单梁箱形桥式起重机主梁设计
机械毕业设计1310T桥式起重机设计(箱型梁设计及受力计算)

1-电动机;2-制动器;3-带制动轮的半齿轮联轴器;4-浮动轴;5-半齿联轴器;6-减速器;7-车轮3.2选择车轮与轨道,并验算其强度按图3-2所示的重量分布,计算大车车轮的最大轮压和最小轮压图3-2 轮压计算图满载时,最大轮压:)(1-3 t 65.112015.2224104424e 24xc xc max =-⨯++-=-⋅++-=L L G Q G G P空载时,最大轮压:)(2-3 t 9.65.2215.22244424124xc xc max =-⋅+-=-⋅+-='L L G G G P 空载时,最小轮压:)(3-3 t 1.55.221244424124xc xc min =⨯+-=⋅+-='L G G G P 载荷率:417.02410==G Q (3-4)t 65.11max =Pt 9.6max='Pt 10.5min='P417.0=GQ图3-1 分别传动大车运行机构布置图3 457m加筋板的布置尺寸为了保证主梁截面中受压构件的局部稳定性,需要设置一些加筋构件如图4-3所示。
主梁端部大加筋板的间距:m 1a m 1.1h a ='=≈',取主梁端部(梯形部分)小加筋板的间距:m 5.02a a 1='=' (4-3) 主梁中部(矩形部分)大加筋板的间距:m 2a m 2.2~65.1h 2~5.1a ===,取)(主梁中部小加筋板的间距:若小车钢轨采用15P 轻轨,其对水平重心轴线x -x 的最小抗弯截面模数3min cm 7.47=W ,则根据连续梁由钢轨的弯曲强度条件求得加筋板间距(此时连续梁的支点即加筋板所在位置;使一个车轮轮压作用在两加筋板间距的中央):m 1a ='m 5.0a 1='m 2a =m 1a 1=图4-1 主梁中间截面尺 寸简图 图4-2 主梁支承截面 尺寸简图 图4-3 主梁截面图主梁水平最大弯矩式中:15.1=∏ψ—动力系数司机操控室的重量G为固定的集中载荷,重心作用位置到主梁一端的距离大约取ml8.2=。
单梁桥式起重机主梁焊接工艺及防变形控制方法

收 稿 日期 :00-7 0 21- —8 0
影 响, 为满足技术规定 的主梁上拱要求 , 腹板应预制 出数值大
作者简介 : 中(9 9 )男 , 陈 16 一 , 湖北武汉人 , 机械工程师 , 研究方向冶金起重 机结构 分析 。
10 0
触处的两个 角 , 更应该严格 保证直角 , 这样 才能保证箱形 主梁
() 1 尽可 能地 选用 对称的构件截面和焊缝位置 。 这种焊缝
接缺陷 ;
() 5 埋弧焊 、 手工电弧焊多层多道焊时 , 间的焊渣 、 层 缺陷
必 须清理干净 。
23 箱型主梁的焊接工艺 .
根 据箱 型主梁的结构组成 , 分析其制造成 型过程 , 主要包
括 拼板 、 筋板 、 腹板 、 形梁 、 Ⅱ 下翼板 、 主梁纵缝 等部件 的焊接
与 拼装 。 () 1 腹板上拱度的制备 。 考虑到主梁 的 自重 和焊接变形 的
( ) 型 主 梁 的 隔板 、 腹 板 焊 缝 焊 接 , 尽 量 采 用 对称 1箱 翼 应 焊 接 【 l 】 .
沿箱梁轴线方 向, 布置有若干隔板 , 在翼板和腹 板上 焊有横 并
筋和纵筋 , 以提高主梁 的刚度和稳定性。
( ) 于比较长 的焊缝 , 2对 采用分段退焊 的焊接方法 ;
22 焊 接 要 求 .
本文 以起重总质量 为 3 的单 臂桥式起重 机的主梁为 例 , 2t 研
究其焊接和制造工艺方法。 该桥式起重机主梁采用箱形结构 , 主梁总体为对称结构 。主梁整体结构和其截面示意图如图 1 、 图 2所示 。 主梁的翼缘板 和腹板采用不 同厚的钢板焊接而成 ,
桥式起重机是起重小车在高架轨道上运行的桥架型起重 机, 一般 由起重小车、 桥架运行机构 、 桥架金属结构组成。 其桥 架沿铺设在两侧高架上的轨道纵 向运行 ,起重小车沿铺设在 桥架上的轨道横向运 行 , 构成一矩形 的工作范 围 , 就可 以充分
5吨电动单梁桥式起重机设计

绪论随着国民经济的发展,起重机械已成为许多部门必不可少的设备,在现代化大生产的条件下,随着工艺流程的机械化和自动化程度的不断提高,起重机械在生产过程中,从辅助设备逐渐成为连续生产流程中的一种专用设备。
在生产技术不断发展的条件下,起重机的种类越来越多,通用桥式起重机(俗称天车或行车)和门式起重机(又称龙门起重机)是其中被广泛应用的两种。
起重机是一种间歇动作的机械,其工作特点具有周期性,在每一个工作循环中,他的主要机构作一次正向及反向运动,每次循环包括物品的装载及卸载,搬运物品的行程和卸载后的空钩回程,前后两次装卸之间还包括辅助准备时间在内的短暂停歇。
在工作循环中,起重机各机构一般不同时开动,而是根据工作需要彼此协同工作的,但在一个循环中各机构都有自己的动作延续时间,此外,即使在开动阶段,机构的负载情况有带载和空载之分,即使是带载,载荷大小也有变化,另外操作熟练程度对机构的受力情况也有影响,操作不平稳会使构件带来冲击载荷,加剧疲劳,磨损或发热。
严重的可能导致事故,除上述工作条件外,还需考虑起重机的工作环境,如在高温车间,酸碱车间,都会影响机械的强度,为了充分估计这些情况和避免产生意外的后果,在设计、选择或效验起重机以及选择电动机和电器设备,必须从实际出发,根据不同的工作情况,应用不同的安全系数和许用应力,为此,要把起重机械根据忙闲程度和负荷情况分为不同的工作类型,但起重机械是由各机构组成的,起重机械在工作,也就是他的机构在运行,因而必须考虑到各机构的工作类型,由于这些机构的用途不同,工作时间长短也不同,(例如起升机构在装卸物品时,其他机构停歇不动),而且在工作过程中,各机构运行速度和所受载荷业不同,所以在同一起重机械中,各机构的运行速度和所受的载荷是不同的,因此,在设计计算各机构的零部件时,应根据零部件的工作类型分别进行,整体起重机械和金属结构的工作类型是根据主起升机构决定的,而且于他属于不同的同一种工作类型。
单梁桥式起重机结构设计方案

摘要我做的毕业设计课题是单梁桥式起重机。
单梁桥式起重机是一种轻型起重设备,它适用起重量为0.5~5 吨,适用跨度4.5~16.5米,工作环境温度C在-20℃到40℃范围内,适合于车间、仓库、露天堆场等处的物品装卸工作。
桥架由一根主梁和两根端梁刚接组成。
根据起重量和跨度,主梁采用普通工字钢和U形槽组合焊接形成。
主梁和端梁之间采用承载凸缘普通螺栓法兰连接。
提升机构采用CD型电葫芦。
此次设计的主要内容有:问题的提出、总体方案的构思,结构设计及对未知问题的探索和解决方案的初步设计,装配图、零件图等一系列图纸的设计与绘制,以及毕业设计说明书的完成。
关键词:起重机;桥式起重机;大车运行机构;小车运行结构;小车起升;结构桥架;主端梁ABSTRACTThe topic of my graduation design is list the beam bridge type derrick of design the list beam bridge type derrick is a kind of light heavy equipments, it start to apply the weight as 0.5~5 tons, apply to across degree 4.5~16.5 meters, the work environment temperature is -20℃to 40℃.Inside scope, suitable for car, warehouse, open-air heap field etc. of the product pack to unload a work. The bridge was carried beam by a lord beam and 2 to just connect to constitute. According to weight with across a degree, lord beam adoption common the work word steel and U form slot combination weld formation. Lord beam and carry an of beam an adoption loading To good luck common stud bolt method orchid conjunction. Promote the organization adoption CD type an electricity bottle gourd.The main contents of this time design have: The problem put forward, conceive outline of total project, possibility design, structure design and draw towards doing not know a problem of investigate and solution of first step design, assemble diagram, spare parts diagram wait a series the design of the diagram paper with, end include graduation design manual of completion.Keywords: cranes;bridge type derrick ;During operation organization; Car running structure; Car hoisting structure; Bridge; Main girders.目录前言 (6)1 单梁桥式起重机的概述 (7)1.1单梁桥式起重机的整体描述 (7)1.1.2 单梁桥式起重机机构的特点 (8)1.1.3 单梁桥式起重机的基本参数 (8)1.1.4 桁架梁和箱形梁的比较 (8)1.2 LD型电动单梁桥式起重机各部件的作用(位结构) (8)1.2.1 主梁 (8)1.2.2 端梁 (8)1.2.3主梁和端梁的联接 (9)1.2.4 电动葫芦 (9)1.2.5 大车 (9)1.2.6 小车架 (10)1.2.7 小车 (10)1.2.8操纵室 (10)1.3 运行机构 (10)1.3.1 小车运行机构 (11)1.3.2 大车运行机构 (11)2 工作条件及设计要求 (12)2.1 型式及设计的构造特点 (13)2.2 选择电动葫芦的规格型号 (14)2.3 主梁设计计算 (14)2.3.1 主梁断面几何特性 (14)2.3.2 主梁强度的计算 (16)2.3.3刚度计算 (21)2.3.4 稳定性计算 (23)2.4 端梁设计计算 (23)2.4.1 轮距的确定 (24)2.4.2 端梁中央断面几何特性 (24)2.5 起重机最大轮压 (25)2.5.1起重机支座及作用 (25)2.5.2 起重机最大轮压的计算 (26)2.6 最大歪斜侧向力 (30)2.7 端梁中央断面合成应力 (31)2.8 车轮轴对端梁腹板的挤压应力 (31)2.9 主、端梁连接计算 (32)2.9.1 主、端梁连接形成式及受力分析 (32)2.9.2 螺栓拉力的计算 (33)3 小车起升和运行机构的设计计算 (36)3.1 电动葫芦起升机构设计计算 (37)3.1.1 电动葫芦的基本设计参数 (37)3.1.2 电动葫芦起升机构简要设计步骤 (38)3.2 电动葫芦运行机构设计计算 (45)3.2.1.电动小车运行静阻力计算 (45)3.2.2.电动机的初选预验算 (46)3.2.3 传动比 (47)3.2.4 制动器的选择与计算 (48)4 大车运行机构设计计算 (50)4.1 确定机构传动方案 (50)4.2 选择车轮和轨道,验算车轮强度 (50)4.3 验算车轮的疲劳强度 (50)4.4 传动装置设计计算 (52)4.4.1 选择电动机 (52)4.4.2 大车运行机构的功率计算 (53)4.4.3 验算电动机 (53)4.5设计减速装置 (55)4.5.1选择减速器的类型 (55)4.5.2确定减速器的型号 (56)4.6 起重机有关使用机构的安全装置 (57)4.6.1 缓冲器 (57)4.6.2 起升高度限位器 (58)4.6.3 行程限位器 (58)4.6.4 安全开关 (58)4.7 起重机的组装及试车要求 (58)4.7.1起重机的安装注意事项 (58)4.7.2 起重机的试车要求 (60)致谢 (62)参考文献 (63)前言光阴似箭,转眼间四年大学生活即将结束,毕业设计是对我们四年大学生活的一个总结,更是对四年大学学习成果的检验。
桥式起重机主梁设计说明书

桥式箱型起重机主梁设计说明书姓名: X X学院:冶金与材料工程学院专业班级: XX指导教师: XX日期: 2012年1月前言桥式起重机是横架于车间、仓库和料场上空进行物料吊运的起重设备。
由于它的两端坐落在高大的水泥柱或者金属支架上,形状似桥。
桥式起重机的桥架沿铺设在两侧高架上的轨道纵向运行,可以充分利用桥架下面的空间吊运物料,不受地面设备的阻碍。
在室内外工矿企业、钢铁化工、铁路交通、港口码头以及物流周转等部门和场所均得到广泛的运用,是使用范围最广、数量最多的一种起重机械。
本书主要介绍了跨度28m,起重量50t的通用桥式起重机箱型梁的设计生产过程,同时对车间的布置情况作了较为粗略的参考设计。
设计过程较为详细地考虑了实际生产与工作中的情况。
本书编写过程中得到XXX教授、XXX教授等老师和同学的指导和帮助,在此一并表示衷心的感谢。
由于作者实际经验不足,理论知识有限,书中错误在所难免,敬请读者多多指正!作者2012年1月于XX学院目录第一章 箱型梁式桥架结构的构造及尺寸一、桥架的总体构造箱型梁式桥架结构主要是两根主梁和两根端梁组成。
主梁 主梁是桥式起重机桥架中主要受力元件,由左右两块腹板,上下两块盖板以及若干大、小隔板及加强筋板组成。
主要技术要求有:主梁上拱度:当受载后,可抵消按主梁刚度条件产生的下挠变形,避免承载小车爬坡。
主梁旁变:在制造桥架时,走台侧焊后有拉深残余应力,当运输及使用过程中残余应力释放后,导致两主梁向内旁弯;而且主梁在水平惯性载荷作用下,按刚度条件允许有一定侧向弯曲,两者叠加会造成大弯曲变形。
腹板波浪变形:受压区07.0δ<,受拉区02.1δ<,规定较低的波浪变形对于提高起重机的稳定性和寿命是有利的。
上盖板水平度250/b ≤,腹板垂直度200/0h ≤,b 为盖板宽度,h 0为梁高。
端梁 端梁是桥式起重机桥架组成部分之一,一般采用箱型结构,并在水平面内与主梁刚性连接,端梁按受载情况可分下述两类:(1)、端梁受有主梁的最大支承压力,即端梁上作用有垂直载荷。
LD型单梁桥式起重机简单快速计算表

36.862
s-工字钢与葫芦车轮缘距离
4
应力 合成 公 式:
e 0.164R
e-车轮作用点距离 R-葫芦走轮踏面曲率半径
c 0.5(b d)
ζ-查表系数 查表得: Kgx Kgz Kpx Kpz Kbz t^2-工字钢下翼缘厚与补强板厚和的平方
2PQ )
K-轮压不均匀系数,k=1.3-1.7
7.034142091 1.804194603 132.6587994 106.0339315
1.3
P-小车轮在工字钢表面最大轮压 1翼缘根 部横向应 力
gx
K
g x
P t2
σgx-翼缘根部横向应力 2翼缘根 部纵向应 力
gz
K
g z
P t2
σgz--翼缘根部纵向应力 3力作用 点横向应 力
主梁上翼缘总应力(最大):σ上+σy= 主梁下翼缘总应力(最大):σx+σy3=
扭转载 荷产生 的应力 (因对 主梁强 度影响 较小, 此处不 计算)
B I
B-偏心载荷产生的双力矩 w-工字梁截面的主扇性面积 Iw-工字梁截面主扇性惯性矩
工字 钢下 翼缘 局部 弯曲 应力
小车最大 轮压
P
K n
(1PGx
Ix 4
2
8
σ上-主梁上翼缘应力
水平载荷 (跨中)产 生的弯曲 应力
2.295384615 98.99978937 106.0143218
A、主梁 质量产生 的水平惯 性力,以 水平均布 惯性载荷
算法1
FH
Fq
n0 n
FH-主梁质量产生的水平惯性载荷 μ-滑动摩擦系数 算法2
桥式起重机主梁强度、刚度计算

桥式起重机箱形主梁强度计算一、通用桥式起重机箱形主梁强度计算(双梁小车型) 1、受力分析作为室内用通用桥式起重机钢结构将承受常规载荷G P 、Q P 和H P 三种基本载荷和偶然载荷S P ,因此为载荷组合Ⅱ。
其主梁上将作用有G P 、Q P 、H P 载荷。
主梁跨中截面承受弯曲应力最大,为受弯危险截面;主梁跨端承受剪力最大,为剪切危险截面。
当主梁为偏轨箱形梁时,主梁跨中截面除了要计算整体垂直及水平弯曲强度计算、局部弯曲强度计算外,还要计算扭转剪切强度,弯曲强度及剪切强度需进行折算。
2、主梁断面几何特性计算上下翼缘板不等厚,采用平行轴原理计算组合截面的几何特性。
图2-4注:此箱形截面垂直形心轴为y-y 形心线,为对称形心线。
因上下翼缘板厚不等,应以x ’— x ’为参考形心线,利用平行轴原理求水平形心线x —x 位置c y 。
① 断面形状如图2-4所示,尺寸如图所示的H 、1h 、2h 、B 、b 、0b 等。
② 3212F F F F ++=∑ [11Bh F =,02bh F =,23Bh F =] ③ Fr q ∑= (m kg /)④ 321232021122.)21(2)2(F F F h F h h F h H F Fy F y ii c +++++-=∑⋅∑=(cm ) ⑤ 223322323212113112212)(212y F Bh y F h h H b y F Bh J x ⋅++⋅+--+⋅+= (4cm ) ⑥ 202032231)22(21221212bb F h b B h B h J y ++++= (4cm )⑦ c X X y J W /=和c X y H J -/(3cm ) ⑧ (3cm )3、许用应力为 ][σ和 ][τ。
4、受力简图1P 及2P 为起重小车作用在一根主梁上的两个车轮轮压,由Q P 和小车自重分配到各车轮的作用力为轮压。
如P P P 21==时,可认为P 等于Q P 和小车自重之和的四分之一。
10t单梁桥式起重机大车运行机构de设计

10t单梁桥式起重机大车运行机构设计摘要:桥式起重机是一种工作性能比较稳定,工作效率比较高的起重机。
随着我国制造业的发展,桥式起重机越来越多的应用到工业生产当中。
在工厂中搬运重物,机床上下件,装运工作吊装零部件,流水在线的定点工作等都要用到起重机。
在查阅相关文献的基础上,综述了桥式起重机的开发和研究成果,重点对桥式起重机大车运行机构、端梁、主梁、焊缝及连接进行设计并进行强度核算,主要是进行端梁的抗震性设计及强度计算和支承处的接触应力分析计计算过程。
设计包括电动机,减速器,联轴器,轴承的选择和校核。
设计中参考了许多相关数据, 运用多种途径, 利用现有的条件来完成设计。
本次设计通过反复考虑多种设计方案, 认真思考, 反复核算, 力求设计合理;通过采取计算机辅助设计方法以及参考他人的经验, 力求有所创新;通过计算机辅助设计方法, 绘图和设计计算都充分发挥计算机的强大辅助功能, 力求设计高效。
关键词:桥式起重机,大车运行机构,主梁;端梁;焊缝The Design Of 10t Single Beam Bridge Crane Traveling MechanismAbstract:Bridge crane is a kind of performance is stability, the working efficiency is relatively high crane. Along with the development of China's manufacturing industry,bridge crane is applied to industrial production more and more . Carrying heavy loads in factories , machine tool fluctuation pieces, shipping work on the assembly line for hoisting parts, the designated work with a crane.On the basis of literature review, summarized the bridge crane development and research results, focusing on bridge crane during operation organization, main beam,end beam weld and connection for design and the strength calculation; Mainly for the girders extent design and strength calculation and the support of contact stress analysis program in calculation. Design including motor, reducer, coupling, bearing choosing and chec- king. The design refer to many related information, reference to apply a variety of ways, make the existing conditions to complete design. By considering various design scheme repeatedly, thinking deeply,strive to design reasonable; By taking computer aided design method and reference the experience of others,strive to make innovation; Through computer aided design method, graphics and design calculations give full play to the powerful auxiliary function, computer to design efficient.Keywords: bridge crane; during operation organization; main beam; end beam; weld1 绪论1.1 起重机背景及其理论桥式起重机是桥架在高架轨道上运行的一种桥架型起重机,又称天车。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
前言起重机箱形梁式桥架结构是国内外桥式起重机中应用最普遍的一种桥架结构型式。
随着科技的飞跃发展,起重机箱形梁式桥架结构对减轻劳动强度、节省人力、降低建设成本、提高劳动生产力、加快建设速度、实现工程机械化、生产自动化起着十分重要的作用,是非常重要的工具和设备。
它是箱形桥架在高架轨道上运行的一种桥架型起重机,又称天车。
桥式起重机的桥架沿铺设在两侧高架上的轨道纵向运行,起重小车沿铺设在桥架上的轨道横向运行,构成一矩形的工作范围,就可以充分利用桥架下面的空间吊运物料,不受地面设备的阻碍。
所以桥式起重机在室内外工矿企业、钢铁化工、铁路交通、港口码头以及物流周转等部门和场所均得到广泛的运用,是使用范围最广、数量最多的一种起重机械。
桥式起重机可分为普通桥式起重机、简易梁桥式起重机和冶金专用桥式起重机三种。
普通桥式起重机一般由起重小车、桥架运行机构、桥架金属结构组成。
桥架的金属结构由主梁和端梁组成,分为单主梁桥架和双梁桥架两类。
单主梁桥架由单根主梁和位于主梁两边的端梁组成,双梁桥架由两根主梁和端梁组成。
主梁与端梁刚性连接,端梁两端装有车轮,用以支承桥架在高架上运行。
主梁上焊有轨道,供起重小车运行。
桥架主梁的结构类型较多,比较典型的有箱形结构、四桁架结构和空腹桁架结构。
本次设计是对箱形单主梁式桥架结构起重机的主梁设计。
桥式起重机的主梁主要由上、下盖板和两侧的垂直腹板及内部肋板组成,是起重机的主要受力部件。
小车钢轨布置在上翼缘板的两端,它的结构简单,制造方便,适于成批生产,但自重较大。
各项设计参数都正确参考了相关国家标准及设计规范,这样让设计有章可循,并考虑到结构方面的要求,合理地进行设计。
设计基本思路:本设计综合考虑实际因素,结合给定的工艺参数,按照相关国家标准GB/T3811-2008[1]及设计规范进行设计。
主梁各项参数计算、选材、强度核算以及焊缝的设计及强度核算也都正确参考了国家标准或焊接手册,这样让设计有章可循,并考虑到结构方面的要求,合理地进行设计。
目录第1章设计箱形梁的结构形式与尺寸 (1)1.1 给定条件 (1)1.2 箱形梁的构造和主要尺寸的确定 (1)1.2.1 箱形梁的构造 (1)1.2.2 箱形梁的主要尺寸确定 (2)1.3 主梁预制上拱度计算 (4)第2章梁的校核 (5)2.1 梁的静载强度校核 (5)2.1.1 许用应力 (5)2.1.2 强度校核 (6)2.2 主梁跨端截面的最大剪切应力τmax的计算 (8)2.3 主梁的静刚度计算 (8)第3章焊脚尺寸的设计及校核 (10)3.1 主梁的角焊缝 (10)3.2 主梁与端梁的角焊缝 (10)第4章装焊工艺 (11)4.1 基本要求 (11)4.1.1 对焊工的要求 (11)4.1.2 对设备的要求 (11)4.1.3 对材料的要求 (11)4.1.4 坡口和焊缝形式的选择 (11)4.1.5 对环境的要求 (12)4.2 焊前准备 (12)4.2.1 焊接方法 (12)4.2.2 备料及下料 (12)4.3 焊接工序 (14)4.3.1 定位焊缝 (14)4.3.2 装焊顺序 (15)4.4检验 (16)附录1 (18)附录2 (19)附录3 (20)总结 (21)参考文献 (22)第1章设计箱形梁的结构形式与尺寸1.1 给定条件根据任务设计说明书所列表1-1如下:表1-1箱形梁设计给定条件1.2 箱形梁的构造和主要尺寸的确定1.2.1箱形梁的构造箱形梁的结构尺寸示意图如图1-1所示。
吊车形势 吊钩桥式起重机 使用温度 室温 材料 载荷类型 额定载荷 估计重量 起升高度 小车运行速度Q235或16MnⅡ类 10t 小车不大于4t12m 40m/min工作类型 跨距 桥架主梁形式 大车不大于21.8t起升速度 大车运行速度A 5(中级) 22.5m 箱形梁 8m/min 90m/min图1-1 箱形主梁的构造简图1.2.2箱形梁的主要尺寸确定1、筋板及腹板的相关设计 (1)主梁端部长度C 的确定C=(15~110)L=(15~110)×22500=(94500~2250)mm(2)主梁盖板厚度δ1与腹板厚度δ的确定(给出推荐值如表1-2)表1-2 箱形主梁腹板和盖板厚度的推荐值(mm )注:表中所列板厚较大者用于跨度较大者据表1-2选出跨度为22.5m 的盖板厚δ1=10mm ,腹板厚δ=6mm 。
(3)主梁中部高度H 和盖板间距h 的确定 当17<L<23时H=L18=2250018=1250mmh=H-2δ1=1250-2×10=1230mm(4)主梁端部高度H 0的确定起升重量为10t ,属于起升重量较重,H 0=(0.4~0.6)H=0.6×1250=750mm(5)腹板间距b 的确定{b≥H 3=12503=417mmb≥L 50=2250050=450mm b>350mm根据起重机设计原则,b 应该选择较小值,即b=450mm 。
(6)上下盖板的宽度B 的确定起重量Q (tf )5,810(12.5)15(16) 2030(32)50 腹板厚δ 66 6,8 盖板厚δ8,10 10, 1212,14B=b+2(δ+10)手工焊 B=b+2(δ+20)自动焊本次设计采用的是手工MAG 焊,B=b+2(δ+10)=450+2×(10+10)=490mm2、主梁筋板的设置(1)横向大筋板间距a 的设置 当hδ=12506=205mm>100mm 时,横向筋板之间的距离不应大于2h 或3m跨中处的a=(1.5~2)h=(1.5~2)×1230=(1845~2460)mm{a≤2h=2×1230=2460mm a≤3000mm1845mm≤a≤2460mm且a≤2200mm ∴1845mm<a<2200mm主梁端头处的a≈h=1230mm(2)横向小筋板高度及间距的设置1)横向小筋板高度h 1的设置h 1≥0.3h=0.3×1230=369mm2)横向小筋板间距a 1的设置a 1≤(40~50)δ=(40~50)×6=(240~300)mm(3)纵向筋条设置当{Q235 160mm<hδ=205mm<240mm16Mn 145mm<hδ=205mm<220mm 时,需要设置纵向筋条。
当横向小筋板与纵向筋条都存在时,可适当减小筋板高度,则h1=(0.2~0.25)h=(0.2~0.25)×1230=(246~307.6)mm所以为了安全,选择整数h1=300mm。
(4)筋板间距的设置根据以上C,主梁处的a、a1,端梁处的a、a1以及考虑到筋板在主梁及主梁端部的均布情况综合得出:C=2225mm,主梁a=1953mm、a1=244mm主梁端部a=1112.5mm、a1=222.5mm(5)横向筋板厚度δ3的确定(据非标准机械设计手册[2]中式5-44和5-45得如下公式)b l≥h30+40=123030+40=81mm 取b l=81mm δ3≥b l15=8115=5.4mm据起重机计设计手册[3]中表1-8-34选取δ3=5.5mm。
(6)纵向角钢的确定(据非标准机械设计手册[2]中式5-42的如下公式)δ4≥34δ=34×6=4.5mm据起重机计设计手册[3]中表1-8-41选取δ4=5mm同时据厚度可以选出相应的6号等边角钢,其标准为60×60×5-GB/T 706-2008Q235-A-GB/T 700-20061.3主梁预制上拱度计算规定梁跨度中央的最大上拱度f s=L1000=225001000=22.5mm。
第2章梁的校核2.1 梁的静载强度校核2.1.1 许用应力材料的许用应力是材料的极限应力σj 除以安全系数n ,即[σ]=σj n对于Ⅱ类载荷情况下的强度计算安全系数见表2-1。
Q235和16Mn 的机械性能分别见表2-2和表2-3。
Ⅱ类载荷组合情况时钢材的许用应力见表2-4。
表2-1 金属结构构件材料的安全系数n表2-2 Q235的机械性能表2-3 16Mn 的机械性能ⅡⅢQ235 16Mn1.5/1.7 1.55/1.751.2(1.3) 1.25(1.35)材料名称 组别 棒钢直径或厚度 型钢和异型钢厚度 钢板厚度 σs (MPa) σs (MPa) Q2351组 2组 3组≤40mm 41~100mm 101~250mm≤15mm 16~20mm >20mm4~20mm 21~40mm 41~60mm240 230 220380~400 410~430 440~470钢号钢材厚度或直径(mm ) 抗拉强度σb (≥MPa)抗拉强度σb (≥MPa) 延伸率(≥%)16Mn<16(1组) 17~25(2组)26~36(3组)37~50 55~100的方圆钢520 500 480 480 480350 330 310 290 280210 190 190 190 190表2-4 Ⅱ类载荷组合情况时钢材的许用应力本次设计的是Ⅱ类载荷组合的设计,所以可以根据表2-1选出Q235的n=1.5,16Mn 的n=1.55。
根据表2-2和表2-3选出Q235的σs =240MPa ,σb =380MPa 。
16Mn 的σs =350MPa ,σb =520MPa 。
Q235:σs σb =240380=0.63<0.7,16Mn :σs σb =350520=0.67<0.7所以,Q235和16Mn 的许用应力可以从表2-4中选用,即Q235:[σ]=160Mpa ,16Mn :[σ]=230MPa Q235:[τ]=95Mpa , 16Mn :[τ]=140MPa2.1.2 强度校核主梁自重的确定给定如图2-1的曲线图。
应力种类符号 许用应力(MPa )Q235 16Mn 第1组 第2,3组 第1组 第2组 第3组 拉,压,弯剪切[σ] [τ]160 95140 85230 140220 130205 120图2-1 箱形梁式桥架结构的重量曲线据图2-1可知,起重量为10t ,跨距为22.5米的梁的重量G q 2=7.3t ,小车重量G=4t 。
1、主梁自重引起的均布载荷qq=G q 2+G L =(7.3+4)×10322500×9.8=4.92N/mm2、梁的自重在L2处引起的最大弯矩为:M 自重max =qL 28=4.92×2250028=3.11×108N∙mm3、额定载荷P 在L 2处引起的最大弯矩为:M Pmax =P L 2=9.8×10×103×225002=22.05×108N∙mm4、危险截面最大弯矩M max 为:M max =M 自重max +M Pmax =(3.11+22.05)×108=2.56×109N∙mm5、主梁跨中截面对水平重心轴x-x 的抗弯截面模量W x =J xy max(mm 3)主梁跨中截面对水平重心轴x-x 的惯性矩J x =bh 312(mm 4)主梁跨中截面的一半y max =h2W x =bh 26=450×123026=1.13×108mm 36、危险截面处的最大正应力σ的计算:σ=M maxW x=2.56×1091.13×108=22.56MPa<{Q235:[σ]=160MPa16Mn:[σ]=230MPa所以Q235和16Mn钢都可以用来制造箱形梁。