解:⑴7050640100.080.04r y cm dλ-∆==⨯⨯= ⑵由光程差公式⑶中央点强度:204I A =P 点光强为:221cos 4I A π⎛⎫=+ ⎪⎝⎭3、把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置变为中央亮条纹,试求插入的玻璃片的厚度。
已知光波长为7610m -⨯ 解: 1.5n =,设玻璃片的厚度为d由玻璃片引起的附加光程差为:()1n d δ'=-4、波长为500nm 的单色平行光射在间距为0.2mm 的双缝上。
通过其中一个缝的能量为另一个的2倍,在离狭缝50cm 的光屏上形成干涉图样,求干涉条纹间距和条纹的可见度。
解: 7050500100.1250.02r y cm dλ-∆==⨯⨯= 由干涉条纹可见度定义:由题意,设22122A A =,即12A A =5、波长为700nm 的光源与菲涅耳双镜的相交棱之间距离为20cm ,棱到光屏间的距离L 为180cm ,若所得干涉条纹中相邻亮条纹的间隔为1mm ,求双镜平面之间的夹角θ。
解:700,20,180,1nm r cm L cm y mm λ===∆= 由菲涅耳双镜干涉条纹间距公式6、在题1.6 图所示的劳埃德镜实验中,光源S 到观察屏的距离为1.5m ,到劳埃德镜面的垂直距离为2mm 。
《光学教程》(姚启钧)第二章 光的衍射

3. 惠更斯-菲涅耳原理(1818)
菲涅耳对惠更斯原理的改进: 给不同次波赋予相应的相位和振幅,并将次波的干涉 叠加性引入惠更斯原理,得到衍射的定量表达式。
波面S上每个面元dS都是次波源,次波在p点引起振动的振幅与面积dS成正 比,与距离r成反比,且与倾角有关。
A(Q) K ( ) dE( P) dS r
相应的振动相位依次为:
a1 a2 a3 a4 ...... ak ak 1
f1,f1+,f1+2, f1+3,…f1+(k-1),f1+k。
对于轴上光源点 S 和轴上场点 P ,设圆孔恰好分 为 k 个半波带,则有
~ i 1 E1 a1e ~ i 1 E2 a2e ~ i 1 2 E3 a3e
次波中心Q 的光振幅 Q点在p 点引起的 光波振幅 倾斜因子 次波中心附 近的小面元
d · r S Q S(波面)
次波中心 设初相为零
n
dE(p) · p
观 察 点
倾斜因子K()的特点
A(Q) K ( ) dE( p) C dS cos(kr t ) r
0, K K max K ( ) , K 0 2
2
1mm 1000 mm 1000 mm 4 6 1000 mm 1000 mm 500 10 mm
2
半径为0.5mm的圆屏挡住的波带数为:
j
'
0.5mm 1000mm 1000mm 1 1000mm 1000mm 500 106 mm
又:
( h r0 , R)
2 2
R rk (r0 h)
《光学教程》(姚启钧)课后习题解答

《光学教程》(姚启钧)习题解答第一章光的干涉1、波长为的绿光投射在间距为的双缝上,在距离处的光屏500nm d 0.022cm 180cm 上形成干涉条纹,求两个亮条纹之间的距离。
若改用波长为的红光投射到此700nm 双缝上,两个亮纹之间的距离为多少?算出这两种光第2级亮纹位置的距离。
解:1500nmλ= 7011180500100.4090.022r y cm d λ-∆==⨯⨯= 改用2700nmλ=7022180700100.5730.022r y cm d λ-∆==⨯⨯= 两种光第二级亮纹位置的距离为:21220.328y y y cm∆=∆-∆=2、在杨氏实验装置中,光源波长为,两狭缝间距为,光屏离狭缝的640nm 0.4mm 距离为,试求:⑴光屏上第1亮条纹和中央亮纹之间的距离;⑵若P 点离中50cm 央亮纹为问两束光在P 点的相位差是多少?⑶求P 点的光强度和中央点的强0.1mm 度之比。
解:⑴ 7050640100.080.04r y cm d λ-∆==⨯⨯=⑵由光程差公式210sin yr r d dr δθ=-==0224y dr πππϕδλλ∆==⋅=⑶中央点强度:204I A=P 点光强为:221cos4I A π⎛⎫=+ ⎪⎝⎭01(10.8542I I =+=3、把折射率为的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹1.5所在的位置变为中央亮条纹,试求插入的玻璃片的厚度。
已知光波长为7610m-⨯ 解:,设玻璃片的厚度为1.5n =d由玻璃片引起的附加光程差为:()1n dδ'=- ()15n d λ-=()7645561061061010.5d m cm n λ---==⨯⨯=⨯=⨯-4、波长为的单色平行光射在间距为的双缝上。
通过其中一个缝的能500nm 0.2mm 量为另一个的倍,在离狭缝的光屏上形成干涉图样,求干涉条纹间距和条纹250cm 的可见度。
《光学教程》(姚启钧)课后习题解答之欧阳道创编

《光学教程》(姚启钧)习题解答第一章光的干涉1、波长为500nm 的绿光投射在间距d 为0.022cm 的双缝上,在距离180cm 处的光屏上形成干涉条纹,求两个亮条纹之间的距离。
若改用波长为700nm 的红光投射到此双缝上,两个亮纹之间的距离为多少?算出这两种光第2级亮纹位置的距离。
解:1500nm λ=改用2700nm λ=两种光第二级亮纹位置的距离为:2、在杨氏实验装置中,光源波长为640nm ,两狭缝间距为0.4mm ,光屏离狭缝的距离为50cm ,试求:⑴光屏上第1亮条纹和中央亮纹之间的距离;⑵若P 点离中央亮纹为0.1mm 问两束光在P 点的相位差是多少?⑶求P 点的光强度和中央点的强度之比。
解:⑴7050640100.080.04ry cm d λ-∆==⨯⨯= ⑵由光程差公式⑶中央点强度:204I A =P 点光强为:221cos 4I A π⎛⎫=+ ⎪⎝⎭3、把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置变为中央亮条纹,试求插入的玻璃片的厚度。
已知光波长为7610m -⨯ 解: 1.5n =,设玻璃片的厚度为d由玻璃片引起的附加光程差为:()1n d δ'=-4、波长为500nm 的单色平行光射在间距为0.2mm 的双缝上。
通过其中一个缝的能量为另一个的2倍,在离狭缝50cm 的光屏上形成干涉图样,求干涉条纹间距和条纹的可见度。
解: 7050500100.1250.02ry cm d λ-∆==⨯⨯= 由干涉条纹可见度定义:由题意,设22122A A =,即12A A =5、波长为700nm 的光源与菲涅耳双镜的相交棱之间距离为20cm ,棱到光屏间的距离L 为180cm ,若所得干涉条纹中相邻亮条纹的间隔为1mm ,求双镜平面之间的夹角θ。
解:700,20,180,1nm r cm L cm y mm λ===∆=由菲涅耳双镜干涉条纹间距公式6、在题1.6 图所示的劳埃德镜实验中,光源S 到观察屏的距离为1.5m ,到劳埃德镜面的垂直距离为2mm 。
2023年大学_光学教程第三版(姚启钧著)课后题答案下载

2023年光学教程第三版(姚启钧著)课后题答案下载2023年光学教程第三版(姚启钧著)课后题答案下载本教程以物理光学和应用光学为主体内容。
第1章到第3章为应用光学部分,介绍了几何光学基础知识和光在光学系统中的传播和成像特性,注意介绍了激光系统和红外系统;第4~8章为物理光学部分,讨论了光在各向同性介质、各向异性介质中的传播规律,光的干涉、衍射、偏振特性及光与物质的相互作用,并结合介绍了DWDM、双光子吸收、Raman放大、光学孤子等相关领域的应用和进展。
第9章则专门介绍航天光学遥感、自适应光学、红外与微光成像、瞬态光学、光学信息处理、微光学、单片光电集成等光学新技术。
光学教程第三版(姚启钧著):内容简介绪论0.1 光学的研究内容和方法0.2 光学发展简史第1章光的干涉1.1 波动的独立性、叠加性和相干性1.2 由单色波叠加所形成的干涉图样1.3 分波面双光束干涉1.4 干涉条纹的可见度光波的时间相干性和空间相干性 1.5 菲涅耳公式1.6 分振幅薄膜干涉(一)——等倾干涉1.7 分振幅薄膜干涉(二)——等厚干涉视窗与链接昆虫翅膀上的彩色1.8 迈克耳孙干涉仪1.9 法布里一珀罗干涉仪多光束干涉1.10 光的干涉应用举例牛顿环视窗与链接增透膜与高反射膜附录1.1 振动叠加的三种计算方法附录1.2 简谐波的表达式复振幅附录1.3 菲涅耳公式的推导附录1.4 额外光程差附录1.5 有关法布里一珀罗干涉仪的(1-38)式的推导附录1.6 有同一相位差的多光束叠加习题第2章光的衍射2.1 惠更斯一菲涅耳原理2.2 菲涅耳半波带菲涅耳衍射视窗与链接透镜与波带片的比较2.3 夫琅禾费单缝衍射2.4 夫琅禾费圆孔衍射2.5 平面衍射光栅视窗与链接光碟是一种反射光栅2.6 晶体对X射线的'衍射视窗与链接与X射线衍射有关的诺贝尔奖附录2.1 夫琅禾费单缝衍射公式的推导附录2.2 夫琅禾费圆孔衍射公式的推导附录2.3 平面光栅衍射公式的推导习题第3章几何光学的基本原理3.1 几个基本概念和定律费马原理3.2 光在平面界面上的反射和折射光导纤维视窗与链接光导纤维及其应用3.3 光在球面上的反射和折射3.4 光连续在几个球面界面上的折射虚物的概念 3.5 薄透镜3.6 近轴物近轴光线成像的条件3.7 共轴理想光具组的基点和基面视窗与链接集成光学简介附录3.1 图3-6中P1和JP1点坐标的计算附录3.2 棱镜最小偏向角的计算附录3.3 近轴物在球面反射时物像之间光程的计算附录3.4 空气中的厚透镜物像公式的推导习题第4章光学仪器的基本原理4.1 人的眼睛4.2 助视仪器的放大本领4.3 目镜4.4 显微镜的放大本领4.5 望远镜的放大本领视窗与链接太空实验室——哈勃太空望远镜4.6 光阑光瞳4.7 光度学概要——光能量的传播视窗与链接三原色原理4.8 物镜的聚光本领视窗与链接数码相机4.9 像差概述视窗与链接现代投影装置4.10 助视仪器的像分辨本领视窗与链接扫描隧显微镜4.11 分光仪器的色分辨本领习题第5章光的偏振5.1 自然光与偏振光5.2 线偏振光与部分偏振光视窗与链接人造偏振片与立体电影 5.3 光通过单轴晶体时的双折射现象 5.4 光在晶体中的波面5.5 光在晶体中的传播方向5.6 偏振器件5.7 椭圆偏振光和圆偏振光5.8 偏振态的实验检验5.9 偏振光的干涉5.10 场致双折射现象及其应用视窗与链接液晶的电光效应及其应用5.11 旋光效应5.12 偏振态的矩阵表述琼斯矢量和琼斯矩阵附录5.1 从沃拉斯顿棱镜出射的两束线偏振光夹角公式(5-15)的推导习题第6章光的吸收、散射和色散6.1 电偶极辐射对反射和折射现象的解释6.2 光的吸收6.3 光的散射视窗与链接光的散射与环境污染监测6.4 光的色散6.5 色散的经典理论习题第7章光的量子性7.1 光速“米”的定义视窗与链接光频梳7.2 经典辐射定律7.3 普朗克辐射公式视窗与链接诺贝尔物理学奖7.4 光电效应7.5 爱因斯坦的量子解释视窗与链接双激光束光捕获7.6 康普顿效应7.7 德布罗意波7.8 波粒二象性附录7.1 从普朗克公式推导斯忒藩一玻耳兹曼定律附录7.2 从普朗克公式推导维恩位移定律习题第8章现代光学基础8.1 光与物质相互作用8.2 激光原理8.3 激光的特性8.4 激光器的种类视窗与链接激光产生106T强磁场8.5 非线性光学8.6 信息存储技术8.7 激光在生物学中的应用视窗与链接王淦昌与惯性的束核聚变习题主要参考书目基本物理常量表光学教程第三版(姚启钧著):目录点击此处下载光学教程第三版(姚启钧著)课后题答案。
光学教程第四版姚启钧课后题答案

目录第一章光的干涉 (3)第二章光的衍射 (15)第三章几何光学的基本原理 (27)第四章光学仪器的基本原理 (49)第五章光的偏振 (59)第六章光的吸收、散射和色散 (70)第七章光的量子性 (73)第一章光的干涉.波长为的绿光投射在间距d 为的双缝上,在距离处的光屏1nm 500cm 022.0cm 180上形成干涉条纹,求两个亮条纹之间的距离.若改用波长为的红光投射到此双缝上,nm 700两个亮条纹之间的距离又为多少?算出这两种光第级亮纹位置的距离.2解:由条纹间距公式得λd r y y y j j 01=-=∆+cm 328.0818.0146.1cm146.1573.02cm818.0409.02cm573.010700022.0180cm 409.010500022.018021222202221022172027101=-=-=∆=⨯===⨯===⨯⨯==∆=⨯⨯==∆--y y y drj y d rj y d r y d r y j λλλλ2.在杨氏实验装置中,光源波长为,两狭缝间距为,光屏离狭缝的距离为nm 640mm 4.0.试求:(1)光屏上第亮条纹和中央亮条纹之间的距离;(2)若p 点离中央亮条纹为cm 501,问两束光在p 点的相位差是多少?(3)求p 点的光强度和中央点的强度之比.mm 1.0解:(1)由公式λdr y 0=∆得=λd r y 0=∆cm 100.8104.64.05025--⨯=⨯⨯(2)由课本第20页图1-2的几何关系可知52100.01sin tan 0.040.810cm 50y r r d d dr θθ--≈≈===⨯521522()0.8106.4104r r πππϕλ--∆=-=⨯⨯=⨯由公式得(3)2222121212cos 4cos 2I A A A A A ϕϕ∆=++∆=8536.042224cos18cos 0cos 421cos 2cos42cos 422202212212020=+=+==︒⋅=∆∆==πππϕϕA A A A I I pp .把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所3在的位置为中央亮条纹,试求插入的玻璃片的厚度.已知光波长为6×10-7m .解:未加玻璃片时,、到点的光程差,由公式可知为1S 2S P 2rϕπλ∆∆=Δr =215252r r λπλπ-=⨯⨯=现在发出的光束途中插入玻璃片时,点的光程差为1S P ()210022r r h nh λλϕππ'--+=∆=⨯=⎡⎤⎣⎦所以玻璃片的厚度为421510610cm 10.5r r h n λλ--====⨯-4.波长为500nm 的单色平行光射在间距为0.2mm 的双狭缝上.通过其中一个缝的能量为另一个的2倍,在离狭缝50cm 的光屏上形成干涉图样.求干涉条纹间距和条纹的可见度.解:6050050010 1.250.2r y d λ-∆==⨯⨯=mm122I I =22122A A=12A A =()()122122/0.94270.941/A A V A A ∴===≈+5.波长为700nm 的光源与菲涅耳双镜的相交棱之间距离为20cm ,棱到光屏间的距离L 为180cm ,若所得干涉条纹中相邻亮条纹的间隔为1mm ,求双镜平面之间的夹角θ。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8. 解:
= 0.006(cm ) Q 次最大值公式:
20
sin θ sin θ
4
30
λ 5λ ≈ b 2b λ 7λ = ± 3 . 47 ≈ b 2b = ± 2 . 46
PDF 文件使用 "pdfFactory Pro" 试用版本创建
光学教程第四版
kλr
0 2
2.76 ×10 2 ≈3 ∴ k = ρ λr = 6328 ×10 ×1 Q k = 3为奇数, ∴中央为亮点。
−3 2 k 0 −10
(2)欲使其与(1)相反,即为暗点,K 为偶数
Q r =ρ
0 '
2 k
kλ
2 −3 2
2.76 × 10 ρ 2 = ∴ r = (k − 1)λ (3 − 1) × 6328 × 10
0 1 2 2 3 4 200 1 2 0 0 1 4 2 1 4 2 0 1 '
'
λ f ⋅ ⋅ ∆ϕ y = 2π b 4800 × 10 × 600 π ⋅ = 2π × 0.4 2 = 0.18(m m )
' 1 1 −7
= 0.018(cm ) λ f ⋅ ⋅ ∆ϕ y = 2π b 4800 × 10 × 600 π ⋅ = 2π × 0.4 6 = 0.06(m m )
' ' ' 0 j
I A 4 π = = sin j I ( A N ) πj 4 1 .6 π sin j ≈ j 4 I ∴ ≈ 0.80 I
2 j j 2 2 0 0 2 2 1 0
2
I = 0.40 I
2 0
I = 0.09 I
3 0
I =0 I
4 0
I = 0.03 I
5 0
8
PDF 文件使用 "pdfFactory Pro" 试用版本创建
光学教程第四版
I = 0.04 I
6 0
I = 0.02 I
7 0
I =0 I
8 0
其大致图形如上所示( 仅画出正值) 12. 解: Q d sin θ = jλ jλ 1 ∴ sin θ = d = d N jλ ∴ sin θ = = 50 × 1 × 7600 × 10 = 0.038 d θ ≈ 2.18
10
o o
即: 2λ = 3λ
1
2
PDF 文件使用 "pdfFactory Pro" 试用版本创建
光学教程第四版
对中央最大值,j = 0, sin θ = 0, θ = 0
0
sin θ = 对第二十级主最大,
20
j λ d
20
∴ ∆θ = θ − 0 = sin
20
7λ 5λ =± 2b 2b 5 5 ∴ λ = λ = × 6000 ≈ 4286 A 7 7 2.46 或: λ = × 6000 ≈ 4254 A 3.47 ∴ ±
1 1 2 o 2 o 1
9. 解:
(1)
Q sin θ = k
k
λ b
y = tg θ ⋅ f
1
'
tg θ ≈ sin θ
1
1
∴ y=k
红 2 o 紫 3 3 2
o
其重叠范围计算如下: 对重叠部分,有: j λ = j λ
2 1 3 2
2 × (4000 ~ 7600) = 3 × (4000 ~ 7600) 8000 ~ 15200 = 12000 ~ 22800 可见重叠部分是: 12000 ~ 15200 = 12000 ~ 15200 其相交 的波长是: 6000 ~ 7600 与4000 ~ 5076 即: 二级光谱的 6000 ~ 7600 A 与三级光谱的4000 ~ 5067 A 重叠 jλ Q d sin θ = jλ , sin θ = d 14. 解:
10 ' −7 ' −7 k ' ' 3 3 3
'
10. 解:
λ f b 5461× 10 = 3× × 100 1 ≈ 0.164(cm ) λ Q sin θ = k b (1) = 3×
−7 k
y = tg θ ⋅ f ' tg θ ≈ sin θ
Y= k λ f ' /b
6
PDF 文件使用 "pdfFactory Pro" 试用版本创建
± f 7 ……
'
故,光强极大值出现在轴上
6. 解:
1 3, 1 5, 1 7, …… 1 (2k + 1) 等处 Q 此即将所有偶数半波带挡住了,
而只有所有奇数的半波带透过 ∴ 在考察点的振幅为 1 A = (a + a ) ≈ a 2 即: I = A = a
k 1 199 1 2 2 0 k 1
1
I = A = 10 a
2 4
2
1
当移去波带片使用透镜后, 透镜对所有光波的相
3
PDF 文件使用 "pdfFactory Pro" 试用版本创建
光学教程第四版
位延迟一样,所以 a1 , a2 , a3 , K , a200 的方向是 一致的,即:
7. 解
A = a + a + a + L + a ≈ 200a I = A = 4 × 10 a I 10 a 1 = ∴ = I 4 × 10 a 4 2π 2π 2π 2π y Q ∆ϕ = δ= b sin θ ≈ b tgθ = b λ λ λ λ f λ f ∴ y= ⋅ ⋅ ∆ϕ 2π b
A
o
λ 1 × 10 × 300 ∆y = y − y = f = b 0.2 (2) = 1.5 ×10 (cm)
' −7 ' ' ' ' 2 1 −4
11. 解:
Q N = 3, 缝宽为b, 相邻缝间不透明
7
PDF 文件使用 "pdfFactory Pro" 试用版本创建
1 2 3
0
r :r :r :r = k : k : k : k
4 1 2 3 1 2 3 4 −10
4
∴ k = 1, k = 2, k = 3, k = 4, r = 1 × 5000 × 10 × 1 = 0.707(mm )
1
(2) 由题意知,该屏对于所参考的点只让偶数半波 带透光,故:
2
PDF 文件使用 "pdfFactory Pro" 试用版本创建
−1
j λ d
20
j λ = sin∆θ d j λ ∴ d= sin∆θ 20 × 5890 × 10 = sin 15 10 ≈ 4.5 × 10 (cm ) 1 1 故: N = = ≈ 222(条 cm ) d 4.5 × 10 15. 解: Q d (sin θ ± sin θ ) = jλ ( 1 )当垂直入射时,sinθ = 0,有 d sin θ = jλ 即:
光学教程第四版
13. 解:
Q d sin θ = jλ 即 sin θ =
红
jλ d
o
λ 7600 A = 对 j = 1, sin θ = d d λ 8000 A j = 2, sin θ = 2 = d d 由于 θ > θ , 故第一级和第二级不会重叠
1 o 紫 2 2 1
λ 15200 A 而 j = 2, sin θ = 2 = d d λ 12000 A j = 3, sin θ = 3 = d d 由于 θ < θ , 故第二级和第三级可以重叠。
1 −3 2 −10 −3 2 2 −10 1 3 1 1 ∞ 2 2 1 2 2 0 ∞ 1
(0 .5 × 10 )
1 1 r + R
0
1
PDF 文件使用 "pdfFactory Pro" 试用版本创建
光学教程第四版
4. 解:
(1)Q ρ k =
k 0
−10
=
3 = 1.5 2
∆r = r − r = 1.5 − 1.0 = 0.5(m )
' 1 0 0 1
Q ∆r > 0, ∴向后移动。 2.76 × 10 ρ 2 = 又Q r = (k + 1)λ (3 + 1) × 6328 × 10 ∴ ∆r = r − r = 0.75 − 1.0 = −0.25(m )
−3
= 1.414 k = 0.1414 k
书 P103 倒 12~11 行
mm cm
k 为奇数时,P 点总得极大值, k 为偶数时,P 点总得极小值。 (2) d1 = 2 ρ1 = 0.2828(cm) 3. 解:
ρ Q k= λ
2
k
1 1 + =1 5000 × 10 1 1 (1 × 10 ) 1 + 1 = 4 k = 5000 × 10 1 1 即:实际上仅露出 3个带 1 即: A = (a + a ) ≈ a 2 a 而 A = 2 I A a = = =4 ∴ I A (a / 2 ) ∴ k =
1
λ f b
1
'
∴ y = tg θ ⋅ f = sin θ ⋅ f = 1 ×
' ' 1
λ f b
'
≈ 0.055(cm ) λ 3λ Q sin θ = ±1.43 ≈ ± b 2b (2)
10
5461 × 10 = × 100 1 = 0.05461(cm )