高一物理直线运动经典例题及其详解
高一物理匀变速直线运动的规律试题答案及解析

高一物理匀变速直线运动的规律试题答案及解析1.物体先做初速为零的匀加速运动,加速度为a1,当速度达到v时,改为以a2做匀减速运动直至速度为零,在加速和减速过程中,物体的位移和所用时间分别为s1,t1和s2,t2。
下列式子成立的是【答案】ABD【解析】因为匀加速阶段的末速度为匀减速阶段的初速度,即加速阶段的平均速度为,减速阶段的平均速度为,故即,A正确,,所以,故,B正确,,D正确,因为,,所以,C错误,,思路分析:根据匀变速直线运动过程中的平均速度分析试题点评:本题考查了匀变速直线运动过程中的平均速度公式,灵活掌握公式是解题关键2.一质点做直线运动的v—t图,如图所示,质点在0~1 s内做______运动,加速度为______m/s2;在1~3 s内质点做______运动,加速度为______ m/s2;在3~4 s内做______运动,加速度为______m/s2;在1~4 s内做______运动,加速度为______m/s2。
【答案】匀加速 4 匀减速-2 匀加速直线-2 匀减速直线-2【解析】v-t图像中图线的斜率表示加速度,所以质点在0~1 s内速度均匀增加,做匀加速直线运动,,在1~3 s内质点速度均匀减小,做匀减速直线运动,,在3~4 s内质点的速度在反向增加,即做匀加速直线运动,所以,在1~4 s内做匀变速直线运动,思路分析:根据公式分析,试题点评:本题考查了v-t图像,特别是在1~4 s内的运动,学生容易出错3.甲车以加速度3m/s2由静止开始做匀加速直线运动,乙车落后2s,在同一地点由静止开始,以加速度4m/s2做匀加速直线运动,两车的运动方向相同,求:(1)在乙车追上甲车之前,两车距离的最大值是多少?(2)乙车出发后经多长时间可追上甲车?此时它们离出发点多远?【答案】24m,12.9s,332.8m【解析】(1)当两车的速度相等时,两车相距最远,即即t=6s,此时甲运动了,乙运动了,所以两者相距最远为24m,(2)设乙车出发后t时间追上甲车,因为两车都是从静止开始运动的,所以,解得(另外一个小于零不符合题意舍去),此时它们离出发点有思路分析:当两车速度相等时相距最远,当两车相遇时位移相等试题点评:本题考查了追击问题,弄清楚能追上时,两者速度相等时相距最远,追不上时两者速度相等时相距最近,本题是一个难点4.伽利略对自由落体运动的研究,是科学实验和逻辑推理的完美结合。
高一必修一物理经典力学典型例题(有答案,含解析)

高一必修一物理经典力学典型例题1.倾角θ=37°的斜面底端与水平传送带平滑接触,传送带BC长L=6 m,始终以v0=6m/s的速度顺时针运动。
一个质量m=1 kg的物块从距斜面底端高度h1=5.4m的A点由静止滑下,物块通过B点时速度的大小不变。
物块与斜面、物块与传送带间动摩擦因数分别为μ1=0.5、μ2=0.2,传送带上表面在距地面一定高度处,g取10m/s2。
(sin37°=0.6,cos37°=0.8)(1)求物块由A点运动到C点的时间;(2)求物块距斜面底端高度满足什么条件时,将物块静止释放均落到地面上的同一点D。
2.如图,倾斜的传送带向下匀加速运转,传送带与其上的物体保持相对静止。
那么关于传送带与物体间静摩擦力的方向,以下判断正确的是A.物体所受摩擦力为零B.物体所受摩擦力方向沿传送带向上C.物体所受摩擦力方向沿传送带向下D.上述三种情况都有可能出现3.(2018·江西师大附中)如图是工厂流水生产线包装线示意图,质量均为m=2.5 kg、长度均为l=0.36 m的产品在光滑水平工作台AB上紧靠在一起排列成直线(不粘连),以v0=0.6 m/s 的速度向水平传送带运动,设当每个产品有一半长度滑上传送带时,该产品即刻受到恒定摩擦力F f=μmg而做匀加速运动,当产品与传送带间没有相对滑动时,相邻产品首尾间距离保持2l(如图)被依次送入自动包装机C进行包装。
观察到前一个产品速度达到传送带速度时,下一个产品刚好有一半滑上传送带而开始做匀加速运动。
取g=10 m/s2。
试求:(1)传送带的运行速度v;(2)产品与传送带间的动摩擦因数μ:(3)满载工作时与空载时相比,传送带驱动电动机增加的功率∆P;(4)为提高工作效率,工作人员把传送带速度调成v'=2.4 m/s,已知产品送入自动包装机前已匀速运动,求第(3)问中的∆P′?第(3)问中在相当长时间内的等效∆P′′?4.如图所示,传送带AB段是水平的,长20 m,传送带上各点相对地面的速度大小是2 m/s,某物块与传送带间的动摩擦因数为0.1。
高中物理直线运动题20套(带答案)含解析

高中物理直线运动题20套(带答案)含解析一、高中物理精讲专题测试直线运动1.如图所示,质量M=8kg的小车放在光滑水平面上,在小车左端加一水平推力F=8N,当小车向右运动的速度达到1.5m/s时,在小车前端轻轻地放上一个大小不计,质量为m=2kg 的小物块,物块与小车间的动摩擦因数为0.2,小车足够长.求:(1)小物块刚放上小车时,小物块及小车的加速度各为多大?(2)经多长时间两者达到相同的速度?共同速度是多大?(3)从小物块放上小车开始,经过t=1.5s小物块通过的位移大小为多少?(取g=10m/s2).【答案】(1)2m/s2,0.5m/s2(2)1s,2m/s(3)2.1m【解析】【分析】(1)利用牛顿第二定律求的各自的加速度;(2)根据匀变速直线运动的速度时间公式以及两物体的速度相等列式子求出速度相等时的时间,在将时间代入速度时间的公式求出共同的速度;(3) 根据先求出小物块在达到与小车速度相同时的位移,再求出小物块与小车一体运动时的位移即可.【详解】(1) 根据牛顿第二定律可得小物块的加速度:m/s2小车的加速度:m/s2(2)令两则的速度相等所用时间为t,则有:解得达到共同速度的时间:t=1s共同速度为:m/s(3) 在开始1s内小物块的位移m此时其速度:m/s在接下来的0.5s小物块与小车相对静止,一起做加速运动且加速度:m/s2这0.5s内的位移:m则小物块通过的总位移:m【点睛】本题考查牛顿第二定律的应用,解决本题的关键理清小车和物块在整个过程中的运动情况,然后运用运动学公式求解.同时注意在研究过程中正确选择研究对象进行分析求解.2.为确保行车安全,高速公路不同路段限速不同,若有一段直行连接弯道的路段,如图所示,直行路段AB限速120km/h,弯道处限速60km/h.(1)一小车以120km/h的速度在直行道行驶,要在弯道B处减速至60km/h,已知该车制动的最大加速度为2.5m/s2,求减速过程需要的最短时间;(2)设驾驶员的操作反应时间与车辆的制动反应时间之和为2s(此时间内车辆匀速运动),驾驶员能辨认限速指示牌的距离为x0=100m,求限速指示牌P离弯道B的最小距离.【答案】(1)3.3s(2)125.6m【解析】【详解】(1)120 120km/h m/s3.6v==,6060km/h m/s3.6v==根据速度公式v=v0-at,加速度大小最大为2.5m/s2解得:t=3.3s;(2)反应期间做匀速直线运动,x1=v0t1=66.6m;匀减速的位移:2202v v ax-=解得:x=159m则x'=159+66.6-100m=125.6m.应该在弯道前125.6m距离处设置限速指示牌.3.高速公路上行驶的车辆速度很大,雾天易出现车辆连续相撞的事故。
(完整版)高一物理力学典型例题

高中物理力学典型例题1、如图1—1所示,长为5米的细绳的两端分别系于竖立在地面上相距为4米的两杆顶端A、B。
绳上挂一个光滑的轻质挂钩。
它钩着一个重为12牛的物体.平衡时,绳中张力T=____分析与解:本题为三力平衡问题。
其基本思路为:选对象、分析力、画力图、列方程。
对平衡问题,根据题目所给条件,往往可采用不同的方法,如正交分解法、相似三角形等。
所以,本题有多种解法。
解法一:选挂钩为研究对象,其受力如图1-2所示,设细绳与水平夹角为α,由平衡条件可知:2TSinα=F,其中F=12牛,将绳延长,由图中几何条件得:Sinα=3/5,则代入上式可得T=10牛。
解法二:挂钩受三个力,由平衡条件可知:两个拉力(大小相等均为T)的合力F’与F大小相等方向相反。
以两个拉力为邻边所作的平行四边形为菱形.如图1-2所示,其中力的三角形△OEG与△ADC相似,则:得:牛.想一想:若将右端绳A 沿杆适当下移些,细绳上张力是否变化?(提示:挂钩在细绳上移到一个新位置,挂钩两边细绳与水平方向夹角仍相等,细绳的张力仍不变。
)2、如图2—1所示,轻质长绳水平地跨在相距为2L的两个小定滑轮A、B 上,质量为m的物块悬挂在绳上O点,O与A、B两滑轮的距离相等.在轻绳两端C、D分别施加竖直向下的恒力F=mg。
先托住物块,使绳处于水平拉直状态,由静止释放物块,在物块下落过程中,保持C、D两端的拉力F不变.(1)当物块下落距离h为多大时,物块的加速度为零?(2)在物块下落上述距离的过程中,克服C端恒力F做功W为多少?(3)求物块下落过程中的最大速度Vm和最大距离H?分析与解:物块向下先作加速运动,随着物块的下落,两绳间的夹角逐渐减小。
因为绳子对物块的拉力大小不变,恒等于F,所以随着两绳间的夹角减小,两绳对物块拉力的合力将逐渐增大,物块所受合力逐渐减小,向下加速度逐渐减小.当物块的合外力为零时,速度达到最大值。
之后,因为两绳间夹角继续减小,物块所受合外力竖直向上,且逐渐增大,物块将作加速度逐渐增大的减速运动。
高一物理匀变速直线运动例题

高一物理匀变速直线运动例题1. 什么是匀变速直线运动匀变速直线运动,听起来是不是有点拗口?其实它就是一种运动状态,简单来说,就是物体在一段时间内加速或减速的运动方式。
比如说,想象你在马路上骑自行车,刚开始你可能慢慢蹬,后来越蹬越快,这就是在做匀变速运动。
这里的“匀”指的是加速度保持不变,所以在这段时间里,你的速度是逐渐变化的,而不是一开始就飞速。
简单来说,匀变速直线运动就是让物体的速度以均匀的方式变化。
2. 匀变速直线运动的基本公式2.1 速度公式我们在学习匀变速直线运动时,首先要知道几个基本公式。
第一个公式就是关于速度的:( v = u + at )。
这里的 ( v ) 是末速度,( u ) 是初速度,( a ) 是加速度,( t ) 是时间。
这个公式就像是数学中的开门大吉,一旦掌握了,你就能轻松解决很多问题。
2.2 位移公式接下来,咱们要聊聊位移公式:( s = ut + frac{1{2at^2 )。
这个公式的意思是,位移( s ) 是由初速度 ( u ) 和加速度 ( a ) 共同决定的。
听起来有点复杂,但其实只要把这些字母代入数值,跟着公式走,结果就会乖乖出来。
3. 例题解析3.1 例题一:小明的自行车咱们来看看一个例子,想象一下,小明骑着他的自行车,起初速度是 0 m/s,随后每秒加速2 m/s²,问他在 5 秒后速度是多少?按照刚才的公式,我们把数据代进去:( v = 0 + 2 times 5 = 10 ) m/s。
哇哦,小明飞起来了,感觉就像风一样,真是爽到不行。
3.2 例题二:火车的旅程再来个稍微复杂一点的例子,假设一列火车起始速度是20 m/s,每秒加速1 m/s²,问它在 10 秒内行驶的距离。
首先算速度:( v = 20 + 1 times 10 = 30 ) m/s。
接下来,代入位移公式:( s = 20 times 10 + frac{1{2 times 1 times 10^2 = 200 + 50 = 250 ) m。
高一物理必修一匀速直线运动的例题

高一物理必修一匀速直线运动的例题匀速直线运动,这个词听起来可能有点生硬,但其实它的意思超级简单。
想象一下,你在一条笔直的马路上骑自行车,速度不变,风在耳边呼啸,感觉怎么样?那种畅快淋漓的感觉就像是在飞一样,心里别提有多爽了。
匀速直线运动就是这么简单,你的速度保持不变,方向也不变,就像是开了一条高速公路,直直地开过去。
可能有的小伙伴觉得,哎呀,匀速直线运动有什么好聊的呢?它的背后可是藏着不少有趣的道理呢。
好,咱们来聊聊这个匀速的定义。
简单来说,就是你每秒钟走的路程都是一样的,没啥花里胡哨的。
在物理里,这可是个基本的概念。
想象一下你在滑冰,咻的一下,滑出去,速度保持不变,不管是左转还是右转,都没有变。
这样一来,咱们就可以轻松算出你滑了多远。
只要记住公式,速度等于路程除以时间,想想,真的是简单得不能再简单了。
你要是每秒滑100米,那你滑10秒就是1000米,没毛病吧。
匀速直线运动的一个大好处就是让我们能轻松预测未来。
不信你试试。
你坐在沙发上,家里有个钟,看到钟表一转,心里就知道,哦,时间过去了多长。
就像你在玩一个游戏,角色在地图上移动,速度没变,你大致知道它会到哪里。
生活中的很多事情其实都可以用这个原理来理解,真的是让人觉得不可思议。
咱们会觉得匀速运动太单调了,没错,生活中常常需要点儿变化。
但是,想一想,人生不也得偶尔走一条直路吗?你说是吧!比如上学的时候,你走路从家到学校,路上风景美不美,速度快不快,心情好不好,都是你掌控的。
这时候你就可以把匀速运动应用到生活中,不管是赶着上课还是闲逛,心里都有数。
再说到匀速运动的例子,咱们平常坐地铁的时候,尤其是那些长长的隧道,速度稳定,坐着就是一条直线,像一条鱼在水中游,特别舒服。
这种感觉就好像把时间凝固了一样,外面车水马龙,里面却是你我之间的世界。
这个时候,匀速运动给了你一种安全感,让你不再担心周围的喧嚣。
匀速直线运动还有一个特别有趣的方面,就是它和其他运动的关系。
高一必修一物理经典力学典型例题(有答案,含解析)

高一必修一物理经典力学典型例题1.倾角θ=37°的斜面底端与水平传送带平滑接触,传送带BC长L=6 m,始终以v0=6m/s的速度顺时针运动。
一个质量m=1 kg的物块从距斜面底端高度h1=5.4m的A点由静止滑下,物块通过B点时速度的大小不变。
物块与斜面、物块与传送带间动摩擦因数分别为μ1=0.5、μ2=0.2,传送带上表面在距地面一定高度处,g取10m/s2。
(sin37°=0.6,cos37°=0.8)(1)求物块由A点运动到C点的时间;(2)求物块距斜面底端高度满足什么条件时,将物块静止释放均落到地面上的同一点D。
2.如图,倾斜的传送带向下匀加速运转,传送带与其上的物体保持相对静止。
那么关于传送带与物体间静摩擦力的方向,以下判断正确的是A.物体所受摩擦力为零B.物体所受摩擦力方向沿传送带向上C.物体所受摩擦力方向沿传送带向下D.上述三种情况都有可能出现3.(2018·江西师大附中)如图是工厂流水生产线包装线示意图,质量均为m=2.5 kg、长度均为l=0.36 m的产品在光滑水平工作台AB上紧靠在一起排列成直线(不粘连),以v0=0.6 m/s 的速度向水平传送带运动,设当每个产品有一半长度滑上传送带时,该产品即刻受到恒定摩擦力F f=μmg而做匀加速运动,当产品与传送带间没有相对滑动时,相邻产品首尾间距离保持2l(如图)被依次送入自动包装机C进行包装。
观察到前一个产品速度达到传送带速度时,下一个产品刚好有一半滑上传送带而开始做匀加速运动。
取g=10 m/s2。
试求:(1)传送带的运行速度v;(2)产品与传送带间的动摩擦因数μ:(3)满载工作时与空载时相比,传送带驱动电动机增加的功率∆P;(4)为提高工作效率,工作人员把传送带速度调成v'=2.4 m/s,已知产品送入自动包装机前已匀速运动,求第(3)问中的∆P′?第(3)问中在相当长时间内的等效∆P′′?4.如图所示,传送带AB段是水平的,长20 m,传送带上各点相对地面的速度大小是2 m/s,某物块与传送带间的动摩擦因数为0.1。
(完整版)高中物理匀变速直线运动典型例题(含答案)【经典】

第一章 运动的描述 匀变速直线运动的研究 第1讲 加速度和速度的关系(a=Δv/t )1.(单选)对于质点的运动,下列说法中正确的是( )【答案】BA .质点运动的加速度为零,则速度为零,速度变化也为零B .质点速度变化率越大,则加速度越大C .质点某时刻的加速度不为零,则该时刻的速度也不为零D .质点运动的加速度越大,它的速度变化越大 2、(单选)关于物体的运动,下列说法不可能的是( ).答案 BA .加速度在减小,速度在增大B .加速度方向始终改变而速度不变C .加速度和速度大小都在变化,加速度最大时速度最小,速度最大时加速度最小D .加速度方向不变而速度方向变化3.(多选)沿一条直线运动的物体,当物体的加速度逐渐减小时,下列说法正确的是( ).答案 BD A .物体运动的速度一定增大 B .物体运动的速度可能减小 C .物体运动的速度的变化量一定减少 D .物体运动的路程一定增大 4.(多选)根据给出的速度和加速度的正负,对下列运动性质的判断正确的是( ).答案 CD A .v 0>0,a <0,物体做加速运动 B .v 0<0,a <0,物体做减速运动 C .v 0<0,a >0,物体做减速运动 D .v 0>0,a >0,物体做加速运动5.(单选)关于速度、速度的变化量、加速度,下列说法正确的是( ).答案 BA .物体运动时,速度的变化量越大,它的加速度一定越大B .速度很大的物体,其加速度可能为零C .某时刻物体的速度为零,其加速度不可能很大D .加速度很大时,运动物体的速度一定很快变大 6.(单选)一个质点做方向不变的直线运动,加速度的方向始终与速度的方向相同,但加速度大小逐渐减小为零,则在此过程中( ).答案 BA .速度逐渐减小,当加速度减小到零时,速度达到最小值B .速度逐渐增大,当加速度减小到零时,速度达到最大值C .位移逐渐增大,当加速度减小到零时,位移将不再增大D .位移逐渐减小,当加速度减小到零时,位移达到最小值7.(单选)甲、乙两个物体在同一直线上沿正方向运动,a 甲=4 m/s 2,a 乙=-4 m/s 2,那么对甲、乙两物体判断正确的是( ).答案 BA .甲的加速度大于乙的加速度B .甲做加速直线运动,乙做减速直线运动C .甲的速度比乙的速度变化快D .甲、乙在相等时间内速度变化可能相等8. (单选)如图所示,小球以v 1=3 m/s 的速度水平向右运动,碰一墙壁经Δt =0.01 s 后以v 2=2 m/s 的速度沿同一直线反向弹回,小球在这0.01 s 内的平均加速度是( )答案:CA .100 m/s 2,方向向右B .100 m/s 2,方向向左C .500 m/s 2,方向向左D .500 m/s 2,方向向右 9.(多选)物体做匀变速直线运动,某时刻速度的大小为4m/s ,1s 后速度大小变为10m/s ,关于该物体在这1s 内的加速度大小下列说法中正确的是( )A .加速度的大小可能是14m/s 2B .加速度的大小可能是8m/s 2C .加速度的大小可能是4m/s 2D .加速度的大小可能是6m/s 2【答案】AD10、为了测定气垫导轨上滑块的加速度,滑块上安装了宽度为3.0 cm 的遮光板,如图所示,滑块在牵引力作用下先后匀加速通过两个光电门,配套的数字毫秒计记录了遮光板通过第一个光电门的时间为Δt 1=0.30 s ,通过第二个光电门的时间为Δt 2=0.10 s ,遮光板从开始遮住第一个光电门到开始遮住第二个光电门的时间为Δt =3.0 s .试估算: (1)滑块的加速度多大?(2)两个光电门之间的距离是多少?解析 v 1=L Δt 1=0.10 m/s v 2=L Δt 2=0.30 m/s a =v 2-v 1Δt ≈0.067 m/s 2. (2) x =v 1+v 22Δt =0.6 m.第二讲:匀变速直线运动规律的应用基本规律(1)三个基本公式①v =v 0+at . ②x =v 0t +12at 2. ③v 2-v 20=2ax(2)两个重要推论 ①平均速度公式:v =v t 2=v 0+v 2= s t .中间位置速度v s 2=√v12+v222.②任意两个连续相等的时间间隔T 内的位移之差为一恒量,即Δx =aT 2.(3).初速度为零的匀变速直线运动的四个推论(1)1T 末、2T 末、3T 末……瞬时速度的比为:v 1∶v 2∶v 3∶…∶v n =1∶2∶3∶…∶n(2)1T 内、2T 内、3T 内……位移的比为:x 1∶x 2∶x 3∶…∶x n =12∶22∶32∶…∶n 2(3)第一个T 内、第二个T 内、第三个T 内……位移的比为:x Ⅰ∶x Ⅱ∶x Ⅲ∶…∶x n =1∶3∶5∶…∶(2n -1).(4)从静止开始通过连续相等的位移所用时间的比为:t 1∶t 2∶t 3∶…∶t n =1∶(2-1)∶(3-2)∶…. 1.(单选)一物体从静止开始做匀加速直线运动,测得它在第n 秒内的位移为s ,则物体的加速度为( )A .B .C .D . 【答案】A2.(单选)做匀加速沿直线运动的质点在第一个3s 内的平均速度比它在第一个5s 内的平均速度小3m/s ,则质点的加速度大小为( )A .1 m/s 2B .2 m/s 2C .3 m/s 2D .4 m/s 2【答案】C 7.(单选)一个物体从某一高度做自由落体运动,已知它第1s 内的位移为它最后1s 内位移的一半,g 取10m/s 2,则它开始下落时距地面的高度为( )A . 5 mB . 11.25 mC . 20 mD . 31.25 m 【答案】B 3.(多选)一小球从静止开始做匀加速直线运动,在第15s 内的位移比第14s 内的位移多0.2m ,则下列说法正确的是()A . 小球加速度为0.2m/s 2B . 小球前15s 内的平均速度为1.5m/sC . 小球第14s 的初速度为2.8m/sD . 第15s 内的平均速度为0.2m/s 【答案】AB4.(单选)如图是哈尔滨西客站D502次列车首次发车,标志着世界首条高寒区高速铁路哈大高铁正式开通运营.哈大高铁运营里程921公里,设计时速350公里.D502次列车到达大连北站时做匀减速直线运动,开始刹车后第5 s 内的位移是57.5 m ,第10 s 内的位移是32.5 m ,则下列说法正确的有( ).答案 D A .在研究列车从哈尔滨到大连所用时间时不能把列车看成质点 B .时速350公里是指平均速度,921公里是指位移C .列车做匀减速运动时的加速度大小为6.25 m/s 2D .列车在开始减速时的速度为80 m/s5.一辆公共汽车进站后开始刹车,做匀减速直线运动.开始刹车后的第1s 内和第2s 内位移大小依次为9m 和7m .求:(1)刹车后汽车的加速度大小. (2)汽车在刹车后6s 内的位移.解答: 解:设汽车的初速度为v 0,加速度为a .则第1s 内位移为:x 1=代入数据,得:9=v 0+ 第2s 内的位移为:x 2=v 0t 2+﹣x 1, 代入数据得:7= 解得:a=﹣2m/s 2,v 0=10m/s汽车刹车到停止所需时间为:t==则汽车刹车后6s 内位移等于5s 内的位移,所以有:==25m 故答案为:2,256.质点做匀减速直线运动,在第1 s 内位移为6 m ,停止运动前的最后1 s 内位移为2 m ,求: (1)在整个减速运动过程中质点的位移大小; (2)整个减速过程共用的时间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一物理直线运动经典题
1.物体做竖直上抛运动,取g=10m/s 2.若第1s 内位移大小恰等于所能上升的最大高度的
9
5倍,求物体的初速度.
2.摩托车的最大行驶速度为25m/s ,为使其静止开始做匀加速运动而在2min 内追上前方1000m 处以15m/s 的速度匀速行驶的卡车,摩托车至少要以多大的加速度行驶?
3.质点帮匀变速直线运动。
第2s 和第7s 内位移分别为2.4m 和3.4m ,则其运动加速度?
4.车由静止开始以a=1m/s 2的加速度做匀加速直线运动,车后相距s=25m 处的人以υ=6m/s 的速度匀速运动而追车,问:人能否追上车?
5.小球A 自h 高处静止释放的同时,小球B 从其正下方的地面处竖直向上抛出.欲使两球在B 球下落的阶段于空中相遇,则小球B 的初速度应满足何种条件?
6.质点做竖直上抛运动,两次经过A 点的时间间隔为t 1,两次经过A 点正上方的B 点的时间间隔为t 2,则A 与B 间距离为__________.
7.质点做匀减速直线运动,第1s 内位移为10m ,停止运动前最后1s 内位移为2m ,则质点运动的加速度大小为a=________m/s 2,初速度大小为υ0=__________m/s.
9 物体做竖直上抛运动,取g=10m/s+2,若在运动的前5s 内通过的路程为65m ,则其初速度大小可能为多少?
10 质点从A 点到B 点做匀变速直线运动,通过的位移为s ,经历的时间为t ,而质点通过A 、B 中点处时的瞬时速度为υ,则当质点做的是匀加速直线运动时,υ______t s ;当质点做的是匀减速直线运动时,υ_______t
s .(填“>”、“=”“<”=)
答案
例1 物体做竖直上抛运动,取g=10m/s 2.若第1s 内位移大小恰等于所能上升的最大高度的9
5倍,求物体的初速度. 分析:常会有同学根据题意由基本规律列出形知
0υt -21gt 2=95·g
220υ 的方程来求解,实质上方程左端的0υt -2
1gt 2并不是题目中所说的“位移大小”,而只是“位移”,物理概念不清导致了错误的产生。
解:由题意有
2021gt t -υ=95·g
220υ, 进而解得
01υ=30m/s ,02υ=6m/s ,03υ=4.45m/s
例2.摩托车的最大行驶速度为25m/s ,为使其静止开始做匀加速运动而在2min 内追上前方1000m 处以15m/s 的速度匀速行驶的卡车,摩托车至少要以多大的加速度行驶?
解:由运动规律列出方程
a m
2υ+m υ(t -a m
υ)=υt+s.
将相关数据m υ=25m/s ,t=120s ,υ=15m/s ,s=1000m 代入,便可得此例的正确结论
a=16
25m/s 2. 例3 质点帮匀变速直线运动。
第2s 和第7s 内位移分别为2.4m 和3.4m ,则其运动加速度a=____________m/s 2.
分析:若机械地运动匀变速直线运动的基本规律,可以列出如下方程
(0υ·2+
21a ·22)-(0υ·1+2
1a ·12)=2.4, (0υ·7+21a ·72)-(0υ·6+21a ·62)=3.4
若能灵活运动推论
△s=aT 2,
并考虑到
s 7-s 6=s 6-s 5=s 5-s 4=s 4-s 3=s 3-s 2=aT 2,
便可直接得到简捷的解合如下.
解: a=2275T s s -=21
54.24.3⨯-m/s 2=0.2m/s 2. 例4.车由静止开始以a=1m/s 2的加速度做匀加速直线运动,车后相距s=25m 处的人以υ=6m/s 的速度匀速运动而追车,问:人能否追上车?
分析:应明确所谓的追及、相遇,其本质就是“不同的物体在同一时刻到达同一位置”.此例可假设经过时间t ,人恰能追上车.于是便可得到关于t 的二次方程进而求解。
解: υt=2
1at 2+s. 而由其判别式△=υ2-2as= -56<0便可知:t 无实根.对应的物理意义实际上就是:人不能追上车.
例5.小球A 自h 高处静止释放的同时,小球B 从其正下方的地面处竖直向上抛出.欲使两球在B 球下落的阶段于空中相遇,则小球B 的初速度应满足何种条件?
分析:选准如下两个临界状态:当小球B 的初速度为υ1时,两球恰好同时着地;当小球B 的初速度为υ2时,两球相遇点恰在B 球上升的最高点处,于是分别列方程求解
解:
h=2
1g(2g 1υ)2, h -g 222υ=21g(g
2υ)2 由此可分别得到
υ1=gh 2
1<υ0<gh 例6.质点做竖直上抛运动,两次经过A 点的时间间隔为t 1,两次经过A 点正上方的B 点的时间间隔为t 2,则A 与B 间距离为__________.
分析:利用竖直上抛运动的“对称特征”可给出简单的解答
解:由竖直上抛运动的“对称”特征可知:质点从最高点自由落至A 、B 两点所经历时间必为
21t 1和2
1t 2,于是直接可得 AB =21g(21t 1)2-21g(21t 2)2=81g(21t -22t ) 例7.质点做匀减速直线运动,第1s 内位移为10m ,停止运动前最后1s 内位移为2m ,则质点运动的加速度大小为a=________m/s 2,初速度大小为υ0=__________m/s.
分析:通常的思维顺序可依次列出如下方程
s=υ0t -
2
1at 2, 0=υ0-at , 10=υ0·1-21a ·12,s -2=υ0 (t -1)-21a(t -1)2. 从上述方程组中解得
a= 4m/s 2 , υ0=12m/s.
求解上述方程组是一个很繁琐的过程,若采用逆向思维的方法,把“末速为零的匀减速直线运动”视为“初速战速为零的匀加速直线运动”,则原来的最后1s 便成了1s ,于是
解:由 2=
21a ·12 即可直接得到
a=4m/s 2;
不难判断出运动总时间为
由此简单得出
例8 如图221m 初速度竖直向上抛出,取与杆的上端等高. 分析:以地面为参照物分析两物体的运动关系将会很复杂,不妨换一个参照物求解.
例9 物体做竖直上抛运动,取g=10m/s+2,若在运动的前5s 内通过的路程为65m ,则其初速度大小可能为多少?
分析:如果列出方程
s=υ0t -2
1gt 2, 并将有关数据s=65m ,t=5s 代入,即求得
υ0=38m/s 。
此例这一解答是错误的,因为在5s 内,做竖直上抛运动的物体的运动情况有如下两种可能性:
①前5s 内物体仍未到达最高点.在这种情况下,上述方程中的s 确实可以认为是前5s 内的路程,但此时υ0应该受到υ0≥50m/s 的制约,因此所解得的结论由于不满足这一制约条件而不能成立.
②前5s 内物体已经处于下落阶段,在这种情况下,上述方程中的s 只能理解为物体在前5s 内的位移,它应比前5s 内的路程d 要小,而此时应用
解:由运动规律可得
d=g 220υ+21g(t -g
0υ)2, 在此基础上把有关数据d=65m ,t=5s 代入后求得
υ0=20m/s 或υ0=30m/s ,
例10 质点从A 点到B 点做匀变速直线运动,通过的位移为s ,经历的时间为t ,而质点通过A 、B 中点处时的瞬时速度为υ,则当质点做的是匀加速直线运动时,υ______t s ;当质点做的是匀减速直线运动时,υ_______t
s .(填“>”、“=”“<”=
图3
考虑到υ是质点通过A 、B 中点时的瞬时速度,因此,图线上纵坐标值为υ的点的前、后两段线下的“面积”应相等;另外考虑到s/t 实际上是这段时间内的平均速度,对于匀变速直线而言,数值上又等于时间中点的瞬时速度。
由此便可以从图中看出,无论质点做的是匀加速直线运动还是匀减速直线运动,均应有υ>
t
s 。