第七章离散时间系统的时域分析剖析
第七章离散时间信号与系统的Z域分析总结

1 z X ( z) = 此时, = 1 − az −1 z − a
z > a 收敛域:
0
j Im[ z ]
a
*收敛域一定在模最大的极点 所在的圆外。
Re[ z ]
信号与系统
第7章 离散时间信号与系统的z域分析
13 /82
3.左边指数序列 x(n) = −b nu (−n − 1)
的形式 ,其中x2+Ax+B是实数范围内的不可约 多项式,而且k是正整数。这时称各分式为原 分式的“部分分式”。
信号与系统
第7章 离散时间信号与系统的z域分析
19 /82
M X ( z ) 通常, 可表成有理分式形式: b z −i ∑ i B( z ) = i =0N X ( z) = A( z ) 1 + ∑ ai z −i
z −n < ∞
n1 ≤ n ≤ n2 ;
信号与系统
第7章 离散时间信号与系统的z域分析
7 /82
因此,当时,只要,则 n= z − n 1/ z n , ≥0 同样,当时,只要,则 n <= 0 z z ,
n −n
z≠0 z≠∞ z
z −n < ∞
−n
<∞
所以收敛域至少包含,也就是除 0< z <∞ “有限平面” z= (0, ∞) z 。 ∞外的开域,即所谓
9 /82
(3)左边序列
x(n), n ≤ n2 x ( n) = n > n2 0,
X ( z)
n = −∞
= x ( n) z ∑ ∑ x ( n) z
−n n = −∞
n2
离散时间系统的时域分析

第六章离散时间系统的时域分析1.离散时间信号、连续时间信号、数字信号和模拟信号相互之间的联系和区别是什么?离散时间信号是指自变量(时间)离散、而函数值(幅度)连续变化的信号;连续时间信号是指自变量(时间)连续的信号;数字信号是指自变量(时间)离散、而函数值(幅度)也离散的信号;模拟信号是指自变量(时间)连续、而函数值(幅度)也连续变化的信号;对模拟信号或连续时间信号进行取样可以得到离散时间信号,而对离散时间信号进行量化则得到数字信号;对离散时间信号进行插值可以恢复连续时间信号。
2.周期离散时间信号的周期如何确定?若离散时间信号是周期的,即[][]x n x n rN=+,其中r是任意整数,N是正整数。
而对于连续时间信号而言,若其是周期的,则有()()x t x t rT=+,其中r是任意整数,T是正实数。
如正弦信号:()sin()x t tωϕ=+,其周期为2Tπω=;而正弦序列:[]sin()x n nϕ=Ω+,其周期有如下形式确定:如果2Nπ=Ω为整数,则其周期就是N;如果2qpπ=Ω,其中,p q是互质的两正整数,即2πΩ是有理数,则其周期为N q=;如果2πΩ是无理数,则正弦序列不是周期序列。
3.单位样值序列、单位阶跃序列之间的关系是什么,将单位阶跃序列推广到一般的序列后,它们之间的关系又怎样?单位样值序列定义为:1 0 []0 otherwisennδ=⎧=⎨⎩单位阶跃序列定义为:1 0 []0 otherwisenu n≥⎧=⎨⎩从而有:0[][] (1)[] (2)m nk u n n m k δδ∞==-∞=-=∑∑ 或 [][][1n u n u n δ=-- (3) 将式(1)推广到任意序列[]x n ,有[][][]m x n x m n m δ∞=-∞=-∑4.序列的移位运算有何特点?序列的差分运算是如何得到的?序列的移位有左移和右移,左移为: []x n m +,其中m 是正整数;右移为: []x n m -,其中m 是正整数;即对于序列来讲,其移位只能是整数大小的移位,不能出现其它任意小数形式的移位。
7 离散时间系统的时域分析4

m m −1
+ … + b1s + b0
则有:D( s )[ y (k )] = N ( s )[e(k )]
§7.4 离散时间系统的零输入响应
2、零输入响应的解法 ① 一阶系统 y (k + 1) + a0 y (k ) = b0 e( k )
则:sy (k ) + a0 y (k ) = b0 e(k ) e( k ) = 0 根据 即: s + a0 ) y (k ) = 0 ( y (k + 1) = − a0 y (k )
例4:有一离散时间系统,用下列差分方程描写y(k+2)有一离散时间系统,用下列差分方程描写y(k+2)y(k+2) 3y(k+1)+2y(k)=e(k+1)-2e(k),系统的初始条件为 3y(k+1)+2y(k)=e(k+1)-2e(k),系统的初始条件为 (1)=1.求该系统的零输入响应 求该系统的零输入响应。 yzi(0)=0,yzi(1)=1.求该系统的零输入响应。
y ( k ) = cr k
(
r −1
+ ar −1k +
n j = r +1
r −2
+ ⋯ + c2 k + c1 vr
k j
)
k
∑c v
j
,k ≥ 0
式中c 为待定系数,可由初始条件y(0) y(0), 式中c1,c2,…,cn为待定系数,可由初始条件y(0), y(1), y(n-1)确定 确定。 y(1), …,y(n-1)确定。 注:共轭复根可配对(变幅正弦序列) 共轭复根可配对(变幅正弦序列)
自动控制理论课件第七章离散系统的时域分析

已知起始状态y(1) 2,试求零输入响应。
解:在无外加输入时系统的零输入响应通常
是指n 0以后的响应起始状态是值y(1),
y(2), 各值。
y(n) y(n 1)
故有 y(n) y(1) y(2)
y(n 1) y(0) y(1)
y(n)是公比为的等比级数,故零输入响应有如下形式
是一阶非齐次差分方程。
梯形电阻网络,设各点 对地电压为 u(n), n 0,1,2,...为各节点
序号,为常数,则求其差分方程。
根据KCL, 有
u(n 1) u(n) u(n) u(n) u(n 1)
R
R
R
整理可得
u(n 1) u(n 1) (2a 1)u(n) 0
是关于节点电压的齐次差分方程。
u(n) (2a 1)u(n 1) u(n 2) 0
差分方程的阶数为未知 序列(响应序列)的最大序号与
最小序号之差。上式为 二阶差分方程。
对于一个线性是不变离散系统,若响应信号为y(n),
输入信号为f (n),则描述系统输入- 输出关系的
N阶差分方程为
y(n) a1y(n 1) a2 y(n 2) aN-1y(n N 1) aN y(n N )
an n 1 a 0
1 1 O 1
23
4n
5.正弦序列
xn sinnω0
余弦序列:xn cosn0
sinnω0
1
sin 0 t
O
1
5
10 n
1
0 : 正弦序列的频率, 序列值依次周期性重复的速率。
当
=2π 0 10
,
则序列每10个重复一次正弦包络的数值。
信号与系统:第七章 离散信号与系统时域分析

k 0 k 0
推广: 1)
U (k
j)
0, k 1, k
j j
2) AU (k), AU (k j)
性质:
f
(k)U
(k)
f
(k) 0
k 0 k 0
可见,U(k)作用类似于U(t),
但二者有较大差别:
U(t) :奇异信号,数学抽象函数; U(k):非奇异信号,可实现信号。
(k)与U(k)关系: (k) U(k) U(k 1)
y(k+1)Ey(k)
y(k-N)E-N y(k) y(k+N)EN y(k)
E-1 : 单位延迟算子
17
(2)算子形式的差分方程
1) uk 2 2a 1uk 1 u(k) 0 (E2 2a 1 E 1)u(k) 0
a
a
2) y(k)-(1+a)y(k-1)=f(k)
[1-(1+a)E-1 ]y(k)=f(k)
周期:N 20 无周期
13
7-2 离散时间系统基本概念
一、定义: 二、分类:
激励、响应均为离散时间信号的系统。
线性系统 非线性系统
时不变系统 时变系统
因果系统 非因果系统
线性系统: f1(k) y1(k) f2 (k) y2 (k) af1(k) bf2(k) ay1(k) by2(k)
k
y(k) f (i) i
y(k)
k
f1(i)
i
0 k 0
1.5 2.5
k 0 k 1
2 k 2
5
5.差分: 序列与其移序序列的差而得到一个新序列。
y(k)=f(k)-f(k-1)
(后向差分)
离散时间系统的时域特性分析实验报告

信号、系统与信号处理实验报告实验一、离散时间系统的时域特性分析姓名:学号:班级:专业:一.实验目的线性时不变(LTI)离散时间系统在时域中可以通过常系数线性差分方程来描述,冲激响应列可以刻画时域特性。
本次实验通过使用MATLAB函数研究离散时间系统的时域特性,以加深对离散时间系统的差分方程、冲激响应和系统的线性和时不变性的理解。
二.基本原理一个离散时间系统是将输入序列变换成输出序列的一种运算。
离散时间系统中最重要、最常用的是“线性时不变系统”。
1.线性系统满足叠加原理的系统称为线性系统,即若某一输入是由N个信号的加权和组成的,则输出就是系统对这几个信号中每一个输入的响应的加权和。
即那么当且仅当系统同时满足和时,系统是线性的。
在证明一个系统是线性系统时,必须证明此系统同时满足可加性和比例性,而且信号以及任何比例系数都可以是复数。
2.时不变系统系统的运算关系在整个运算过程中不随时间(也即序列的先后)而变化,这种系统称为时不变系统(或称移不变系统)。
若输入的输出为,则将输入序列移动任意位后,其输出序列除了跟着位移外,数值应该保持不变,即则满足以上关系的系统称为时不变系统。
3.常系数线性差分方程线性时不变离散系统的输入、输出关系可用以下常系数线性差分方程描述:当输入为单位冲激序列时,输出即为系统的单位冲激响应。
当时,是有限长度的,称系统为有限长单位冲激响应(FIR)系统;反之,则称系统为无限长单位冲激响应(IIR)系统。
三.实验内容及实验结果1.实验内容考虑如下差分方程描述的两个离散时间系统:系统1:系统2:输入:(1)编程求上述两个系统的输出,并画出系统的输入与输出波形。
(2)编程求上述两个系统的冲激响应序列,并画出波形。
(3)若系统的初始状态为零,判断系统2是否为时不变的?是否为线性的?2.实验结果(1)编程求上述两个系统的输出和冲激响应序列,并画出系统的输入、输出与冲激响应波形。
clf;n=0:300;x=cos((20*pi*n)/256)+cos((200*pi*n)/256);num1=[0.5 0.27 0.77];den1=[1];num2=[0.45 0.5 0.45];den2=[1 -0.53 0.46];y1=filter(num1,den1,x);y2=filter(num2,den2,x);subplot(3,1,1);stem(n,x);xlabel('时间信号');ylabel('信号幅度');title('输入信号');subplot(3,1,2);stem(y1);xlabel('时间信号n');ylabel('信号幅度');title('输出信号');subplot(3,1,3);stem(y2);xlabel('时间序号n ');ylabel('信号幅度');title('冲激响应序列');(2)N=40;num1=[0.5 0.27 0.77];den1=[1];num2=[0.45 0.5 0.45];den2=[1 -0.53 0.46];y1=impz(num1,den1,N);y2=impz(num2,den2,N);subplot(2,1,1);stem(y1);xlabel('时间信号n ');ylabel('信号幅度');title('³冲激响应');subplot(2,1,2);stem(y2);xlabel('时间信号n ');ylabel('信号幅度');title('³冲激响应');1.应用叠加原理验证系统2是否为线性系统:clear allclcn = 0 : 1 : 299;x1 = cos(20 * pi * n / 256);x2 = cos(200 * pi * n / 256);x = x1 + x2;num = [0.45 0.5 0.45];den = [1 -0.53 0.46];y1 = filter(num, den, x1);y2 = filter(num, den, x2);y= filter(num, den, x);yt = y1 + y2;figuresubplot(2, 1, 1);stem(n, y, 'g');xlabel('时间信号n');ylabel('信号幅度');axis([0 100 -2 2]);grid;subplot(2, 1, 2);stem(n, yt, 'r');xlabel('时间信号n');ylabel('信号幅度');axis([0 100 -2 2]);grid;2.应用时延差值来判断系统2是否为时不变系统。
离散时间系统的时域分析实验报告

3. clf; h=[-6 5 2 3 -2 0 1 0 5 -3 4 2 -1 -3 2]; %冲激 x=[2 4 -1 3 -5 2 0 -1 2 -1]; %输入序列 y=conv(h,x); n=0:23; subplot(2,1,1); stem(n,y);
4. clf; n=0:301; x=cos((0.5*pi/600)*n.*n+0*n); %计算输出序列 num1=[0.5 0.27 0.77]; y1=filter(num1,1,x);%系统#1 的输出 den2=[1 -0.35 0.46]; num2=[0.45 0.5 0.45]; y2=filter(num2,den2,x);%系统#2 的输出 %画出输入序列 subplot(3,1,1); plot(n,x); axis([0 300 -2 2]); ylabel('振幅'); title('系统的输入'); grid;
四、实验结果与分析
图一 图二
2
图三
图四
五、实验小结
通过这次实验,我熟悉 MATLAB 中产生信号和绘制信号的基本命令,学会 通过 MATLAB 仿真一些简单的离散时间系统,并研究了它们的时域特性。
经过了两次实验课,对于 MATLAB 的一些命令语句的格式熟悉多了。在完 成实验时比第一次更顺利了些。
subplot(3,1,3) d=d(2:42); stem(n,d);
2. clf; n=0:40; D=10; a=3.0; b=-2; x=a*cos(2*pi*0.1*n) + b*cos(2*pi*0.4*n); xd=[zeros(1,D) x]; nd=0:length(xd)-1; y=(n.*x)+[0 x(1:40)]; yd=(nd.*xd)+[0 xd(1:length(xd)-1)]; d=y-yd(1+D:41+D);
离散时间系统的时域分析

第七章离散时间系统的时域分析§7-1 概述一、离散时间信号与离散时间系统离散时间信号:只在某些离散的时间点上有值的信号。
离散时间系统:处理离散时间信号的系统。
混合时间系统:既处理离散时间信号,又处理连续时间信号的系统。
二、连续信号与离散信号连续信号可以转换成离散信号,从而可以用离散时间系统(或数字信号处理系统)进行处理:三、离散信号的表示方法:1、 时间函数:f(k)<——f(kT),其中k 为序号,相当于时间。
例如:)1.0sin()(k k f =2、 (有序)数列:将离散信号的数值按顺序排列起来。
例如:f(k)={1,0.5,0.25,0.125,……,}时间函数可以表达任意长(可能是无限长)的离散信号,可以表达单边或双边信号,但是在很多情况下难于得到;数列的方法表示比较简单,直观,但是只能表示有始、有限长度的信号。
四、典型的离散时间信号1、 单位样值函数:⎩⎨⎧==其它001)(k k δ 下图表示了)(n k −δ的波形。
这个函数与连续时间信号中的冲激函数)(t δ相似,也有着与其相似的性质。
例如:)()0()()(k f k k f δδ=,)()()()(000k k k f k k k f −=−δδ。
2、 单位阶跃函数:⎩⎨⎧≥=其它001)(k k ε这个函数与连续时间信号中的阶跃函数)(t ε相似。
用它可以产生(或表示)单边信号(这里称为单边序列)。
3、 单边指数序列:)(k a k ε比较:单边连续指数信号:)()()(t e t e t a at εε=,其底一定大于零,不会出现负数。
(a) 0.9a = (d) 0.9a =−(b) 1a = (e) 1a =−(c) 1.1a = (f) 1.1a =−4、 单边正弦序列:)()cos(0k k A εφω+双边正弦序列:)cos(0φω+k A五、离散信号的运算1、 加法:)()()(21k f k f k f +=<—相同的k 对应的数相加。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x(n) 2x(n 1) x(n 2)
序列样值与其后面相邻的样值相减
离散信号的运算
n
7)累加:z(n) x(k) k
累加至第n样点
原序列中所有样值 ======= 新序列
8序列中所有样值 ======= 能量
三、典型离散信号
n=0,其 值=1
3 21 0 1 2 3 4 5 n
u(n
i)
1 n 0 n
i i
u(n i) 3 21 0 1 i
u(n) (n k)
k 0
(n) u(n) u(n 1)
n
3)矩形序列:
典型离散信号
RN (n)
3 21 0 1 2 N 1N n
1 0 n N 1 RN (n) 0 n 0, n N
x(n)
6
3
x(2n)
6 4 2
0 1 23 n
n 3 21 0 1 2 3 45 6 n x( )
2
6
4
2 1 3 2 1 0 1 2 34 5 6 8 10 12 n
离散信号的运算
6)差分:前向差分 x(n) x(n 1) x(n)
序列样值与其前面相邻的样值相减
后向差分 x(n) x(n) x(n 1)
离散时间系统——数字信号处理; 数字化; 模拟与数字系统结合
离散时间信号——连续时间信号抽样; 计算机的输入、输出; 时间序列(时钟信号)
第二节 离散时间信号
——序列
一、 离散时间信号概念
序列:信号的时间函数只在某些离散瞬时nT 有定义值,即x(nT )
其中T为均匀的离散时刻之间隔; nT称函数的宗量, n 0, 1, 2, 样值:离散信号处理的非实时性 x(n)表示序列
第三章 离散时间系统 的时域分析
本章的内容
1.离散时间信号-序列 2.离散时间系统的数学模型 3.常系数线性差分方程的求解 4.离散时间系统的单位样值(冲激)响应 5.卷积 6.反卷积
第一节 前言
一、离散时间系统研究的发展史
离散时间系统研究的历史: 17世纪的经典数值分析技术—奠定它的数学基础。 20世纪40和50年代的研究抽样数据控制系统 60年代计算机科学的发展与应用是离散时间系统的理论 研究和实践进入一个新阶段。 1965年库利(J.W.Cooley)和图基(J.W.Tukey)—发明FFT 快速傅里叶变换。 同时,超大规模集成电路研制的进展使得体积小、重量 轻、成本低的离散时间系统得以实现。 用数字信号处理的观点来认识和分析各种问题。 20世纪未,数字信号处理技术迅速发展。如通信、雷达、 控制、航空与航天、遥感、声纳、生物医学、地震学、 核物理学、微电子学…。
典型离散信号
1)单位样值序列(单位冲激序列): Unit Sample /Unit Impulse
(n)
1 0 1 2 3 n
(n i)
(n)
1 n 0 n
0 0
(n
i)
1 n 0 n
i i
1 0 1 2 3 i n
典型离散信号
2)单位阶跃序列:
1 n 0
u(n)
u(n) 0 n 0
其中
x(m)
(n
1)相加:z(n) x(n) y(n)
逐项对应相加
两序列的样值 ======= 新序列
2)相乘:z(n) x(n) y(n)
逐项对应相乘
两序列的样值=======新序列
3)延时:z(n) x(n m)
逐项依次左移或右移m位
原序列 ============ 新序列
离散信号的运算
4)反褶:z(n) x(n)
相对纵轴反折波形
原序列 ========= 新序列
5)尺度变换:z(n) x(an)
n轴上压缩或扩展
原序列的波形 ========= 新序列
需按规律去除某些点 (压缩时a无法除尽的样点), 或补足相应的零值 (扩展时多出的样点)
举例6.1
x(n)波形如例图6.1所示, 分别画出x(2n)、x(n/2)的波形
典型离散信号
7)复指数序列: x(n) e j0n cos(0n) j sin(0n) 复序列可用极坐标表示:
x(n) x(n) e j arg[x(n)] x(n) 1
arg[x(n)] w0n
四、离散信号的分解
离散信号的分解
常用分解法: x(n) x(m) (n m) m
其中n表示各函数值在序列中出现的序号
称
某序号n的函数值x(n) 在第n个样点的“样值”
离散信号概念
指针表示法: x(n) x(1) x(0) x(1) x(2)
图解表示: n——横坐标并取整数;
x(n) 纵坐标; 各线段的长短——各序列值的大小。
--表示原点位置
二、离散信号的运算
离散信号的运算
RN (n) u(n) u(n N )
4)斜变序列:
典型离散信号
RN (n)
3 21 0 1 2 N 1 N n
x(n)
nu(n)
n n 0 n
0 0
典型离散信号
5)指数序列:
x(n)
a 1
x(n)
anu(n)
an n 0
0 n
0
3 21 0 1 2 3 4 5 n x(n)
三、离散、连续时间系统研究的 差异
研究二者差异主要方面: 1、数学模型的建立与求解 2、系统性能分析 3、系统实现原理 4、连续时间系统注重研究一维变量的研究,
离散时间系统更注重二维、三维或多维技术的研究。
离散时间系统的优点: 1、精度高,便于实现大规模集成 2、重量轻、体积小 3、灵活,通用性
四、离散时间系统研究
二、离散时间系统、连续时间系 统时域分析对比
对于连续时间系统
离散时间系统
数学模型:微分方程描述
差分方程描述
时域经典求解方法:相同。先求齐次解,再求特解。
时域卷积(和)求解方法:相同,重要。
变换域求解方法: 拉普拉斯变换与傅里叶变换法 z变换与序列傅里叶变换、
离散傅里叶变换
运用系统函数的概念:处理各种问题。
当 a 1时序列是发散的; 当 a 1时序列是收敛的。
a 1 3 2 10 1 2 3 4 5 n
典型离散信号
6)正弦信号:
x(n)
3 21 0 1 2 3 4 5 n
x(n) sin(0n)
其中0称正弦序列频率
当 2 为整数时 T 2 ;
0
0
当 2 为有理数时 T 2 ;
0
0
当 2 不为有理数时 非周期性。 0