三角形的内角和与外角和关系(提高)巩固练习

合集下载

人教版八年级上册数学第11章 三角形 阶段题型专训 三角形内角和及内、外角关系应用的八种常见题型

人教版八年级上册数学第11章 三角形 阶段题型专训 三角形内角和及内、外角关系应用的八种常见题型
解:∠BDC=∠A+∠ABD+∠ACD. 理由:∵∠BDC+∠DBC+∠DCB=180°, ∠A+∠ABC+∠ACB=∠A+∠ABD+∠ACD +∠DBC+∠DCB=180°, ∴∠BDC=∠A+∠ABD+∠ACD.
应用:某零件如图②所示,图纸要求∠A=90°,∠B=32°,∠C=21°,当检验 员量得∠BDC=145°时,就断定这个零件不合格.你能说出其中的道理吗?
解:如图,连接BC. 由上述结论得: 合格零件中∠BDC=∠A+∠ABD+∠ACD=143°, 又∵检验员量得∠BDC=145°≠143°,∴这个零件不合格.
2.如图,在△ABC中,点P是∠ABC,∠ACB的平分线的交点. (1)若∠A=80°,求∠BPC的度数.
解:∵BP,CP 分别为∠ABC,∠ACB 的平分线, ∴∠PBC+∠PCB=12(∠ABC+∠ACB)=12(180°-∠A)=12×(180° -80°)=50°. ∴∠BPC=180°-(∠PBC+∠PCB)=180°-50°=130°.
(2)求∠D的度数.
解:∵D 是外角∠ACH 与内角∠ABC 平分线的交点, ∴∠DCH=12∠ACH,∠DBC=12∠ABC, ∴∠D=∠DCH-∠DBC=12(∠ACH-∠ABC)=12∠A=30°.
8.如图,求∠1+∠2+∠3+∠4+∠5+∠6+∠7的度数.
【点拨】连接CG,利用转化思想,将求∠1+∠2+∠3+∠4+∠5+∠6+∠7的 和转化为求多边形DCGFE的内角和.
解:如图,连接CG. 在△COG和△AOB中,∠COG=∠AOB, ∴∠6+∠7=∠OCG+∠OGC. 在五边形CDEFG中,∠1+∠2+∠3+∠4+∠5+∠OCG+∠OGC=540°, ∴∠1+∠2+∠3+∠4+∠5+∠6+∠7=540°.

(完整版)三角形内角和外角练习题

(完整版)三角形内角和外角练习题

规律方法指导1.三角形内角和为180°,三角形三个外角的和是360°,这是在做题时题设不用加以说明的已知条件;在三个角中已知其中两个角的度数便能求第三个角的大小。

2.在一个三角形中最多只能有一个钝角或者一个直角,最少有两个锐角。

3.三角形内角和定理和三角形外角的性质是求角度数及有关的推理论证时经常使用的理论依据.外角的性质应用:①证明一个角等于另两个角的和;②作为中间关系式证明两角相等;③证明角的不等关系。

4.利用作辅助线求解问题,会使问题变得简便。

经典例题透析类型一:三角形内角和定理的应用1.已知一个三角形三个内角度数的比是1:5:6,则其最大内角的度数为( )A.60° B.75° C.90° D.120°举一反三:【变式1】在△ABC中,∠A=55°,∠B比∠C大25°,则∠B的度数为( )A.50° B.75°C.100° D.125°【变式2】三角形中至少有一个角不小于________度。

类型二:利用三角形外角性质证明角不等2.如图所示,已知CE是△ABC外角∠ACD的平分线,CE交BA延长线于点E。

求证:∠BAC >∠B。

举一反三:【变式】如图所示,用“<”把∠1、∠2、∠A联系起来________。

类型三:三角形内角和定理与外角性质的综合应用3.如图,求∠A+∠B+∠C+∠D+∠E的度数.举一反三:【变式】如图所示,五角星ABCDE中,试说明∠A+∠B+∠C+∠D+∠E=180°。

类型四:与角平分线相关的综合问题4.如图9,△ABC中,∠ABC、∠ACB的平分线相交于点D.(1)若∠ABC=70°,∠ACB=50°,则∠BDC=________;(2)若∠ABC+∠ACB=120°,则∠BDC=________;(3)若∠A=60°,则∠BDC=________;(4)若∠A=100°,则∠BDC=________;(5)若∠A=n°,则∠BDC=________.举一反三:【变式1】如图10,BE是∠ABD的平分线,CF是∠ACD的平分线,BE与CF交于G,若∠BDC= 140°,∠BGC=110°,求∠A的大小.80【变式2】如图11, △ABC的两个外角的平分线相交于点D,如果∠A=50°,求∠D.【变式3】如图12,在△ABC中,AE是角平分线,且∠B=52°,∠C=78°,则∠AEB的度数是_____.【变式4】(2009北京四中期末)如图所示,△ABC的外角∠CBD、∠BCE的平分线相交于点F,若∠A=68°,求∠F的度数。

八年级数学上学期《三角形》全章复习与巩固—知识讲解(提高)——含课后作业与答案

八年级数学上学期《三角形》全章复习与巩固—知识讲解(提高)——含课后作业与答案

《三角形》全章复习与巩固(提高)知识讲解1.认识三角形并能用符号语言正确表示三角形,理解并会应用三角形三边之间的关系.2.理解三角形的高、中线、角平分线的概念,通过作三角形的三条高、中线、角平分线,提高学生的基本作图能力,并能运用图形解决问题.3.能够运用三角形内角和定理及三角形的外角性质进行相关的计算,证明问题.4.通过观察和实地操作知道三角形具有稳定性,知道四边形没有稳定性,了解稳定性与没有稳定性在生产、生活中的广泛应用.5.了解多边形、多边形的对角线、正多边形以及镶嵌等有关的概念;掌握多边形内角和及外角和,并能灵活运用公式解决有关问题,体验并掌握探索、归纳图形性质的推理方法,进一步培养说理和进行简单推理的能力.【知识网络】【要点梳理】要点一、三角形的有关概念和性质1.三角形三边的关系:定理:三角形任意两边之和大于第三边;三角形任意两边的之差小于第三边.要点诠释:(1)理论依据:两点之间线段最短.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围.2.三角形按“边”分类:⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形 底边和腰不相等的等腰三角形等腰三角形 等边三角形 3.三角形的重要线段:(1)三角形的高从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高.要点诠释:三角形的三条高所在的直线相交于一点的位置情况有三种:锐角三角形交点在三角形内;直角三角形交点在直角顶点;钝角三角形交点在三角形外.(2)三角形的中线三角形的一个顶点与它的对边中点的连线叫三角形的中线,要点诠释:一个三角形有三条中线,它们交于三角形内一点,叫做三角形的重心.中线把三角形分成面积相等的两个三角形.(3)三角形的角平分线三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.要点诠释:一个三角形有三条角平分线,它们交于三角形内一点,这一点叫做三角形的内心.要点二、三角形的稳定性如果三角形的三边固定,那么三角形的形状大小就完全固定了,这个性质叫做三角形的稳定性.要点诠释:(1)三角形的形状固定是指三角形的三个内角不会改变,大小固定指三条边长不改变.(2)三角形的稳定性在生产和生活中很有用.例如,房屋的人字梁具有三角形的结构,它就坚固而稳定;在栅栏门上斜着钉一条(或两条)木板,构成一个三角形,就可以使栅栏门不变形.大桥钢架、输电线支架都采用三角形结构,也是这个道理.(3)四边形没有稳定性,也就是说,四边形的四条边长确定后,不能确定它的形状,它的各个角的大小可以改变.四边形的不稳定性也有广泛应用,如活动挂架,伸缩尺.有时我们又要克服四边形的不稳定性,如在窗框未安好之前,先在窗框上斜着钉一根木板,使它不变形.要点三、三角形的内角和与外角和1.三角形内角和定理:三角形的内角和为180°.推论:1.直角三角形的两个锐角互余2.有两个角互余的三角形是直角三角形2.三角形外角性质:(1)三角形的一个外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于任意一个与它不相邻的内角.3.三角形的外角和:三角形的外角和等于360°.要点四、多边形及有关概念1. 多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.要点诠释:多边形通常还以边数命名,多边形有n条边就叫做n边形.三角形、四边形都属于多边形,其中三角形是边数最少的多边形.2.正多边形:各个角都相等、各个边都相等的多边形叫做正多边形.如正三角形、正方形、正五边形等.要点诠释:各角相等、各边也相等是正多边形的必备条件,二者缺一不可. 如四条边都相等的四边形不一定是正方形,四个角都相等的四边形也不一定是正方形,只有满足四边都相等且四个角也都相等的四边形才是正方形.3.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.要点诠释:(1)从n边形一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形;(2)n边形共有(3)2n n-条对角线.要点五、多边形的内角和及外角和公式1.内角和公式:n边形的内角和为(n-2)·180°(n≥3,n是正整数) .要点诠释:(1)一般把多边形问题转化为三角形问题来解决;(2)内角和定理的应用:①已知多边形的边数,求其内角和;②已知多边形内角和,求其边数.2.多边形外角和:n边形的外角和恒等于360°,它与边数的多少无关.要点诠释:(1)外角和公式的应用:①已知外角度数,求正多边形边数;②已知正多边形边数,求外角度数.(2)多边形的边数与内角和、外角和的关系:①n边形的内角和等于(n-2)·180°(n≥3,n是正整数),可见多边形内角和与边数n有关,每增加1条边,内角和增加180°.要点六、镶嵌的概念和特征1.定义:用一些不重叠摆放的多边形把平面的一部分完全覆盖,通常把这类问题叫做用多边形覆盖平面(或平面镶嵌).这里的多边形可以形状相同,也可以形状不相同.要点诠释:(1)拼接在同一点的各个角的和恰好等于360°;相邻的多边形有公共边.(2)用正多边形实现镶嵌的条件:边长相等;顶点公用;在一个顶点处各正多边形的内角之和为360°.(3)只用一种正多边形镶嵌地面,当围绕一点拼在一起的几个正多边形的内角加在一起恰好组成一个周角360°时,就能铺成一个平面图形.事实上,只有正三角形、正方形、正六边形的地砖可以用.【典型例题】类型一、三角形的三边关系1.(2016•长沙模拟)一个三角形的三边长分别是3,2a-1,6,则整数a的值可能是( ).A.2,3 B.3,4 C.2,3,4 D.3,4,5【思路点拨】直接利用三角形三边关系,得出a的取值范围.【答案】B【解析】解:∵一个三角形的三条边长分别为3,2a-1,6,∴21 219 aa-⎧⎨-⎩>3<解得:2<a<5,则整数a的值可能是3,4,故选B.【总结升华】主要考察了三角形三边关系,正确得出a的取值范围是解题关键. 举一反三:【变式】(2014秋•孝感月考)已知a、b、c是三角形三边长,试化简:|b+c-a|+|b-c-a|+|c-a-b|﹣|a-b+c|.【答案】解:∵a、b、c是三角形三边长,∴b+c-a>0,b-c-a<0,c-a-b<0,a-b+c>0,∴|b+c-a|+|b-c-a|+|c-a-b|-|a-b+c|,=b+c-a-b+c+a-c+a+b-a+b-c=2b.2.如图,O是△ABC内一点,连接OB和OC.(1)你能说明OB+OC<AB+AC的理由吗?(2)若AB=5,AC=6,BC=7,你能写出OB+OC的取值范围吗?【答案与解析】解:(1)如图,延长BO交AC于点E,根据三角形的三边关系可以得到,在△ABE中,AB+AE>BE;在△EOC中,OE+EC>OC,两不等式相加,得AB+AE+OE+EC>BE+OC.由图可知,AE+EC=AC,BE=OB+OE.所以AB+AC+OE>OB+OC+OE,即OB+OC<AB+AC.(2)因为OB+OC>BC,所以OB+OC>7.又因为OB+OC<AB+AC,所以OB+OC<11,所以7<OB+OC<11.【总结升华】充分利用三角形三边关系的性质进行解题.【高清课堂:与三角形有关的线段例1】类型二、三角形中的重要线段3.在△ABC中,AB=AC,AC边上的中线BD把△ABC的周长分为12cm和15cm两部分,求三角形的各边长.【思路点拨】因为中线BD的端点D是AC边的中点,所以AD=CD,造成两部分不等的原因是BC边与AB、AC边不等,故应分类讨论.【答案与解析】解:如图(1),设AB=x,AD=CD=12 x.(1)若AB+AD=12,即1122x x+=,所以x=8,即AB=AC=8,则CD=4.故BC=15-4=11.此时AB+AC>BC,所以三边长为8,8,11.(2)如图(2),若AB+AD=15,即1152x x+=,所以x=10.即AB=AC=10,则CD=5.故BC=12-5=7.显然此时三角形存在,所以三边长为10,10,7.综上所述此三角形的三边长分别为8,8,11或10,10,7.【总结升华】BD把△ABC的周长分为12cm和15cm两部分,哪部分是12cm,哪部分是15cm,问题中没有交代,因此,必须进行分类讨论.【高清课堂:与三角形有关的线段例5、】举一反三:【变式】有一块三角形优良品种试验田,现引进四个品种进行对比试验,需将这块土地分成面积相等的四块,请你制定出两种以上的方案供选择.【答案】解:方案1:如图(1),在BC上取D、E、F,使BD=ED=EF=FC,连接AE、AD、AF.方案2:如图(2),分别取AB、BC、CA的中点D、E、F,连接DE、EF、DF.方案3:如图(3),取AB中点D,连接AD,再取AD的中点E,连接BE、CE.方案4:如图(4),在 AB取点 D,使DC=2BD,连接AD,再取AD的三等分点E、F,连接CE、CF.类型三、与三角形有关的角4.(2015春•石家庄期末)已知△ABC中,AE平分∠BAC(1)如图1,若AD⊥BC于点D,∠B=72°,∠C=36°,求∠DAE的度数;(2)如图2,P为AE上一个动点(P不与A、E重合,PF⊥BC于点F,若∠B>∠C,则∠EP F=是否成立,并说明理由.【思路点拨】(1)利用三角形内角和定理和已知条件直接计算即可;(2)成立,首先求出∠1的度数,进而得到∠3的度数,再根据∠EPF=180°﹣∠2﹣∠3计算即可.【答案与解析】证明:(1)如图1,∵∠B=72°,∠C=36°,∴∠A=180°﹣∠B﹣∠C=72°;又∵AE平分∠BAC,∴∠1==36°,∴∠3=∠1+∠C=72°,又∵AD⊥BC于D,∴∠2=90°,∴∠DAE=180°﹣∠2﹣∠3=18°.(2)成立.如图2,∵AE平分∠BAC,∴∠1===90°﹣,∴∠3=∠1+∠C=90°﹣+,又∵PF⊥BC于F,∴∠2=90°,∴∠EPF=180°﹣∠2﹣∠3=.【总结升华】本题考查了三角形的内角以及角平分线的性质,准确识别图形是解题的关键.举一反三:【高清课堂:与三角形有关的角练习(3)】【变式】如图,AC⊥BC,CD⊥AB,图中有对互余的角?有对相等的锐角?【答案】3,2.类型四、三角形的稳定性5. 如图是一种流行的衣帽架,它是用木条(四长四短)构成的几个连续的菱形(四条边都相等),每一个顶点处都有一个挂钩(连在轴上),不仅美观,而且实用,你知道它能收缩的原因和固定方法吗?【答案与解析】解:这种衣帽架能收缩是利用四边形的不稳定性,可以根据需要改变挂钩间的距离。

八年级数学 《三角形》全章复习与巩固—巩固练习(提高)【名校试题+详解答案】

八年级数学 《三角形》全章复习与巩固—巩固练习(提高)【名校试题+详解答案】

《三角形》全章复习与巩固(提高)巩固练习【巩固练习】一、选择题1.如果三条线段的比是:①1:3:4;②1:2:3;③1:4:6;④3:3:6;⑤6:6:10;⑥3:4:5,其中可构成三角形的有( )A.1个 B.2个 C.3个 D.4个2.下列正多边形能够进行镶嵌的是()A.正三角形与正五边形 B.正方形与正六边形C.正方形与正八边形 D.正六边形与正八边形3.一个三角形的周长是偶数,其中的两条边分别为5和9,则满足上述条件的三角形个数为 ( )A.2个 B.4个 C.6个 D.8个4.如图,如果把△ABC沿AD折叠,使点C落在边AB上的点E处,那么折痕(线段AD)是△ABC 的( )A.中线 B.角平分线 C.高 D.既是中线,又是角平分线5.如图,AC⊥BC,CD⊥AB,DE⊥BC,则下列说法中错误的是 ( )A.在△ABC中,AC是BC边上的高B.在△BCD中,DE是BC边上的高C.在△ABE中,DE是BE边上的高D.在△ACD中,AD是CD边上的高6.每个外角都相等的多边形,如果它的一个内角等于一个外角的9倍,则这个多边形的边数( )A.19 B.20 C.21 D.227.给出下列图形:其中具有稳定性的是( )A.① B.③ C.②③ D.②③④8.已知三角形的一个外角等于60°,且三角形中与这个外角不相邻的两个内角中,其中一个比另一个大10°,则这个三角形的三个内角分别是()A.120°,35°,25° B.110°,45°,25°C.100°,55°,25° D.120°,40°,20°二、填空题10.若a、b、c表示△ABC的三边长,则|a-b-c|+|b-c-a|+|c-a-b|=________.11.三角形的两边长分别为5 cm和12 cm,第三边与前两边中的一边相等,则三角形的周长为________.12.一个多边形的内角和比它的外角和的2倍还大180°,这个多边形的边数为.13.如图,在△ABC中,D是BC边上的任意一点,AH⊥BC于H,图中以AH为高的三角形的个数为______个.14. 用正三角形和正方形镶嵌平面,每一个顶点处有个正三角形和个正方形.15.请你观察上图的变化过程,说明四条边形的四条边一定时,其面积________确定.(填“能”或“不能”)16.如图,是用四根木棒搭成的平行四边形框架,AB=8cm,AD=6cm,使AB固定,转动AD,当∠DAB=_____时,ABCD的面积最大,最大值是________.三、解答题17.草原上有4口油井,位于四边形ABCD的四个顶点上,如图所示,如果现在要建一个维修站H,试问H建在何处,才能使它到4口油井的距离之和HA+HB+HC+HD为最小,说明理由.18.一个多边形截去一个角后,形成新多边形的内角和为2520°,求原多边形边数.19.已知AD是△ABC的高,∠BAD=70°,∠CAD=20°,(1)求∠BAC的度数.(2)△ABC是什么三角形.20.如图,一个四边形木框,四边长分别为AB=8cm,BC=6cm,CD=4cm.AD=5cm,它的形状是不稳定的,求AC和BD的取值范围.【答案与解析】一、选择题1. 【答案】B;【解析】根据两边之和大于第三边:⑤⑥满足.2. 【答案】C;【解析】解:A、正三角形的每个内角是60°,正五边形每个内角是180°﹣360°÷5=108°,60m+108n=360°,m=6﹣n,显然n取任何正整数时,m不能得正整数,故不能够进行镶嵌,不符合题意;B、正方形的每个内角是90°,正六边形的每个内角是120°,90m+120n=360°,m=4﹣n,显然n取任何正整数时,m不能得正整数,故不能够进行镶嵌,不符合题意;C、正方形的每个内角是90°,正八边形的每个内角为:180°﹣360°÷8=135°,∵90°+2×135°=360°,∴能够组成镶嵌,符合题意;D、正八边形的每个内角为:180°﹣360°÷8=135°,正六边形的每个内角是120°,135m+120n=360°,n=3﹣m,显然m取任何正整数时,n不能得正整数,故不能够进行镶嵌,不符合题意.3. 【答案】B;【解析】5+9=14,所以第三边长应为偶数,大于4而小于14的偶数有4个,所以4. 【答案】B;【解析】折叠前后的图形完全相同.5. 【答案】C;【解析】三角形高的定义.6. 【答案】B;【解析】设外角为x则内角为9x,因为每一个内角与它的外角互为邻补角∴x+ 9x=180°;x=18°∵多边形的外角和为360°∴360°÷18°=20∴ 此多边形为20边形7. 【答案】C;【解析】均是由三角形构成的图形,具有稳定性.8. 【答案】AB;【解析】设三角形中与这个外角不相邻的两个内角中较小的为x,则另一个为x+10.x+x+10=60°,解得x=25°.所以三个内角分别是:120°,35°,25°.二、填空题++;10. 【答案】a b c【解析】根据三角形的三边关系可以去掉绝对值,再对原式进行化简.11.【答案】29cm;12.【答案】7;13.【答案】6;14.【答案】3;2;【解析】正三角形的每个内角是60°,正方形的每个内角是90°,∵3×60°+2×90°=360°,∴用正三角形和正方形镶嵌平面,每一个顶点处有3个正三角形和2个正方形.15.【答案】不能;【解析】因为四边形的高不能确定.16.【答案】90°, 48 cm2;三、解答题17.【解析】解:维修站应建在四边形两对角线AC、BD的交点H处,理由如下:取不同于H的F点,根据三角形两边之和大于第三边可得;FD+FB>HD+HB,FC+FA>HC+HA.所以:FD+FB+FC+FA>HD+HB+HC+HA,即HD+HB+HC+HA为最小.18.【解析】解:设新多边形的边数为n,则(n﹣2)•180°=2520°,解得n=16,①若截去一个角后边数增加1,则原多边形边数为15,②若截去一个角后边数不变,则原多边形边数为16,③若截去一个角后边数减少1,则原多边形边数为17,所以多边形的边数可以为15,16或17.故答案为:15,16或17.19.【解析】解:(1)当高AD在△ABC的内部时(如图(1)).因为∠BAD=70°,∠CAD=20°,所以∠BAC=∠BAD+∠CAD=70°+20°=90°.当高AD在△ABC的外部时(如图(2)).因为∠BAD=70°,∠CAD=20°,所以∠BAC=∠BAD-∠CAD=70°-20°=50°.综上可知∠BAC的度数为90°或50°.(2)如图(1),当AD在△ABC的内部时,因为∠BAC=∠BAD+∠CAD=70°+20°=90°,所以△ABC是直角三角形.如图(2),当AD在△ABC的外部时,因为∠BAC=∠BAD-∠CAD=70°-20°=50°,∠ABC=90°-∠BAD=90°-70°=20°,所以∠ACB=180°-∠ABC-∠BAC=180°-50°-20°=110°.所以△ABC为钝角三角形.综上可知,△ABC是直角三角形或钝角三角形.20.【解析】解:2cm<AC<9cm 3cm<BD<10cm。

三角形内角和、外角定理(含详细解答)

三角形内角和、外角定理(含详细解答)

三角形内角和、外角定理(含详细解答)-CAL-FENGHAL-(YICAI)-Company One 1三角形内角和、外角和定理选择题(共10小题)(2013?泉州〉在AABC 中,Z A=20\ Z B=60\ 则△ ABC 的形状是(等边三角形 B・锐角三角形 C.直角三角形(2012?河源)如图,在折纸活动中,小明制作了一张△ABC纸片.点D、E分别是边AB. AC上,将△ ABC沿着DE折叠压平,小£重合,若Z A=75\则Z 1+Z 2=()4. (2012?云南〉如图,在AABC 中,Z 6=67% Z C=33%C.105°D 75°A 40°45°B・C.50°D 55°A ABC中,Z C=70%若沿图中虚线截去ZC,则Z 1+Z 2=(5. (2012?南通)如图,250°B・C. 180" D 140°6. (2012?桶州)如图,AE是^ ABC的角平分线,AD丄BC于点D.若Z BAC=128\ Z C=36\则Z DAE的度数是1.A 钝角三角形2.A(2012?滨州〉一个三角形三个内角的度数之比为2:3:等腰三角形 B・直角三角形 C.锐角三角形7,D这个三角形一定是(钝角三角形3-AD是AABC的角平分线,则ZCAD的度数为(A 10°B・12°C・15°D 18°已知宜线 AB II CD, Z8125°,Z A=45\那么Z E的大小为(7. (2011?日照〉如图,80°C.90°D 100°& (2011?台湾〉列何者正确(如图中有四条互相不平行的直线Li、L2、L3、L4所截出的七个角.关于这七个角的度数关系,下A Z 2=Z 4+Z 7 B・ Z 3=Z 1+Z 6 C・ Z 1+Z 4+Z 6=1 D Z 2+Z 3+Z 5=380° • 60°9.A (2011?台湾)若A ABC中,2(Z A+ZC) =3Z B,则ZB的外角度数为何(36 B・ 72 C. 108 D 14410. A (2011?台湾)若钝角三角形ABC中,Z A=27\则下列何考不可能是Z B的度数(37 B・ 57 C. 77 D 97填空题(共4小题)(2014?抚顺)将正三角形、正四边形、正五边形按如图所示的位這摆放-如果Z 3=32。

三角形的内角与外角之间的关系

三角形的内角与外角之间的关系

五、三角形的内角与外角之间的关系:1、三角形的内角和:180°应用:1)、应用内角和定理可解决已知二个角求第三个角2)、已知三角关系求三个角引申:①直角三角形的两个锐角互余;能作(n-3)条对角线;(2)多边形有2)3(nn条对角线。

(3)从n边形的一个顶点出发能将n边形分成(n-2)个三角形;※6.镶嵌②一个三角形中至多有一个直角或一个钝角;③一个三角中至少有两个内角是锐角。

3)、三角形的外角和:360°4)、三角形外角的性质:①三角形的一个外角等于与它不相邻的两个内角的和;——常用来求角度②三角形的一个外角大于任何一个与它不相邻的内角。

——常用来比较角的大小5)、多边形的内角与外角多边形的内角和与外角和(识记)引申:(1)从n边形的一个顶点出发(1)同一种正三边形、正四边形、正六边形可以进行平面镶嵌;(2)正三角形与正四边形、正三角形与正六边形……可以进行平面镶行镶嵌。

(1)多边形的内角和:(n-2)180°(2)多边形的外角和:360°【典型例题】以嵌;(1)同一种任意三角形、任意四边形可以进行镶嵌。

【典型例题】三角形的分类引申:(1)从n边形的一个顶点出发(1)同一种正三边形、正四边形、正六边形可以进行平面镶嵌;(2)正三角形与正(1)多边形的内角和:(n-2)180°(2)多边形的外角和:360°四边形、正三角形与正六边形……可以进行平面镶行镶嵌。

【典型例题】以嵌.适当添加辅助线,寻找基本图形图8 BACED(1)基本图形一,如图8,在∆ABC 中,AB=AC ,B,A,D 成一条直线,则∠DAC =2∠B =2∠C 或∠B =∠C =21∠DAC .(2)基本图形二,如图9,如果CO 是∠AOB 的角平分线,DE ∥OB 交OA,OC 于D,E ,那么∆DOE 是等腰三角形,DO=DE .当几何问题的条件和结论中,或在推理过程中出现有角平分线,平行线,等腰三角形三个条件中的两个时,就应找出这个基本图形,并立即推证出第三个作为结论.即:角平分线+平行线→等腰三角形.基本图形三,如图10,如果BD 是∠ABC 的角平分线,M 是AB 上一点,MN ⊥BD ,且与BP,BC 相交于P,N .那么BM=BN ,即∆BMN 是等腰三角形,且MP=NP ,即:角平分线+垂线→等腰三角形.当几何证题中出现角平分线和向角平分线所作垂线时,就应找出这个基本图形,如等腰三角形不完整就应将基本图形补完整,如图11,图12.例题1 如图1,△ABC 中,AD 是高,AE 是角平分线,∠B=20°,∠C=60°.求∠CAD 和∠AEC 的度数。

三角形的内角与外角计算练习题

三角形的内角与外角计算练习题

三角形的内角与外角计算练习题在几何学中,三角形是最基本的几何图形之一。

学习三角形的性质和计算方法对理解其他几何图形和解题方法都有很大的帮助。

本文将为您提供一些关于三角形内角与外角计算的练习题,帮助您巩固相关概念和技巧。

练习题1:已知△ABC,∠A=50°,AB=5cm,AC=6cm,求∠B 和∠C 的度数以及三角形的外角之和。

解答:根据三角形内角和定理可知,三角形ABC的内角之和为180°。

∠B = 180° - ∠A - ∠C = 180° - 50° - ∠C,由此可知∠B的度数。

同理,∠C = 180° - ∠A - ∠B = 180° - 50° - ∠B,由此可知∠C的度数。

三角形的外角与其对应内角的关系为:外角 = 180° - 内角。

所以△ABC的外角之和为3 * 180° = 540°。

练习题2:已知△DEF,DE=8cm,∠D=60°,求角∠E 和∠F 的度数以及三角形的外角之和。

解答:根据三角形内角和定理可知,三角形DEF的内角之和为180°。

∠E = 180° - ∠D - ∠F = 180° - 60° - ∠F,由此可知∠E的度数。

同理,∠F = 180° - ∠D - ∠E = 180° - 60° - ∠E,由此可知∠F的度数。

三角形的外角与其对应内角的关系为:外角 = 180° - 内角。

所以△DEF的外角之和为3 * 180° = 540°。

练习题3:已知△GHI,∠G=70°,∠H=45°,求角∠I的度数以及三角形的外角之和。

解答:根据三角形内角和定理可知,三角形GHI的内角之和为180°。

∠I = 180° - ∠G - ∠H = 180° - 70° - 45°,由此可知∠I的度数。

人教版八年级数学上册第11章《三角形》全章复习与巩固—知识讲解(提高)含习题答案

人教版八年级数学上册第11章《三角形》全章复习与巩固—知识讲解(提高)含习题答案
要点三、三角形的内角和与外角和
1.三角形内角和定理:三角形的内角和为 180°. 推论:1.直角三角形的两个锐角互余 2.有两个角互余的三角形是直角三角形
2.三角形外角性质: (1)三角形的一个外角等于与它不相邻的两个内角的和. (2)三角形的一个外角大于任意一个与它不相邻的内角.
3.三角形的外角和: 三角形的外角和等于 360°.
举一反三:
【变式】已知 a、b、c 是三角形三边长,试化简:|b+c-a|+|b-c-a|+|c-a-b|﹣|a-b+c|.
【答案】解:∵a、b、c 是三角形三边长,
∴b+c-a>0,b-c-a<0,c-a-b<0,a-b+c>0,
∴|b+c-a|+|b-c-a|+|c-a-b|-|a-b+c|,
=b+c-a-b+c+a-c+a+b-a+b-c =2b. 2.如图,O 是△ABC 内一点,连接 OB 和 OC.
类型三、与三角形有关的角
4.已知△ABC 中,AE 平分∠BAC (1)如图 1,若 AD⊥BC 于点 D,∠B=72°,∠C=36°,求∠DAE 的度数; (2)如图 2,P 为 AE 上一个动点(P 不与 A、E 重合,PF⊥BC 于点 F,若∠B>∠C,则
∠EPF=
是否成立,并说明理由.
【思路点拨】 (1)利用三角形内角和定理和已知条件直接计算即可; (2)成立,首先求出∠1 的度数,进而得到∠3 的度数,再根据∠EPF=180°﹣∠2﹣∠3 计 算即可. 【答案与解析】 证明:(1)如图 1,∵∠B=72°,∠C=36°,
解:如图(1),设 AB=x,AD=CD= 1 x . 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角形的内角和与外角和关系(提高)巩固练习
三角形的内角和与外角和关系(提高)巩固练习
【巩固练习】
一、选择题
1. (湖北荆州)如图所示,一根直尺EF压在三角板30°的角∠BAC上,与两边AC,AB交于M,N.那么∠CME+∠BNF是( )
A.150° B.180° C.135° D.不能确定
2.若一个三角形的三个内角互不相等,则它的最小角必小于( )
A.30° B.45° C.60° D.55°3.下列语句中,正确的是( )
A.三角形的外角大于任何一个内角
B.三角形的外角等于这个三角形的两个内角之和
C.三角形的外角中,至少有两个钝角
D.三角形的外角中,至少有一个钝角4.如果一个三角形的两个外角之和为270°,
(1)若∠A=76°,则∠BOC=________;
(2)若∠BOC=120°,则∠A=_______;
(3)∠A与∠BOC之间具有的数量关系是_______.
9. 已知等腰三角形的一个外角等于100°,则它的底角等于________.
10.(河南)将一副直角三角板如图所示放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为________.
11.(湖北鄂州)如图所示,△ABC的外角∠ACD
的平分线CP与内角∠ABC平分线BP交于点P,若∠BPC=40°,则∠CAP=_______.
12.如图,O是△ABC外一点,OB,OC分别平分△ABC的外角∠CBE,∠BCF.
若∠A=n°,则∠BOC=(用含n的代数式表示).
三、解答题
13.如图,求证:∠A+∠B+∠C+∠D+∠E=180°.
14.如图所示,BE与CD交于A,CF为∠BCD的平分线,EF为∠BED的平分线.
(1)试探求:∠F与∠B、∠D之间的关系;
(2)若∠B:∠D:∠F =2:4:x ,求x 的值.
15.如图,在△ABC 中,∠ABC 的平分线与外角∠ACE 的平分线交于点D .试说明12
D A ∠=∠.
16.如图所示,在△ABC 中,∠1=∠2,∠C >∠B ,E 为AD 上一点,且EF ⊥BC 于F .
(1)试探索∠DEF 与∠B ,∠C 的大小关系;
(2)如图(2)所示,当点E 在AD 的延长线上时,其余条件都不变,你在(1)中探索到的结论是否还成立?
【答案与解析】
一、选择题
1. 【答案】A
【解析】(1)由∠A =30°,可得
∠AMN+∠ANM =180°-30°=150°
又∵ ∠CME =∠AMN ,∠BNF =∠ANM ,
故有∠CME+∠BNF=150°.
2. 【答案】C;
【解析】假如三角形的最小角不小于60°,则必有大于或等于60°的,因为该三角形三个内角互不相等,所以另外两个非最小角一定大于60°,此时,该三角形的三个内角和必大于180°,这与三角形的内角和定理矛盾,故假设不可能成立,即它的最小角必小于60°.
3. 【答案】C ;
【解析】因为三角形的内角中最多有一个钝角,所以外角中最多有一个锐角,即外角中至少有两个钝角.
4. 【答案】B;
【解析】因为三角形的外角和360°,而两个外角的和为270°,所以必有一个外角为90°,所以有一个内有为90°.
5. 【答案】A;
6. 【答案】A;
【解析】连接AA′,则∠1=∠EAA′+∠EA′A,∠2=∠DAA′+∠DA′A
所以∠1+∠2=∠EAA′+∠EA′A+∠DAA′+∠DA′A=∠EAD+∠EA′D=
70°+70°=140°.
二、填空题
7. 【答案】20°;
【解析】联立方程组:
A-2B=70
2C-10
180
B
A B C
∠∠︒


∠∠=︒

⎪∠+∠+∠=︒

,解
得20
C
∠=︒.
8.【答案】128°, 60°,∠BOC=90°+1
2
∠A;
9. 【答案】80°或50°;
【解析】100°的补角为80°,(1)80°为三角形的顶角;(2)80°为三角形底角时,则三角形顶角为50°.
10.【答案】75°;
11.【答案】50°;
【解析】∠PCD=∠PBC+40°,即∠PCD-∠PBC=40°,又PA是△ABC中∠A的外角的平分线,点P是旁心(旁心是一个三角形内角平分线与其不相邻的两个外角平分线的交点)所以180°-2∠PCD+2∠PBC+180°-2∠PAC=
180°,所以∠PAC =50°.
12.【答案】1902n ︒-︒; 【解析】∵∠COB=180︒-(∠OBC+∠OCB ),
而BO ,CO 分别平分∠CBE ,∠BCF ,
∴∠OBC =
1122n ACB ︒+∠,∠OCB =1122n ABC ︒+∠.
∴∠COB=180°-[1(180)2
n n ︒+︒-︒]=1902n ︒-︒.
三、解答题
13.【解析】
解:延长BE ,交AC 于点H,
易得∠BFC=∠A+∠B+∠C
再由∠EFC=∠D+∠E ,
上式两边分别相加,得:
∠A+∠B+∠C +∠D+∠E =∠BFC +∠EFC =180°。

即∠A+∠B+∠C+∠D+∠E=180°
14.【解析】
解: (1)∠F =12
(∠B+∠D).理由如下: ∵ ∠D+∠1=∠F+∠3,∠B+∠4=∠F+∠
2,
又∠1=∠2,∠3=∠4,∴∠D+∠B=2∠F.
(2)令∠B=2k,∠D=4k,∠F=xk,由(1)知xk=1
2
(2k+4k),所以x=3.
15.【解析】
解:∠D=∠4-∠2=1
2(∠ACE-∠ABC)=1
2
∠A,
∴∠D=1
2
∠A.
16.【解析】
解: (1)∵∠1=∠2,∴∠1=1
2
∠BAC.又∵∠BAC=180°-(∠B+∠C),
∴∠1=1
2
[180°-(∠B+∠C)]=90°
-1
2
(∠B+∠C).
∴∠EDF=∠B+∠1=∠B+90°-1
2
(∠B+∠
C)=90°+1
2
(∠B-∠C).
又∵ EF⊥BC,∴∠EFD=90°.
∴∠DEF=90°-∠EDF=90°-[90°
+1
2(∠B-∠C)]=1
2
(∠C-∠B).
(2)当点E在AD的延长线上时,其余条件都不变,(1)中探索所得的结论仍成立.。

相关文档
最新文档