高中数学立体几何-课件(PPT演示)
合集下载
高中数学 第一章 立体几何初步 1.3.1 简单组合体的三视图课件12高一数学课件

第十五页,共十八页。
简单组合体的作图要点:
1.利用空间想象力,分析、判断出三个视图的基本形状(xíngzhuàn)。 2.利用长对正、高平齐、宽相等的规律,借助参考线画出三视图的轮廓线 3.在三视图中看的见的轮廓线画实线,被挡住的轮廓线画虚线。
2021/12/11
第十六页,共十八页。
谢谢 使用 (xiè xie)
2021/12/11
四、三视图之间的对应(duìyìng)规律
主视图
左视图(shìtú) 高 平 齐
长对正
俯视图
宽 相
等
第九页,共十八页。
2021/12/11
主视图
左视图(shìtú)
高 平 齐
长对正 俯视图
宽 相
等
第十页,共十八页。
例1 螺栓是棱柱和圆柱(yuánzhù)构成的组合体,如图画出 它的三视图。
2021/12/11
第十七页,共十八页。
内容(nèiróng)总结
简单几何体的三视图。3.从几何体的上面向下面(xià mian)正投影,得到的投影图 ——。几何体的主视图、 左视图、俯视图合称为几何体的三视图.。例1 螺栓是棱柱和圆柱构成的组合体,如图画出它的三视图。例3 画出如图所示物体的三视图.。2.根据下列几何体的视图方向,画出它的三视图。2.利用长对正、高平齐、宽
3、圆锥(yuánzhuī)的三视图
2021/12/11
第七页,共十八页。
三、简单组合体的三视图 下面我们来看几组组合体,看一看它们有什么(shén me)
特征?
将基本( jīběn)几何体拼接成的组合体.
从基本( jīběn)几何体中切掉或挖掉部分构成的组合体.
2021/12/11
简单组合体的作图要点:
1.利用空间想象力,分析、判断出三个视图的基本形状(xíngzhuàn)。 2.利用长对正、高平齐、宽相等的规律,借助参考线画出三视图的轮廓线 3.在三视图中看的见的轮廓线画实线,被挡住的轮廓线画虚线。
2021/12/11
第十六页,共十八页。
谢谢 使用 (xiè xie)
2021/12/11
四、三视图之间的对应(duìyìng)规律
主视图
左视图(shìtú) 高 平 齐
长对正
俯视图
宽 相
等
第九页,共十八页。
2021/12/11
主视图
左视图(shìtú)
高 平 齐
长对正 俯视图
宽 相
等
第十页,共十八页。
例1 螺栓是棱柱和圆柱(yuánzhù)构成的组合体,如图画出 它的三视图。
2021/12/11
第十七页,共十八页。
内容(nèiróng)总结
简单几何体的三视图。3.从几何体的上面向下面(xià mian)正投影,得到的投影图 ——。几何体的主视图、 左视图、俯视图合称为几何体的三视图.。例1 螺栓是棱柱和圆柱构成的组合体,如图画出它的三视图。例3 画出如图所示物体的三视图.。2.根据下列几何体的视图方向,画出它的三视图。2.利用长对正、高平齐、宽
3、圆锥(yuánzhuī)的三视图
2021/12/11
第七页,共十八页。
三、简单组合体的三视图 下面我们来看几组组合体,看一看它们有什么(shén me)
特征?
将基本( jīběn)几何体拼接成的组合体.
从基本( jīběn)几何体中切掉或挖掉部分构成的组合体.
2021/12/11
《高中数学立体几何》课件

高中数学立体几何
本课程将介绍立体几何概念、用途和计算问题。掌握立体几何的基本原理和 解题方法,为学生今后考入理工类大学打下坚实的数学基础。
什么是立体几何
定义
立体几何是研究三维空间中的点、线、面、体之间 相互关系的数学学科。
应用
立体几何是极其重要的数学分支,广泛应用于数学、 物理学、工程技术等领域。
判定方法
全等性和相似性的判定方法非常的重要,我们将详细探讨。
立体几何中的平行与垂直
平行性质
掌握和理解平行线及其性质,将有助于解决立体几 何中很多形状相似、全等等问题。
垂直性质
垂直性质也是立体几何常见的性质之一,掌握垂直 关系及其应用将使你在解题时事半功倍。
立体几何的计算问题和解法
1
表面积和体积
了解计算表面积和体积的基本公式和应用场景,可为解决立体几何问题提供强有 力的支持。
2
三视图
掌握三视图生成及其应用,能够快速准确计算立体和思考方法,并通过多做习题来加强应用实践。
概念
立体几何涉及到许多概念,如棱锥、棱柱、圆锥、 圆柱、球、圆等。
立体几何的图形与性质
平面图形
圆的面积,直线与平面的关 系,多边形的性质等。
几何体
棱柱、棱锥、圆柱、圆锥、 球、棱台、正四面体、正六 面体、正八面体、正二十面 体等。
性质总结
一些特殊的立体几何图形, 如对称性、表面积和体积等。
立体几何的投影与展开
投影
了解并掌握立体几何图形在平面上的投影,是解决 立体几何问题的关键。
展开
将一个三维立体图形切割后,展开成一个平面图形, 方便研究,是解决立体几何问题的有效方法之一。
立体几何中的相似与全等
相似
两个形状相似是指这两个形状在形状上相同,但大小比例不同。
本课程将介绍立体几何概念、用途和计算问题。掌握立体几何的基本原理和 解题方法,为学生今后考入理工类大学打下坚实的数学基础。
什么是立体几何
定义
立体几何是研究三维空间中的点、线、面、体之间 相互关系的数学学科。
应用
立体几何是极其重要的数学分支,广泛应用于数学、 物理学、工程技术等领域。
判定方法
全等性和相似性的判定方法非常的重要,我们将详细探讨。
立体几何中的平行与垂直
平行性质
掌握和理解平行线及其性质,将有助于解决立体几 何中很多形状相似、全等等问题。
垂直性质
垂直性质也是立体几何常见的性质之一,掌握垂直 关系及其应用将使你在解题时事半功倍。
立体几何的计算问题和解法
1
表面积和体积
了解计算表面积和体积的基本公式和应用场景,可为解决立体几何问题提供强有 力的支持。
2
三视图
掌握三视图生成及其应用,能够快速准确计算立体和思考方法,并通过多做习题来加强应用实践。
概念
立体几何涉及到许多概念,如棱锥、棱柱、圆锥、 圆柱、球、圆等。
立体几何的图形与性质
平面图形
圆的面积,直线与平面的关 系,多边形的性质等。
几何体
棱柱、棱锥、圆柱、圆锥、 球、棱台、正四面体、正六 面体、正八面体、正二十面 体等。
性质总结
一些特殊的立体几何图形, 如对称性、表面积和体积等。
立体几何的投影与展开
投影
了解并掌握立体几何图形在平面上的投影,是解决 立体几何问题的关键。
展开
将一个三维立体图形切割后,展开成一个平面图形, 方便研究,是解决立体几何问题的有效方法之一。
立体几何中的相似与全等
相似
两个形状相似是指这两个形状在形状上相同,但大小比例不同。
高中数学空间向量与立体几何(公开课)(共8张PPT)

已知四棱锥P-ABCD,底面ABCD 为菱形,PA⊥平面ABCD, ∠ABC=60°,E,F分别是BC, PC的中点. (1)证明:AE⊥PD; (2)若H为PD上的动点,EH与 平面PAD所成最大角的正切值为 求二面角E-AF-C的余弦值.
6 2
Z P
F
H x
B
A O E
y
D
C
已知四棱锥P-ABCD的底面为 直角梯形,AB//CD, ∠DAB=90°,PA⊥底面ABCD, 且PA=AD=DC=1/2,AB=1,M 是PB的中点。 (Ⅰ)证明:面PAD⊥面PCD; (Ⅱ)求AC与PB所成的角; (Ⅲ)求面AMC与面BMC所成 二面角的大小
空间向量与立体几何
考点分析
已知角度求点的位置关系 建立空间直角坐标系 用空间向量求解
第一题 线线平行 第二题 线线垂直 线面角 线面垂直 二面角 面面垂直
如图:在四面体中, CB=CD,AD⊥BD,点E、 F分别是AB、BD的中点. 求证: (1)直线EF平行于面 ACD
(2)面CEF⊥面BCD
O
Z
x
y
如图所示的多面体是由底面为 ABCD的长方体被AEC1F截面所截面 而得到的 其中 AB=4,BC=2,CC1=3,BE=1 (Ⅰ)求BF的长; (Ⅱ)求点C到平面AEC1F的距离
如图,在三棱柱ABC-A1B1C1中, AB⊥侧面BB1C1C,E为棱上C1C 上异于C1C的一点,EA⊥EB1, 已知AB= 2 ,BB1=2,BC=1, ∠BCC1=π/3 求:(Ⅰ)异面直线与的距离; (Ⅱ)二面角的
高中数学 第一章 立体几何初步 1.7.1 柱、锥、台的侧面展开与面积课件高一数学课件

提示:这三种几何体侧面积之间的关系
12/13/2021
第十五页,共五十八页。
3.如何求简单多面体的侧面积? 提示:(1)关键:找到多面体的特征几何图形,如棱柱中的矩 形,棱台中的直角梯形,棱锥中的直角三角形,它们是联系高与 斜高、侧棱、底面边长间的桥梁,架起了求侧面积公式中未知量 与条件中已知几何元素间的桥梁. (2)策略:①正棱柱、正棱锥、正棱台的所有侧面的面积都相 等,因此求侧面积时,可先求一个侧面的面积,然后乘以侧面的 个数;②解决台体的问题,通常要补上截去的小棱锥,寻找上下 底面之间的关系.
B.100π
C.168π
4 4,母线长为 D.169π
解析:
12/13/2021
第三十五页,共五十八页。
先画轴截面,圆台的轴截面如图,则它的母线长 l= h2+r2-r12
= 4r12+3r12=5r1=10,∴r1=2,r2=8,∴S 侧=π(r2+ r1)l=π×(8+2)×10=100π,S 表=S 侧+πr12+πr22=100π+4π+64π =168π.
12/13/2021
第二十四页,共五十八页。
类型二 锥体的侧面积与表面积 【例 2】 正四棱锥底面边长为 4 cm,高和斜高的夹角为 30°,如图,求正四棱锥的侧面积.
12/13/2021
第二十五页,共五十八页。
【解】 正棱锥的高 PO、斜高 PE、底面边心距 OE 组成 Rt △POE.
∵OE=2 cm,∠OPE=30°, ∴PE=siOn3E0°=4 cm. 因此 S 棱锥侧=12ch′=12×4×4×4=32(cm2).
12/13/2021
第十页,共五十八页。
知识点二 直棱柱、正棱锥、正棱台的侧面积 [填一填]
12/13/2021
第十五页,共五十八页。
3.如何求简单多面体的侧面积? 提示:(1)关键:找到多面体的特征几何图形,如棱柱中的矩 形,棱台中的直角梯形,棱锥中的直角三角形,它们是联系高与 斜高、侧棱、底面边长间的桥梁,架起了求侧面积公式中未知量 与条件中已知几何元素间的桥梁. (2)策略:①正棱柱、正棱锥、正棱台的所有侧面的面积都相 等,因此求侧面积时,可先求一个侧面的面积,然后乘以侧面的 个数;②解决台体的问题,通常要补上截去的小棱锥,寻找上下 底面之间的关系.
B.100π
C.168π
4 4,母线长为 D.169π
解析:
12/13/2021
第三十五页,共五十八页。
先画轴截面,圆台的轴截面如图,则它的母线长 l= h2+r2-r12
= 4r12+3r12=5r1=10,∴r1=2,r2=8,∴S 侧=π(r2+ r1)l=π×(8+2)×10=100π,S 表=S 侧+πr12+πr22=100π+4π+64π =168π.
12/13/2021
第二十四页,共五十八页。
类型二 锥体的侧面积与表面积 【例 2】 正四棱锥底面边长为 4 cm,高和斜高的夹角为 30°,如图,求正四棱锥的侧面积.
12/13/2021
第二十五页,共五十八页。
【解】 正棱锥的高 PO、斜高 PE、底面边心距 OE 组成 Rt △POE.
∵OE=2 cm,∠OPE=30°, ∴PE=siOn3E0°=4 cm. 因此 S 棱锥侧=12ch′=12×4×4×4=32(cm2).
12/13/2021
第十页,共五十八页。
知识点二 直棱柱、正棱锥、正棱台的侧面积 [填一填]
“高中数学必修一课件-立体几何”

讨论立体几何在医学和解剖学研究中的重要 性。
圆锥的体积公式证明
1
演绎和证明
2
通过逻辑推理和几何证明,演绎出圆
锥体积公式。
3
圆锥体积公式
介绍圆锥的体积公式。
实际应用
讲解圆锥体积公式在实际生活和其他 领域中的应用。
球体表面积公式推导
1
推导过程
2
通过几何推导和数学推理,演示球体
表面积公式的推导过程。
3
球体表面积公式
介绍球体表面积的计算公式。
应用领域
讨论球体表面积公式在实际应用中的 重要性。
柏拉图立体和其性质
柏拉图立体类型 四面体
六面体
八面体 十二面体 二十面体
性质和特点
具有四个面、六个边和四个顶点,每个面都是 一个三角形。
由六个正方形面组成,具有八个顶点和十二条 边。
具有八个面,每个面都是一个正等边三角形。
讨论三棱柱和三棱锥的表面积和体积计算方法。
曲面体的计算
圆柱的表面积和体积
讲解圆柱的计算方法和性质。
锥体的表面积和体积
讲解锥体的计算方法和性质。
球体的表面积和体积
讲解球体的计算方法和性质。
立体几何中的相似与全等
1
相似性
解释相似性的定义和判定方法,以及
全等性
2
相似性在立体几何中的应用。
阐述全等性的定义和判定方法,以及
具有十二个面,每个面都是一个正五边形。
由二十个等边三角形构成,具有十二个顶点和 三十个边。
立体几何在数学和其他领域中的重要性
数学领域
探索立体几何在数学领域中的 重要性和应用范围。
工程与建筑
研究立体几何在工程和建筑领 域的关键作用和创新。
圆锥的体积公式证明
1
演绎和证明
2
通过逻辑推理和几何证明,演绎出圆
锥体积公式。
3
圆锥体积公式
介绍圆锥的体积公式。
实际应用
讲解圆锥体积公式在实际生活和其他 领域中的应用。
球体表面积公式推导
1
推导过程
2
通过几何推导和数学推理,演示球体
表面积公式的推导过程。
3
球体表面积公式
介绍球体表面积的计算公式。
应用领域
讨论球体表面积公式在实际应用中的 重要性。
柏拉图立体和其性质
柏拉图立体类型 四面体
六面体
八面体 十二面体 二十面体
性质和特点
具有四个面、六个边和四个顶点,每个面都是 一个三角形。
由六个正方形面组成,具有八个顶点和十二条 边。
具有八个面,每个面都是一个正等边三角形。
讨论三棱柱和三棱锥的表面积和体积计算方法。
曲面体的计算
圆柱的表面积和体积
讲解圆柱的计算方法和性质。
锥体的表面积和体积
讲解锥体的计算方法和性质。
球体的表面积和体积
讲解球体的计算方法和性质。
立体几何中的相似与全等
1
相似性
解释相似性的定义和判定方法,以及
全等性
2
相似性在立体几何中的应用。
阐述全等性的定义和判定方法,以及
具有十二个面,每个面都是一个正五边形。
由二十个等边三角形构成,具有十二个顶点和 三十个边。
立体几何在数学和其他领域中的重要性
数学领域
探索立体几何在数学领域中的 重要性和应用范围。
工程与建筑
研究立体几何在工程和建筑领 域的关键作用和创新。
高中数学立体几何PPT课件

目录
旋转 体
(1)圆柱可以由____矩__形____绕其任一边所在直线旋 转得到. (2)圆锥可以由直角三角形绕其____直__角__边____所在 直线旋转得到. (3)圆台可以由直角梯形绕___直__角__腰___所在直线或 等腰梯形绕_上__、__下__底__中__点__连__线___旋转得到,也可 由___平__行__于__底__面____的平面截圆锥得到. (4)球可以由半圆或圆绕__地,它的水平放置的平面图形的斜二测直 观图是直角梯形(如图),∠ABC=45°,AB=AD=1,DC⊥ BC,则这块菜地的面积为________.
答案:2+
2 2
目录
5.(2011·高考北京卷改编)某四面体的三视图如图所示,该四 面体四个面的面积中最大的是________.
目录
3.(教材习题改编)有下列四个命题:
①底面是矩形的平行六面体是长方体;
②棱长相等的直四棱柱是正方体;
③有两条侧棱都垂直于底面一边的平行六面体是直平行六面体;
④对角线相等的平行六面体是直平行六面体.
其中真命题的个数是( )
A.1
B.2
C.3
D.4
目录
解析:选A.命题①不是真命题,因为底面是矩形,但侧棱不 垂直于底面的平行六面体不是长方体; 命题②不是真命题, 因为底面是菱形(非正方形),底面边长与侧棱长相等的直四棱 柱不是正方体;命题③也不是真命题,因为有两条侧棱都垂 直于底面一边不能推出侧棱与底面垂直;命题④是真命题, 由对角线相等,可知平行六面体的对角面是矩形,从而推得 侧棱与底面垂直,故平行六面体是直平行六面体.
目录
解析:
将三视图还原成几何体的直观图如图所示. 它的四个面的面积分别为 8,6,10,6 2,故面积最大的应为 10.
旋转 体
(1)圆柱可以由____矩__形____绕其任一边所在直线旋 转得到. (2)圆锥可以由直角三角形绕其____直__角__边____所在 直线旋转得到. (3)圆台可以由直角梯形绕___直__角__腰___所在直线或 等腰梯形绕_上__、__下__底__中__点__连__线___旋转得到,也可 由___平__行__于__底__面____的平面截圆锥得到. (4)球可以由半圆或圆绕__地,它的水平放置的平面图形的斜二测直 观图是直角梯形(如图),∠ABC=45°,AB=AD=1,DC⊥ BC,则这块菜地的面积为________.
答案:2+
2 2
目录
5.(2011·高考北京卷改编)某四面体的三视图如图所示,该四 面体四个面的面积中最大的是________.
目录
3.(教材习题改编)有下列四个命题:
①底面是矩形的平行六面体是长方体;
②棱长相等的直四棱柱是正方体;
③有两条侧棱都垂直于底面一边的平行六面体是直平行六面体;
④对角线相等的平行六面体是直平行六面体.
其中真命题的个数是( )
A.1
B.2
C.3
D.4
目录
解析:选A.命题①不是真命题,因为底面是矩形,但侧棱不 垂直于底面的平行六面体不是长方体; 命题②不是真命题, 因为底面是菱形(非正方形),底面边长与侧棱长相等的直四棱 柱不是正方体;命题③也不是真命题,因为有两条侧棱都垂 直于底面一边不能推出侧棱与底面垂直;命题④是真命题, 由对角线相等,可知平行六面体的对角面是矩形,从而推得 侧棱与底面垂直,故平行六面体是直平行六面体.
目录
解析:
将三视图还原成几何体的直观图如图所示. 它的四个面的面积分别为 8,6,10,6 2,故面积最大的应为 10.
人教版高中数学必修立体几何复习课件(共102张PPT)

1 1
1
11.已知某个几何体的三视图如图2,根据图中标出的尺寸 (单位:cm),可得这个几何体的体积是_____8_0__0.0 cm 3
3
2 0 20
主视图
10
10
2 俯0视图
2 侧0视图
第二章 点、直线、平面之间的位置关系
• 四个公理
直线与直线位置关系 • 三类关系 直线与平面位置关系
平面与平面位置关系
(3)
a a
// b
b
(较常用);
(4)
a
//
a
;
(5)
a a
b
a
(面面垂直 线面垂直)
a b
4.面面垂直
向的侧视图(或称左视图)为(
A
A
H
G
Q
B
C
侧视 B
)A
C
I
P
E
图1
F
B
D
E
D
图2
F
B
B
B
E A.
E B.ቤተ መጻሕፍቲ ባይዱ
E C.
E D.
练习10:(1)如图是一个空间几何体的三
视图,如果直角三角形的直角边长均为
正视图 侧视图
1,那么几何体的体积为( ) C
A.1 B.1 C. 1 D.1
俯视图
2
3
6
V1 3S底 h1 31111 3
②判定定理:如果一个平面内的两条相交直线都平行于 另一个平面,那么两个平面互相平行;
符号表述: a,b , a b O, a //,b // //
//
③面面平行的性质定理:
a
a
//
高中数学 第一章 立体几何初步 1.7.2.2 棱台与圆台的体积课件高一数学课件

当底面 ABC 水平放置时,水形状为三棱柱形,设水面高为 h, 则有 V 水=Sh.∴6S=Sh,∴h=6.∴当底面 ABC 水平放置时,液 面高为 6.
12/13/2021
第三十一页,共四十八页。
12/13/2021
第三十二页,共四十八页。
——分割法与补形法—— 求不规则几何体体积方法探究 当一个几何体形状不规则时,常常将几何体通过分割或者补 形变成一个或几个规则的、体积易求的几何体,然后再计算.当 一个几何体的体积很难计算时,经常考虑将三棱锥还原为三棱柱 或长方体,将三棱柱还原成平行六面体,将台体还原成锥体等.
其中高.特别
地,圆台的体积公式可以表示为 V 圆台=13πh(r2+rr′+r′2),其
中 r、r′分别为圆台的上、下底面的半径,h 为圆台的高.
12/13/2021
第八页,共四十八页。
[答一答] 根据柱体、锥体、台体之间的关系,你能发现三者的体积公 式之间的关系吗?
12/13/2021
第二十二页,共四十八页。
规律方法 圆台的轴截面是等腰梯形,将题中的已知量转移 到轴截面中,即可求出圆台的上、下底面半径,进一步求出圆台 的体积.
12/13/2021
第二十三页,共四十八页。
已知圆台的上下底面半径分别是 2,4,且侧面面积等于两底 面面积之和,求该圆台的母线长和体积.
解析:V=13h(S+ SS′+S′)=13×4×(3+ 3×27+27)= 52.
12/13/2021
第四十五页,共四十八页。
三、解答题 5.圆台的上、下底面半径和高的比为 1 4 4,母线长 为 10,求圆台的体积.
12/13/2021
第二十七页,共四十八页。
V=13π×345×(122+132+12×13)≈1 367.92π. 因此,降雨量为1 π3×671.9622 π≈5.34(cm)≈53(mm).
12/13/2021
第三十一页,共四十八页。
12/13/2021
第三十二页,共四十八页。
——分割法与补形法—— 求不规则几何体体积方法探究 当一个几何体形状不规则时,常常将几何体通过分割或者补 形变成一个或几个规则的、体积易求的几何体,然后再计算.当 一个几何体的体积很难计算时,经常考虑将三棱锥还原为三棱柱 或长方体,将三棱柱还原成平行六面体,将台体还原成锥体等.
其中高.特别
地,圆台的体积公式可以表示为 V 圆台=13πh(r2+rr′+r′2),其
中 r、r′分别为圆台的上、下底面的半径,h 为圆台的高.
12/13/2021
第八页,共四十八页。
[答一答] 根据柱体、锥体、台体之间的关系,你能发现三者的体积公 式之间的关系吗?
12/13/2021
第二十二页,共四十八页。
规律方法 圆台的轴截面是等腰梯形,将题中的已知量转移 到轴截面中,即可求出圆台的上、下底面半径,进一步求出圆台 的体积.
12/13/2021
第二十三页,共四十八页。
已知圆台的上下底面半径分别是 2,4,且侧面面积等于两底 面面积之和,求该圆台的母线长和体积.
解析:V=13h(S+ SS′+S′)=13×4×(3+ 3×27+27)= 52.
12/13/2021
第四十五页,共四十八页。
三、解答题 5.圆台的上、下底面半径和高的比为 1 4 4,母线长 为 10,求圆台的体积.
12/13/2021
第二十七页,共四十八页。
V=13π×345×(122+132+12×13)≈1 367.92π. 因此,降雨量为1 π3×671.9622 π≈5.34(cm)≈53(mm).