中考数学试卷分析共71页
中考数学试卷分析报告

2011年中考数学试卷分析报告一、试卷概况(一)试卷结构2011年中考数学试卷共六大题25小题,满分120分,考试时间120分钟,考试内容为义务教育九年制七年级至九年级数学教材(人教版)各册涵盖知识。
全卷:数与代数占分值52分,空间与图形6分值53分,统计概率分值15分。
第一大题为选择了共8小题(8×3′=24分),第二大题为填空题共8小题(8×3′=24分),第三大题共3小题(3×6′=18分),第四大题共2小题(2×8′=16分),第五大题共2小题(2×9′=18分),第六大题共2小题(2×10′=20分)(二)试卷基本特点2011年中考数学试卷,在题目的设计提题量上与2010年大至相同,改2010年选择题10题,填空题6题为2011年选择题8题,填空题8题,仍为以答题卷形式答题,实施网上阅卷。
试卷难度适中,整卷难度分数为0.58左右。
试题反映了考生教育教学发展的要求,坚持从学生实际出发,该学生的发展与终身学习的需求,在重视基础知识和基本技能考查的同时,注重了数学思想与数学方法的考查,加强了学生应用数学知识和思维方法,分析解决现实问题的能力的考查,在创新知识和实践能力方面也体现的更加明显,反映了数学课程标准对数学的要求,体现了课程改革的精神。
表一:试卷结构成绩分析表试题难度分析(选择题除外)(9—16题)一、考查知识点(1)有理数运算法则(2) 分解因式 (3)函数自变量的取值范围(4)解二元一次方程组 (5) 三角形内角平分线的交点(6) 平面图形中有关分解的数量关系(7)h.旋转圆形的中心点(8)几何图形中角的关系、线段的关系的解答二、主要失分原因(1)分解因式未完整如:x3-x=x(x2-1)=x(x+1)(x-1)只分解到第二步(2) 解方程组答案缺括号 如: ⎩⎨⎧-==34y x 写成:x=4 y=-3 (3) 解析式中的量的关系 如:y=21x+90 写成y=21x+90o90 度 写成 90o 度三、教学建议(1) 基础教学中基本知识点应要求学生清晰地掌握;(2) 强调数学答案的规范化写作,并要求学生理解透彻应为什么这样写,从根本杜绝简单的错误,减少本来就不应该失去的分,如:更好地体现真实的数学水平。
初三数学试卷分析及教学建议

初三数学试卷分析及教学建议初三数学试卷分析及教学建议1九年级数学试卷是一份知识覆盖面广、基础性和创造性都强的试卷。
它集检测反馈与训练提高于一体,对实践新课标具有必须的指导好处。
一、基本状况(一)考生答卷基本状况本次考试,根据抽样卷统计,得分状况是:人平分79。
8分;及格率94%;优秀率38%;多数得分在70分—85分之间,各试题的得分状况如下表:题号1、2、3、4、5、6、7、8、9、10得分率98%、98%、98%、86%、70%、41%、88%、98%、60%、76%。
题号11、12、13、14、15、16、17(1)、17(2)、18(1)、18(2)得分率82%、100%、62%、85%、50%、95%、96%、80%、96%、84%。
题号19(1)、19(2)、20、21、22、23、24、25、26、27得分率98%、94%、89%、96%、61%、52%、86%、81%、42%、62%。
(二)知识分布第二章有理数(14分):其中填空题第1、2、3题,共4分;选取题第13、8题,共2分;计算或化简第17(1)、(2)题,共8分。
第三章用字母表示数(19分):其中填空题第4、5、6题,共5分;计算或化简:第17(3)、(4)题,共8分;解答题:第26题,共6分。
第四章一元一次方程(19分):选取题第1题,共2分;简答题第19(1)、(2)题,第24题,共17分。
第五章走进图形世界(14分):选取题第12题,共2分;简答题第21、25题,共12分。
第六章平面图形的认识(34分):填空题第7、8、9、10题,共6分;选取题第14、15、16题,共6分;解答题第20、22、23、27题共22分。
二、试卷特点1、公正性和导向性并举。
试卷中第17题选自课本71页第8题(1)、(2),试卷中第18题选自课本108页第6题(5),试卷中第20题选自课本199页第3题,试卷中第21题选自课本169页“试一试”第3题改编;试卷中第22题选自课本212第11题改编。
初中学业水平考试数学试卷分析

初中学业水平考试数学试卷分析数学阅卷组一、试题总体分析2021年安徽省初中毕业学业考试数学试题严格依据《义务教育数学课程标准(2011年版)》,整份试题从我省初中数学教学实际出发,关注学生发展,立足学生实际,强调数学思想方法对试卷试题的引领,落实考基础同时又考能力的原则,突出能力为立意命题思想指导,突出数学核心素养在试题中的体现。
今年试题整体上持续了近五年安徽省中考数学试题的特点,试题总体呈现平稳,试卷起点低,坡度适中,层次分明,结构稳定,有良好的区分度、恰当的难度,既能准确测量初中毕业学生的数学水平,又能兼顾高中阶段招生选拔的需要。
是一份高质量的义务阶段终结性水平考试试卷.二、试卷结构分析试卷结构科学合理,延续了往年的题型和题量,各部分比例恰当。
试卷中选择题10题共40分,约占全卷的26.7%,填空题4题共20分,约占全卷的13.3%,解答题9题共90分,约占全卷的60%。
试题难度设置梯度合理,起点低、入口宽,有利于考生发挥自身水平。
整卷难度分布合理,容易题约占45%,中等题约占47%,较难试题约占8%。
整卷平均分估计为107.5,难度系数估计为0.72,充分体现了学业水平考试的性质,利于考生正常发挥水平。
表1-1 2021安徽省初中学业水平考试数学学科试卷考查知识点分布与难度系数表1-2:2021年安徽省初中毕业学业考试数学学科试卷的内容分布表1-3 2021年安徽省初中学业水平考试数学试卷涉及的数学思想、方法与核心概念观察表1-3可以看到,2021年安徽省初中毕业学业考试数学试卷全方位地考查了函数与方程,数形结合,分类讨论,转化与化归等核心数学思想方法,试卷加大了数感、符号意识、几何直观、运算能力、逻辑能力及应用意识的考查,体现了对数学核心素养的重视。
三、试卷特点分析2021年安徽省初中学业水平考试数学试卷兼顾学业水平考试和升学选拔考试的功能,严格依据《课程标准》,立足初中数学主干知识和重点内容,选用与学生生活和社会实际紧密联系的素材,在全面考查学生基础知识和基本能力的基础上,注意考查学生综合运用所学知识分析问题和解决问题的能力,体现正确的价值取向。
中考数学试卷分析

掌握和理解。同时,数学也是一门应用学科,需要学生具备一定的解题能力 和应用能力,因此教师也应该注重对学生基本技能的训练。
2、加强对学生思维能力的培养。数学是一门需要思考的学科,思维能力是 学生学好数学的关键。因此,教师在教学中应该注重对学生思维能力的培养,通 过多种方式引导学生积极思考、主动探索,培养学生的创新意识和解决问题的能 力。
参考内容
一、试题评价
本次数学中考试卷,覆盖面广,重点突出,难度适中,无偏题怪题,题型和 易中档题占比均合理。试题按照学生的认知规律和课标要求,注重基础知识的考 查和基本技能的训练。从考试情况看,大部分学生能够较好地掌握所学的概念、 公式及其基本计算方法,并能运用所学知识解决一些实际问题。
二、学生答题情况分析
一、考试概述
本试卷旨在模拟中考数学考试,提供学生在备考阶段进行自我评估和查漏补 缺的机会。试卷内容涵盖了初中数学的核心知识点和常见题型,难度适中,有利 于学生全面而准确地测试自己的数学水平。
二、试卷结构
本试卷分为选择题和解答题两部分,总分为100分。选择题每题4分,共20题; 解答题每题8分,共6题。考试时间为120分钟。
3、解题习惯不好。表现在:解题不规范,思考问题不周密,计算马虎等。
三、教学建议
1、要重视基础知识的落实。基础知识是数学的最基本的知识,是数学解题 的基础。离开了基础知识,数学解题就无从谈起。因此,基础知识一定要抓落实。 在数学教学中,对数学概念、图象、性质、公理、定理等一定要讲透,而且要讲 到位,
四、书写工整,保持卷面整洁
ቤተ መጻሕፍቲ ባይዱ
中考数学试卷质量分析报告

中考数学试卷质量分析报告民族九年制学校王磊一、试题概况1、覆盖面:试题的考点覆盖了《课标》的重要知识点,各部分比例按要求设置,数与代数为49%(74分左右),图形与几何为37%(55分左右),统计与概率为14%(21分左右);易、中、难按5:3:2的题序定位及分配分值。
2、试题结构:1~10题为选择题,每小题3分共30分;11~18题为填空题,每小题4分共32分;19~28题为解答题,分值为88分,总题量为28道题目,总分值为150分。
各种题型的题量、分数、结构合理,符合考试说明的要求。
3、试题的主要特点(1)全面考查“四基”,突出对基础知识、基本技能、基本思想和基本活动经验的考查,有较好的教学导向性。
(2)注重考查数学能力①把握知识的内在联系,考查学生综合运用数学的能力。
②注重考查学生的获取信息、分析问题、解决问题的能力。
③试卷设计时,选择题、填空题和解答题的最后一题的难度略有变化,考查学生在新问题情境中分析和解决问题能力,较好的培养学生的数学素养和思维能力。
(3)关注学生的创新精神、实践能力、学习能力①重视与实际生活的联系,加强了对学生运用知识分析和解决实际问题的考查。
②通过设置开放性试题、探索性试题,考查学生能否独立思考、能否从数学的角度去发现和提出问题,并加以探索研究和解决,从而考查学生的思维能力和创新意识。
4、紧扣课程内容,考查数学素养,体现学科特点试题对学生的“四基”、“四能”与“核心概念”的考查得到较好的体现。
(1)、题目立足于课标要求,全面考查“四基”紧扣《课标》要求及教材,立足考查基础知识、基本技能、基本思想、基本活动经验。
部分试题由教材中的题目改编而成。
例如:第1、3、4、5、6、13、14、17、20、21、22等题都是由课本上的例题、练习题、习题改编而成。
有些题也是学生见过的题目的合理改造而来。
(2)、注重考查数学能力试题关注学生的“数感”、“符号意识”、“空间观念”、“几何直观”、“数据分析观念”、“运算能力”、“推理能力”、“模型思想”、“创新意识”、“应用意识”的形成。
深圳市中考数学试卷分析报告

深圳中考数学试卷分析报告一.整体分析通过对近三年的深圳中考数学试卷的分析,试卷整体的设计思路体现了“注重双基、体现新意、适度区分”的思想。
具有以下几个特点:第一,注重双基和教学重点的考查。
试题考查重要的数学概念、性质和方法,包括重视双基和教材内容考查。
第二,体现新意。
客观性试题设计在不影响学生思维的前提下加强解释性。
综合性问题控制条件,降低试题的复杂性,却依然存在较多的思维入口,利于学生发挥真实水平。
第三,适度区分。
基础题、中档题、较难题的分值配比为8:1:1,中档题和较难题分散在不同试题中,既有利于适度区分,又有利于合理考查学生解决问题过程的认知水平差异。
二.板块分析图(1.1)从图(1.1)可以清晰的看出以下几点:1.几何与代数的考点最多分别为18个和13个,占所有考点的69%,所以这两个板块的知识是深圳中考的重点,很多考题集中在这两块出题目。
2.综合题型是考试中的难点也是考生成绩的区分点,考点很集中,主要是二次函数、圆、一次函数与几何的综合运用,重要把握这几大知识点就会抓住中考的精髓所在。
图(1.2)3 从图(1.2)我们可以在总的分值占比上代数知识的考点占了深圳近三年中考分值的1/3以上,是重要的考点,几何的知识板块占比也相当多,所以把握好这两个板块就抓住了深圳中考。
对于函数与几何的综合部分是重点也是难点更是必考点,所以务必当作重中之重来把握。
三. 年级分析图(1.3)图(1.4)从图(1.3)(1.4)我们可以看出各年级在中考的考试中占比有所侧重与不同,可以很清晰的看出来八年级的考点在所有考点占了近一半,所以八年级的学习很关键,它的知识点很多,考生务必重点把握八年级的学习,当然七年级与九年级的知识点同样重要,也要高度重视起来,才能在中考中立于不败之地。
四.知识点分析图(1.5)从图(1.5)我们可以看出以下几点:1.从分值占比这一块我们可以看出二次函数综合运用、圆的综合运用、解一元一次不等式(组)、分式化简、实数运算、图形对称、等腰梯形的性质、因式分解这几个知识点出现的分值都在10分以上,是考试的重难点,考生在务必熟练这些知识的同时,也要掌握其它考点。
2022年河南省中考数学试卷(解析版)

2022年河南省中考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的.1.12-的相反数是()A .12B .2C .2-D .12-【分析】直接利用相反数的定义得出即可.【解答】解:12-的相反数是:12.故选:A .2.2022年北京冬奥会的奖牌“同心”表达了“天地合⋅人心同”的中华文化内涵.将这六个汉字分别写在某正方体的表面上,如图是它的一种展开图,则在原正方体中,与“地”字所在面相对的面上的汉字是()A .合B .同C .心D .人【分析】根据正方体的表面展开图找相对面的方法,一线隔一个,即可解答.【解答】解:在原正方体中,与“地”字所在面相对的面上的汉字是人,故选:D .3.如图,直线AB ,CD 相交于点O ,EO CD ⊥,垂足为O .若154∠=︒,则2∠的度数为()A .26︒B .36︒C .44︒D .54︒【分析】首先利用垂直的定义得到90COE ∠=︒,然后利用平角的定义即可求解.【解答】解:EO CD ⊥ ,90COE ∴∠=︒,12180COE ∠+∠+∠=︒ ,21801180549036COE ∴∠=︒-∠-∠=︒-︒-︒=︒.故选:B .4.下列运算正确的是()A .2-=B .22(1)1a a +=+C .235()a a =D .2322a a a ⋅=【分析】利用二次根式的减法的法则,完全平方公式,幂的乘方的法则,单项式乘单项式的法则对各项进行运算即可.【解答】解:A 、=,故A 不符合题意;B 、22(1)21a a a +=++,故B 不符合题意;C 、236()a a =,故C 不符合题意;D 、2322a a a ⋅=,故D 符合题意.故选:D .5.如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,点E 为CD 的中点.若3OE =,则菱形ABCD 的周长为()A .6B .12C .24D .48【分析】由菱形的性质可得出AC BD ⊥,AB BC CD DA ===,再根据直角三角形斜边上的中线等于斜边的一半得出CD 的长,结合菱形的周长公式即可得出结论.【解答】解: 四边形ABCD 为菱形,AC BD ∴⊥,AB BC CD DA ===,COD ∴∆为直角三角形.3OE = ,点E 为线段CD 的中点,26CD OE ∴==.44624ABCD C CD ∴==⨯=菱形.故选:C .6.一元二次方程210x x +-=的根的情况是()A .有两个不相等的实数根B .没有实数根C .有两个相等的实数根D .只有一个实数根【分析】根据根的判别式进行判断即可.【解答】解:在一元二次方程210x x +-=中,1a =,1b =,1c =-,∴△224141(1)1450b ac =-=-⨯⨯-=+=>,∴原方程有两个不相等的实数根.故选:A .7.如图所示的扇形统计图描述了某校学生对课后延时服务的打分情况(满分5分),则所打分数的众数为()A .5分B .4分C .3分D .45%【分析】根据众数的定义求解即可.【解答】解:由扇形统计图知,得4分的人数占总人数的45%,人数最多,所以所打分数的众数为4分,故选:B .8.《孙子算经》中记载:“凡大数之法,万万曰亿,万万亿曰兆.”说明了大数之间的关系:1亿1=万1⨯万,1兆1=万1⨯万1⨯亿.则1兆等于()A .810B .1210C .1610D .2410【分析】根据同底数幂的乘法先求出1亿,再求1兆即可.【解答】解:1亿441010=⨯810=,1兆448101010=⨯⨯44810++=1610=,故选:C .9.如图,在平面直角坐标系中,边长为2的正六边形ABCDEF 的中心与原点O 重合,//AB x 轴,交y 轴于点P .将OAP ∆绕点O 顺时针旋转,每次旋转90︒,则第2022次旋转结束时,点A 的坐标为()A .1)-B .(1,-C .(,1)-D .【分析】由正六边形的性质可得A ,再根据由360904︒÷︒=可知,每4次为一个循环,由202245052÷=⋯⋯,可知点2022A 与点2A 重合,求出点2A 的坐标可得答案.【解答】解: 边长为2的正六边形ABCDEF 的中心与原点O 重合,2OA AB ∴==,60BAO ∠=︒,//AB x 轴,90APO ∴∠=︒,30AOP ∴∠=︒,AP ∴OP =,A ∴,将OAP ∆绕点O 顺时针旋转,每次旋转90︒,可知点2A 与D 重合,由360904︒÷︒=可知,每4次为一个循环,202245052∴÷=⋯⋯,∴点2022A 与点2A 重合,点2A 与点A 关于原点O 对称,2(1,A ∴-,∴第2022次旋转结束时,点A 的坐标为(1,-,故选:B .10.呼气式酒精测试仪中装有酒精气体传感器,可用于检测驾驶员是否酒后驾车.酒精气体传感器是一种气敏电阻(图1中的1)R ,1R 的阻值随呼气酒精浓度K 的变化而变化(如图2),血液酒精浓度M 与呼气酒精浓度K 的关系见图3.下列说法不正确的是()A .呼气酒精浓度K 越大,1R 的阻值越小B .当0K =时,1R 的阻值为100C .当10K =时,该驾驶员为非酒驾状态D .当120R =时,该驾驶员为醉驾状态【分析】观察图2可直接判断A 、B ,由10K =可算出M 的值,从而判断C ,观察图2可得120R =时K 的值,从而算出M 的值,即可判断D .【解答】解:由图2可知,呼气酒精浓度K 越大,1R 的阻值越小,故A 正确,不符合题意;由图2知,0K =时,1R 的阻值为100,故B 正确,不符合题意;由图3知,当10K =时,32200101022(/100)M mg mL -=⨯⨯=,∴当10K =时,该驾驶员为酒驾状态,故C 不正确,符合题意;由图2知,当120R =时,40K =,32200401088(/100)M mg mL -∴=⨯⨯=,∴该驾驶员为醉驾状态,故D 正确,不符合题意;故选:C .二、填空题(每小题3分,共15分)11.请写出一个y 随x 的增大而增大的一次函数的表达式:答案不唯一,如y x =.【分析】根据一次函数的性质只要使一次项系数大于0即可.【解答】解:例如:y x =,或2y x =+等,答案不唯一.12.不等式组30,12x x -⎧⎪⎨>⎪⎩的解集为23x <.【分析】先解出每个不等式的解集,即可得到不等式组的解集.【解答】解:3012x x -⎧⎪⎨>⎪⎩①②,解不等式①,得:3x ,解不等式②,得:2x >,∴该不等式组的解集是23x <,故答案为:23x <.13.为开展“喜迎二十大、永远跟党走、奋进新征程”主题教育宣讲活动,某单位从甲、乙、丙、丁四名宣讲员中随机选取两名进行宣讲,则恰好选中甲和丙的概率为16.【分析】画树状图,共有12种可能的结果,其中恰好选中甲和丙的结果有2种,再由概率公式求解即可.【解答】解:画树状图如下:共有12种可能的结果,其中恰好选中甲和丙的结果有2种,∴恰好选中甲和丙的概率为21126=,故答案为:16.14.如图,将扇形AOB 沿OB 方向平移,使点O 的中点O '处,得到扇形A O B '''.若90O ∠=︒,2OA =,则阴影部分的面积为32π+.【分析】如图,设O A ''交 AB 于点T ,连接OT .首先证明30OTO ∠'=︒,根据()OTO O A B OTB S S S S ∆''''=--阴扇形扇形求解即可.【解答】解:如图,设O A ''交 AB 于点T ,连接OT .OT OB = ,OO O B '='',2OT OO ∴=',90OO T ∠'=︒ ,30O TO ∴∠'=︒,60TOO ∠'=︒,()OTO O A B OTB S S S S ∆''''∴=--阴扇形扇形229026021(13603602ππ⋅⨯⋅⋅=--⨯3π=+.故答案为:3π+15.如图,在Rt ABC ∆中,90ACB ∠=︒,AC BC ==,点D 为AB 的中点,点P 在AC上,且1CP =,将CP 绕点C 在平面内旋转,点P 的对应点为点Q ,连接AQ ,DQ .当90ADQ ∠=︒时,AQ 的长为【分析】分两种情况:当点Q 在CD 上,当点Q 在DC 的延长线上,利用勾股定理分别进行计算即可解答.【解答】解:如图:90ACB ∠=︒ ,AC BC ==,4AB ∴==,点D 为AB 的中点,122CD AD AB ∴===,90ADC ∠=︒,90ADQ ∠=︒ ,∴点C 、D 、Q 在同一条直线上,由旋转得:1CQ CP CQ =='=,分两种情况:当点Q 在CD 上,在Rt ADQ ∆中,1DQ CD CQ =-=,AQ ∴==当点Q 在DC 的延长线上,在Rt ADQ ∆'中,3DQ CD CQ '=+'=,AQ ∴'=,综上所述:当90ADQ ∠=︒时,AQ 的长为,.三、解答题(本大题共8个小题,共75分)16.(10分)(1011()23-+;(2)化简:211(1x x x-÷-.【分析】(1)先算立方根、零指数幂、负整数指数幂,再算加减;(2)先通分,把除化为乘,再分解因式约分.【解答】解:(1)原式1312=-+52=;(2)原式(1)(1)1x x x x x +--=÷(1)(1)1x x x x x +-=⋅-1x =+.17.(9分)2022年3月23日下午,“天宫课堂”第二课在中国空间站开讲,神舟十三号乘组航天员翟志刚、王亚平、叶光富相互配合进行授课,这是中国空间站的第二次太空授课,被许多中小学生称为“最牛网课”.某中学为了解学生对“航空航天知识”的掌握情况,随机抽取50名学生进行测试,并对成绩(百分制)进行整理,信息如下:a .成绩频数分布表:成绩x (分)5060x <6070x <7080x <8090x <90100x 频数7912166b .成绩在7080x <这一组的是(单位:分):707172727477787878797979根据以上信息,回答下列问题:(1)在这次测试中,成绩的中位数是78.5分,成绩不低于80分的人数占测试人数的百分比为.(2)这次测试成绩的平均数是76.4分,甲的测试成绩是77分.乙说:“甲的成绩高于平均数,所以甲的成绩高于一半学生的成绩.”你认为乙的说法正确吗?请说明理由.(3)请对该校学生“航空航天知识”的掌握情况作出合理的评价.【分析】(1)根据中位数的定义求解即可,用不低于80分的人数除以被测试人数即可;(2)根据中位数的意义求解即可;(3)答案不唯一,合理均可.【解答】解:(1)这次测试成绩的中位数是第25、26个数据的平均数,而第25、26个数据分别为787978.52+=(分),所以这组数据的中位数是78.5分,成绩不低于80分的人数占测试人数的百分比为166100%44%50+⨯=,故答案为:78.5,44%;(2)不正确,因为甲的成绩77分低于中位数78.5分,所以甲的成绩不可能高于一半学生的成绩;(3)测试成绩不低于80分的人数占测试人数的44%,说明该校学生对“航空航天知识”的掌握情况较好(答案不唯一,合理均可).18.(9分)如图,反比例函数(0)k y x x =>的图象经过点(2,4)A 和点B ,点B 在点A 的下方,AC 平分OAB ∠,交x 轴于点C .(1)求反比例函数的表达式.(2)请用无刻度的直尺和圆规作出线段AC 的垂直平分线.(要求:不写作法,保留作图痕迹)(3)线段OA 与(2)中所作的垂直平分线相交于点D ,连接CD .求证://CD AB .【分析】(1)直接把点A 的坐标代入求出k 即可;(2)利用尺规作出线段AC 的垂直平分线m 即可;(3)证明DCA BAC ∠=∠,可得结论.【解答】(1)解: 反比例函数(0)k y x x =>的图象经过点(2,4)A ,248k ∴=⨯=,∴反比例函数的解析式为8y x=;(2)解:如图,直线m 即为所求.(3)证明:AC 平分OAB ∠,OAC BAC ∴∠=∠,直线m 垂直平分线段AC ,DA DC ∴=,OAC DCA ∴∠=∠,DCA BAC ∴∠=∠,//CD AB ∴.19.(9分)开封清明上河园是依照北宋著名画家张择端的《清明上河图》建造的,拂云阁是园内最高的建筑.某数学小组测量拂云阁DC 的高度,如图,在A 处用测角仪测得拂云阁顶端D 的仰角为34︒,沿AC 方向前进15m 到达B 处,又测得拂云阁顶端D 的仰角为45︒.已知测角仪的高度为1.5m ,测量点A ,B 与拂云阁DC 的底部C 在同一水平线上,求拂云阁DC 的高度(结果精确到1m .参考数据:sin 340.56︒≈,cos340.83︒≈,tan 340.67)︒≈.【分析】延长EF 交DC 于点H ,根据题意可得:90DHF ∠=︒,15EF AB ==米,1.5CH BF AE ===米,设FH x =米,在Rt DFH ∆中,利用锐角三角函数的定义求出FH 的长,然后在Rt DHE ∆中,利用锐角三角函数的定义列出关于x 的方程,进行计算即可解答.【解答】解:延长EF 交DC 于点H ,由题意得:90DHF ∠=︒,15EF AB ==米, 1.5CH BF AE ===米,设FH x =米,(15)EH EF FH x ∴=+=+米,在Rt DFH ∆中,45DFH ∠=︒,tan 45DH FH x ∴=⋅︒=(米),在Rt DHE ∆中,34DEH ∠=︒,tan 340.6715DH x EH x ∴︒==≈+,30.1x ∴≈,经检验:30.1x ≈是原方程的根,30.1 1.532DC DH CH ∴=+=+≈(米),∴拂云阁DC 的高度约为32米.20.(9分)近日,教育部印发《义务教育课程方案》和课程标准(2022年版),将劳动从原来的综合实践活动课程中独立出来.某中学为了让学生体验农耕劳动,开辟了一处耕种园,需要采购一批菜苗开展种植活动.据了解,市场上每捆A 种菜苗的价格是菜苗基地的54倍,用300元在市场上购买的A 种菜苗比在菜苗基地购买的少3捆.(1)求菜苗基地每捆A 种菜苗的价格.(2)菜苗基地每捆B 种菜苗的价格是30元.学校决定在菜苗基地购买A ,B 两种菜苗共100捆,且A 种菜苗的捆数不超过B 种菜苗的捆数.菜苗基地为支持该校活动,对A ,B 两种菜苗均提供九折优惠.求本次购买最少花费多少钱.【分析】(1)设菜苗基地每捆A 种菜苗的价格是x 元,根据用300元在市场上购买的A 种菜苗比在菜苗基地购买的少3捆,列方程可得菜苗基地每捆A 种菜苗的价格是20元;(2)设购买A 种菜苗m 捆,则购买B 种菜苗(100)m -捆,根据A 种菜苗的捆数不超过B 种菜苗的捆数,得m -≤100m ,即50m ≤,设本次购买花费w 元,有200.9300.9(100)92700w m m m =⨯+⨯-=-+,由一次函数性质可得本次购买最少花费2250元.【解答】解:(1)设菜苗基地每捆A 种菜苗的价格是x 元,根据题意得:300300354x x =+,解得20x =,经检验,20x =是原方程的解,答:菜苗基地每捆A 种菜苗的价格是20元;(2)设购买A 种菜苗m 捆,则购买B 种菜苗(100)m -捆,A 种菜苗的捆数不超过B 种菜苗的捆数,100m m ∴-,解得50m ,设本次购买花费w 元,200.9300.9(100)92700w m m m ∴=⨯+⨯-=-+,90-< ,w ∴随m 的增大而减小,50m ∴=时,w 取最小值,最小值为95027002250-⨯+=(元),答:本次购买最少花费2250元.21.(9分)小红看到一处喷水景观,喷出的水柱呈抛物线形状,她对此展开研究:测得喷水头P 距地面0.7m ,水柱在距喷水头P 水平距离5m 处达到最高,最高点距地面3.2m ;建立如图所示的平面直角坐标系,并设抛物线的表达式为2()y a x h k =-+,其中()x m 是水柱距喷水头的水平距离,()y m 是水柱距地面的高度.(1)求抛物线的表达式.(2)爸爸站在水柱正下方,且距喷水头P 水平距离3m .身高1.6m 的小红在水柱下方走动,当她的头顶恰好接触到水柱时,求她与爸爸的水平距离.【分析】(1)由抛物线顶点(5,3.2),设抛物线的表达式为2(5) 3.2y a x =-+,用待定系数法可得抛物线的表达式为2171010y x x =-++;(2)当 1.6y =时,217 1.61010x x -++=,解得1x =或9x =,即得她与爸爸的水平距离为2m 或6m .【解答】解:(1)由题意知,抛物线顶点为(5,3.2),设抛物线的表达式为2(5) 3.2y a x =-+,将(0,0.7)代入得:0.725 3.2a =+,解得110a =-,22117(5) 3.2101010y x x x ∴=--+=-++,答:抛物线的表达式为2171010y x x =-++;(2)当 1.6y =时,217 1.61010x x -++=,解得1x =或9x =,∴她与爸爸的水平距离为312()m -=或936()m -=,答:当她的头顶恰好接触到水柱时,与爸爸的水平距离是2m 或6m .22.(10分)为弘扬民族传统体育文化,某校将传统游戏“滚铁环”列入了校运动会的比赛项目.滚铁环器材由铁环和推杆组成.小明对滚铁环的启动阶段进行了研究,如图,滚铁环时,铁环O 与水平地面相切于点C ,推杆AB 与铅垂线AD 的夹角为BAD ∠,点O ,A ,B ,C ,D 在同一平面内.当推杆AB 与铁环O 相切于点B 时,手上的力量通过切点B 传递到铁环上,会有较好的启动效果.(1)求证:90BOC BAD ∠+∠=︒.(2)实践中发现,切点B 只有在铁环上一定区域内时,才能保证铁环平稳启动.图中点B是该区域内最低位置,此时点A 距地面的距离AD 最小,测得3cos 5BAD ∠=.已知铁环O 的半径为25cm ,推杆AB 的长为75cm ,求此时AD 的长.【分析】(1)本小题难度不大,方法颇多,方法1:如图1,过点B 作//EF CD ,分别交AD 于点E ,交OC 于点F .首先证明90BOC OBF ∠+∠=︒,90ABE BAD ∠+∠=︒;再根据B 是切点得出90OBA ∠=︒.后面就很简单的证明出结论;方法2:如图2,延长OB 交CD 于点M .因为AB 为O 的切线,所以根据切线性质得到,90OBA ∠=︒,90ABM ∠=︒.再根据四边形、三角形的内角和即可证明;方法3:如图3,过点B 作//BN AD ,根据两直线平行,内错角相等和切线性质,可以很简单的证明问题;(2)利用(1)中图1的辅助线即可解答.首先根据条件75AB =,3cos 5BAD ∠=,得到45AE =.再利用(1)证明出的,OBF BAD ∠=∠,能得到四边形CDEF 为矩形,所以5DE CF ==,从而得到50AD AE ED cm =+=.【解答】(1)证明:方法1:如图1,过点B 作//EF CD ,分别交AD 于点E ,交OC 于点F .CD 与O 相切于点C ,90OCD ∴∠=︒.AD CD ⊥ ,90ADC ∴∠=︒.//EF CD ,90OFB AEB ∴∠=∠=︒,90BOC OBF ∴∠+∠=︒,90ABE BAD ∠+∠=︒,AB 为O 的切线,90OBA ∴∠=︒.90OBF ABE ∴∠+∠=︒,90OBF ∴∠=︒.90OBF ABE ∴∠+∠=︒,OBF BAD ∴∠=∠,90BOC BAD ∴∠+∠=︒;方法2:如图2,延长OB 交CD 于点M .CD 与O 相切于点C ,90OCM ∴∠=︒,90BOC BMC ∴∠+∠=︒,AD CD ⊥ ,90ADC ∴∠=︒.AB 为O 的切线,90OBA ∴∠=︒,90ABM ∴∠=︒.∴在四边形ABMD 中,180BAD BMD ∠+∠=︒.180BMC BMD ∠+∠=︒ ,BMC BAD ∴∠=∠.90BOC BAD ∴∠+∠=︒;方法3:如图3,过点B 作//BN AD ,NBA BAD ∴∠=∠.CD 与O 相切于点C ,90OCD ∴∠=︒,AD CD ⊥ ,90ADC ∴∠=︒.//AD OC ∴,//BN OC ∴,NBO BOC ∴∠=∠.AB 为OO 的切线,90OBA ∴∠=︒,90NBO NBA ∴∠+∠=︒,90BOC BAD ∴∠+∠=︒.(2)解:如图1,在Rt ABE ∆中,75AB = ,3cos 5BAD ∠=,45AE ∴=.由(1)知,OBF BAD ∠=∠,3cos 5OBF ∴∠=,在Rt OBF ∆中,25OB = ,15BF ∴=,20OF ∴=.25OC = ,5CF ∴=.90OCD ADC CFE ∠=∠=∠=︒ ,∴四边形CDEF 为矩形,5DE CF ∴==,50AD AE ED cm ∴=+=.23.(10分)综合与实践综合与实践课上,老师让同学们以“矩形的折叠”为主题开展数学活动.(1)操作判断操作一:对折矩形纸片ABCD ,使AD 与BC 重合,得到折痕EF ,把纸片展平;操作二:在AD 上选一点P ,沿BP 折叠,使点A 落在矩形内部点M 处,把纸片展平,连接PM ,BM .根据以上操作,当点M 在EF 上时,写出图1中一个30︒的角:EMB ∠或CBM ∠或ABP ∠或CBM ∠(任写一个即可).(2)迁移探究小华将矩形纸片换成正方形纸片,继续探究,过程如下:将正方形纸片ABCD 按照(1)中的方式操作,并延长PM 交CD 于点Q ,连接BQ .①如图2,当点M 在EF 上时,MBQ ∠=︒,CBQ ∠=︒;②改变点P 在AD 上的位置(点P 不与点A ,D 重合),如图3,判断MBQ ∠与CBQ ∠的数量关系,并说明理由.(3)拓展应用在(2)的探究中,已知正方形纸片ABCD 的边长为8cm ,当1FQ cm =时,直接写出AP 的长.【分析】(1)由折叠的性质可得12AE BE AB ==,90AEF BEF ∠=∠=︒,AB BM =,ABP PBM ∠=∠,由锐角三角函数可求30EMB ∠=︒,即可求解;(2)①由“HL ”可证Rt BCQ Rt BMQ ∆≅∆,可得15CBQ MBQ ∠=∠=︒;②由“HL ”可证Rt BCQ Rt BMQ ∆≅∆,可得CBQ MBQ ∠=∠;(3)分两种情况讨论,由折叠的性质和勾股定理可求解.【解答】解:(1) 对折矩形纸片ABCD ,12AE BE AB ∴==,90AEF BEF ∠=∠=︒, 沿BP 折叠,使点A 落在矩形内部点M 处,AB BM ∴=,ABP PBM ∠=∠,1sin 2BE BME BM ∠== ,30EMB ∴∠=︒,60ABM ∴∠=︒,30CBM ABP CBM ∴∠=∠=∠=︒,故答案为:EMB ∠或CBM ∠或ABP ∠或CBM ∠(任写一个即可);(2)①由(1)可知30CBM ∠=︒,四边形ABCD 是正方形,AB BC ∴=,90BAD C ∠=∠=︒,由折叠可得:AB BM =,90BAD BMP ∠=∠=︒,BM BC ∴∠=,90BMQ C ∠=∠=︒,又BQ BQ = ,Rt BCQ Rt BMQ(HL)∴∆≅∆,15CBQ MBQ ∴∠=∠=︒,故答案为:15,15;②MBQ CBQ ∠=∠,理由如下:四边形ABCD 是正方形,AB BC ∴=,90BAD C ∠=∠=︒,由折叠可得:AB BM =,90BAD BMP ∠=∠=︒,BM BC ∴∠=,90BMQ C ∠=∠=︒,又BQ BQ = ,Rt BCQ Rt BMQ(HL)∴∆≅∆,CBQ MBQ ∴∠=∠;(3)由折叠的性质可得4DF CF cm ==,AP PQ =,Rt BCQ Rt BMQ ∆≅∆ ,CQ MQ ∴=,当点Q 在线段CF 上时,1FQ cm = ,3MQ CQ cm ∴==,5DQ cm =,222PQ PD DQ =+ ,22(3)(8)25AP AP ∴+=-+,4011AP ∴=,当点Q 在线段DF 上时,1FQ cm = ,5MQ CQ cm ∴==,3DQ cm =,222PQ PD DQ =+ ,22(5)(8)9AP AP ∴+=-+,2413AP ∴=,综上所述:AP 的长为4011cm 或2413cm .。
初中毕业生学业考试数学试卷分析报告

初中毕业生学业考试数学试卷分析报告中考数学试题遵循《义务教育数学课程标准(2011年版)》(以下简称《课程标准》)和《考试说明》的基本要求严格命制,整卷题目具有覆盖面大、重点突出、难度适中、坡度合理和比例恰当等特点,体现新课程改革的理念,既考查学生的基本知识,基本技能,基本思想方法和基本活动经验,又注重考查学生发现问题、提出问题、分析问题和解决问题的能力。
一、试题特点分析今年的中考数学试卷与前两年相比,题型、题量与题目难度分布情况均没有太大变化,试题由选择题、填空题和解答题构成,共24题,总体难度与去年基本持平,但最难的题目难度没有去年高,体现“把握基础、稳中求变、关注应用、突出能力”的命题特点,纵观整份试题呈现有以下特点:(一)以学生发展为本,注重考查学生对基础知识的理解试题关注对本学段基础知识,基本技能、基本思想方法的理解和掌握程度的考查。
在数与代数方面,加强对概念法则及运算的理解和运用水平的考查如:第1、2、3、6、8、9、10、12、15、16、19、20题。
在图形与几何方面,加强对几何事实的理解空间观念的发展以及合情推理和演绎能力的考查,如:第5、7、13、14、17、18、22题。
另外,作为压轴题的第23、24题的第(1)小题也是基础知识题型。
在统计与概率方面,如:第4、11、21题,也是关注基础知识的考查,同时第11、21题的背景来源于现实生活,是学生比较熟悉的素材,重视数学与生活之间的联系。
试卷的设计与结构编排注重人性化,整卷和各题目的阅读量控制较为合理,这样的设计减少了学生答题的畏惧感和不必要的心理压力,特别是相当一部分中等学生和学习后进生,有利于发挥学生的真实水平。
(二)面向全体,关注不同层次学生的发展本份试题中有容易题、中等题和较难题,试卷按题型呈现从容易题到较难题的排列。
整份试卷大部分试题是学生日常学习中常见、熟悉的题型。
基本题、典型题所占比例较大,符合《考试说明》的难易比例7:2:1中的7,而且提供了开放、应用、信息分析、探究等类型的试题。