确定二次函数表达式(已知三个条件)

合集下载

湘教版九年级下册数学精品教学课件 第1章 二次函数 不共线三点确定二次函数的表达式

湘教版九年级下册数学精品教学课件 第1章 二次函数 不共线三点确定二次函数的表达式

一般式法求二次函数的表达式
探究归纳 问题1 (1)二次函数 y = ax2+bx+c ( a ≠ 0 )中有几个
待定系数?需要几个抛物线上的点的坐标才能求出来?
3个
3个
(2)下面是我们用描点法画二次函数的图象所列表
格的一部分,要求这个二次函数的表达式.
x -3 -2 -1 0 1 2
y 0 1 0 -3 -8 -15
A.8
B.14
C.8或14
D.-8 或 -14
7. 如图,抛物线 y=x2+bx+c 过点A(-4,-3),与 y 轴交于点 B,对称轴是 x=-3,请解答下列问题:
(1) 求抛物线的表达式; 解:把点 A(-4,-3)代入 y=x2+bx+c 得16-4b+c =-3,c-4b=-19. ∵对称轴是 x=-3,∴ b =-3,
数的表达式. 解:设这个二次函数的表达式是 y = a(x - h)2 +k, 把顶点 (-2,1) 代入 y = a(x - h)2 +k 得 y = a(x + 2)2 +1, 再把点(1,-8) 代入上式得 a(1+2)2 + 1 = -8,解得 a = -1. ∴所求的二次函数的表达式是 y = -(x + 2)2 +1 或 y = -x2 - 4x -3.
再把点( 0,-3)代入上式得 所以 a( 0 + 3 )( 0 + 1 ) = -3, 解得 a = -1, 所以所求的二次函数的表达式是 y = -( x + 3)( x +1 ),即 y = -x2 - 4x -3.
归纳总结 交点法求二次函数解析式的方法 这种已知抛物线 x 轴的交点,求表达式的方法叫做交点法. 其步骤是:

二次函数的三种表达式

二次函数的三种表达式

二次函数的三种表达式【知识要点】一、二次函数c bx ax y ++=2的图像与性质最值:当0>a 时,函数有最小值,且当a b x 2-=时,y 有最小值是ab ac 442-;0<a 时,函数有最大值,且当a b x 2-=时,y 有最大值是ab ac 442-.二、会根据不同的条件,利用待定系数法求二次函数的函数关系式. 1、用待定系数法求二次函数的解析式步骤:(1)设二次函数的解析式;(2)根据已知条件,得到关于待定系数的方程组。

(3)解方程组,求出待定系数的值,从而写出函数的解析式。

2、二次函数解析式的的常见形式:(1)一般式2y ax bx c =++.已知抛物线上任意三点坐标,或不适合其他两种设法时,用一般式.(2)顶点式()2y a x h k =-+,其中(),h k 是抛物线顶点.当已知抛物线顶点坐标,或者能够先求出抛物线顶点坐标时,设顶点式解题十分简捷.(3)两根式()12()y a x x x x =--,其中12,x x 是方程20ax bx c ++=两根,即是抛物线与x 轴两交点横坐标.当题中已知抛物线与x 轴两交点的坐标时,设出两根式解题比较简单.如果我们选取恰当的解析式,可以简化运算。

典型例题:1、通过配方变形,说出函数y=-2x 2+8x-8的图象的开口方向、对称轴、 顶点坐标,这个函数有最大值还是最小值?这个值是多少?2、根据下列条件,分别求出对应的二次函数的关系式.(1)已知二次函数的图象经过点A (0,-1),B (1,0),C (-1,2); (2)已知抛物线的顶点为(1,-3),且与y 轴交于点(0,1);(3)已知抛物线与x 轴交于点M (-3,0),(5,0),且与y 轴交于点(0,-3); (4)已知抛物线的顶点为(3,-2),且与x 轴两交点间的距离为4.(5)已知抛物线522-=x y 与c bx ax y ++=2的形状相同,对称轴相同,在x 轴上截距为1,求这条抛物线3、根据下列图像,分别写出相应的二次函数的解析式.4.设二次函数2y ax bx c =++,当x =4时取得最大值16,且它的图象在x 轴上截得的线段长4,求其解析式.5、已知二次函数y=x 2-2(m-1)x+m 2-2m-3,其中m 为实数.(1)求证:不论m 取何实数,这个二次函数的图象与x 轴必有两个交点;(2)设这个二次函数的图象与x 轴交于点A(x 1,0),B(x 2,0),且x 1、x 2的倒数和为23,求这个二次函数的解析式。

确定二次函数表达式说课稿

确定二次函数表达式说课稿

确定⼆次函数表达式说课稿《确定⼆次函数表达式》说课稿黄美娜⼀、教材和学情分析教材分析:本节内容是义务教育教科书数学(鲁教版)九年级上册第三章第5节《确定⼆次函数的表达式》。

本节课是在学习⼆次函数的表达式和图像性质的基础上展现,⽬的为⼆次函数的的实际应⽤奠基,是本章学习的关键点。

本节课既要承接上⼀节课的数形结合的数学思想,⼜要能够根据实际问题抽象数学模型,同时还要启迪学⽣的思维,引导和规范学⽣学习。

学情分析:学⽣已经学习了⼆次函数的⼀般式、顶点式和交点式表达式,⼆次函数的图像和性质,尤其对特殊类型的⼆次函数图像已有充分的认识。

并初步具备了敢于探究与实践,乐于合作交流,善于总结提升的良好习惯,⾃主学习的愿望强烈,主动发展的意识浓厚。

⼆、教学⽬标1、知识与技能:能够根据⼆次函数的图像和性质建⽴合适的直⾓坐标系,确定函数关系式,并会根据条件利⽤待定系数法求⼆次函数的表达式。

2、过程与⽅法:经历确定适当的直⾓坐标系以及根据点的坐标确定⼆次函数表达式的思维过程,类⽐求⼀次函数的表达式的⽅法,体会求⼆次函数表达式的思想⽅法。

3、情感、态度与价值观:能把实际问题抽象为数学问题,也能把所学知识运⽤于实践,加强学⽣的理想教育,培养学⽣积极参与的意识,加深学⽣在⽣活中学学数学,将数学知识服务于⽣活的学习理念,养成学⽣善于主动学习、乐于合作交流、学会总结提升的学习习惯,激发和调动学⽣学习的积极性和主动性,真正实现“和谐⾼效、思维对话”,培养数学的应⽤意识。

三、教学资源多媒体、直尺。

四、教学设计思路数学模型可以有效的描述⾃然现象,数学学习能够帮助我们处理数据、进⾏计算,但是数据的处理会使学⽣有枯燥⽆趣感。

为解决这⼀⽭盾,这节课我抓住学⽣的初⽣⽜犊不怕虎的好胜⼼和展⽰欲,在教学环节上设计五个环节,引导学⽣在兴奋和好奇的状态下,发挥⾃⼰最⼤的潜能,过关斩将,⾃主的解决实际问题,增长知识和才能,不知不觉中体验了学习的成就感。

五、教学过程(⼀)、学⽣预习,教师导学1、叙述⼆次函数的表达式有哪⼏种形式?2、我们在确定⼀次函数的关系式时,通常需要组值,确定反⽐例函数的关系式时,通常只需要组值,如果要确定⼆次函数的关系式,⼜需要个条件?《设计意图》⽬的是让学⽣对本节课有⼀个整体的认识,以便于把握本节课的重点。

2.3 二次函数表达式的三种形式 课件(共21张PPT)

2.3 二次函数表达式的三种形式 课件(共21张PPT)
3.已知抛物线与x轴有两个交点(或已知抛物线与x
轴(交其点中的x1横, 坐x2标是)抛,物选线交与点x式轴:交y 点 (的x 横x坐1)(标x )x2 )
但不论何种形式,最后都化为一般形x1 式。
2.抛物线y=ax²+bx+c的顶点为(2,4),且过(1,2)点, 求抛物线的解析式.
3.二次函数y=ax²+bx+c的图象过点A(-2,5),且当 x=2时,y=-3,求这个二次函数的解析式,并 判断点B(0,3)是否在这个函数的图象上.
4.抛物线y=ax²+bx+c经过(0,0),(12,0)两点,其 顶点的纵坐标是3,求这个抛物线的解x1 析式.(要 求用多种方法)
• 求二次函数表达式的方法有很多,今 天主要学习用待定系数法来求二次函 数的表达式(解析式)
• 2015已知二次函数的图象与y轴的交点为C, 与x轴正半轴的交点为A.且.tan ACO 1
4
• (1)求二次函数的解析式;
课后练习
1.抛物线y=ax²+bx+c过(-3,0),(1,0)两点,与y 轴的交点为(0,4)过(-3,0),(1,0)两点,与y 轴的交点为(0,4),求抛物线的解析式
• 3.交点式:y a(x x1)(x x2 ) (a 0)
一般式 y ax2 bx c(a )
例题1 (1) 已知二次函数图象经过点A(-1,0), B(4,5),C(0,-3),求该二次函
数的表达式.
(2) (2015牡丹江)抛物线y=x²+bx+c经过 点A(1,-4),B(3,0).求此抛物线的解析式.
二、顶点式 y a(x h)2 k
例题1 (1)(2013绥化)若二次函数图像的顶点坐 标为(-2,3),且过点(-3,5),求此二次 函数的解析式。

二次函数求表达式

二次函数求表达式

二次函数求表达式一、常规的抛物线求解方法二次函数的表达式为y=ax^2+bx+c(a≠0),最常见的也是最容易明白的求解方法,就是题目中告诉抛物线经过三个任意点,这种类型的求解方法是根据抛物线的定义来求解。

把抛物线所经过的三点的横坐标和纵坐标依次带入表达式,组成三个三元一次方程,从而构成三元一次方程组,根据求解方程组的方法求出a,b,c的值。

在中考压轴题中,这种类型比较少,但是对于初步学习二次函数的学生来说,一定要理解这种表达式的求解方法,并且要在计算过程中保证不要算错,因此进行验算非常有必要。

二、根据顶点求解析式每个抛物线都有一个顶点,而且只有一个。

有些题目指出抛物线的顶点,怎么根据顶点来求抛物线表达式?首先要对抛物线基本表达式y=ax^2+bx+c进行分析,这个表达式中,它的顶点坐标是什么?通过化简,可得y=a(x+b/2a)-(b^2-4ac)/4a,通过这个解析式知道它的顶点是[-2a/b,-(b^2-4ac)/4a],在实际解题中,如果知道某个函数的顶点之后,我们把顶点坐标代入到顶点公式中,比较繁琐,因此可以设函数为y=a(x+h)^2+k,这个函数的顶点是(-h,k)这样可以使这个函数的求解变得简单,只要能够求出二次函数的系数,这个函数的解析式就可以求出。

已知某函数的顶点是A(1,2),它又过点(3,5),求它的解析式根据顶点是(1,2)可设y=a(x-1)^2+2,再把x=3,y=5代入可得4a+2=5,a=3/4再把a=3/4代入可以算出y=3/4(x-1)^2+2=3x^2/4-3x/2+11/4备注:当a>0时,函数顶点处是函数的最低点,具有最小值,而当a<0时,顶点处是最高点,具有最大值。

三、根据与坐标轴交点求解析式根据函数图像的性质可知,二次函数与x轴的交点有三种可能,分别是无交点,一个交点和两个交点,而题目中大多数情况下是有两个交点,如果知道两个交点的坐标,再知道另一个交点,就可以求出表达式。

二次函数图像的变换及解析式的确定(必考)

二次函数图像的变换及解析式的确定(必考)
(2,-2),设抛物线解析式为 = ሺ − ሻ −,将(1,0)代入,得0=a-
2,解得a=2,∴抛物线的解析式为 = ሺ − ሻ − = − + .
>
/m
<
解法2:∵抛物线 = + + 的对称轴为x=2,且与x轴交于点(1,0),
∴抛物线与x轴的另一个交点为(3,0),∴抛物线的解析式为 = ሺ −
+ ሻሺ − ሻ,把(0,3)代入,得a·3×(-1)=3,解得a=-1,
∴该二次函数的表达式为 = −ሺ + ሻሺ − ሻ,
即 = − − + .
>
m
<
>
/m
<
类型8 利用平移变换求抛物线解析式
(人教九上P35例3改编)将二次函数 = 22 + 4 + 1 的图象向右平移2个
<
>
/m
<
>
m
<
>
/m
<
续表
变换形式
图象关系
点坐标变化
横坐标 互
>
m
<
关于 轴
>
m
<
>
m
<
>
/m
<
>
/m
<
为相反数,
>
/m
<
系数关系
不变
______
本质
相同
开口方向______
相 − 值______,
变号
互为____

2

反数

二次函数解析式的确定.ppt2


6、某公园草坪的护拦是由50段形状 相同的抛物线形组成的,为牢固起 见,每段护拦需按间距0.4m加设不 锈钢管做成的立柱(如图)。为了 计算所需不锈钢管立柱的总长度, 设计人员利用如图所示的坐标系进 行计算。
(1)求抛物线的解析式;
(2)计算所需不锈钢管立柱的总长度。
0.5 2 0.4
7、已知抛物线 C1的解析式是 2 y 2 x 4 x 5,抛物线 C2与抛物
1、如图所示:求抛物线的解析式。 由图象得:抛物线过(8,0),(0,4) x 对称轴是直线x = 3,从而可得抛物线又 过(-2,0)。
3 8
解法一:设抛物线的解析式为:y = ax2+bx+c,依题 意得: 1 a 64a+8b+c=0
c=4 解得
b 3 2
4
4a-2b+c=0 c=4 1 2 3 ∴所求的函数解析式为: y 4 x 2 x 4
分析:通常要先建立适当的直角坐标系,再 写出函数关系式,然后再根据关系式进行计算,放样画图.
猜一 猜
思考: 如果要求二次函数解析式y=ax2+bx+c(a≠0) 中的a、b、c,至少需要几个点的坐标?
一般式: y=ax2+bx+c
例 题


例1 已知抛物线y=ax2+bx+c(a≠0)与x轴交于
y=x2+2x+1
温故而知新
二次函数解析式有哪几种表达式?
• 一般式:y=ax2+bx+c (a≠0) • 顶点式:y=a(x-h)2+k (a≠0)
特殊形式 • 交点式:y=a(x-x1)(x-x2) (a≠0)
想一想
有一个抛物线形的立交桥拱,这个桥拱 的最大高度为16m,跨度为40m.施工前 要先制造建筑模板,怎样画出模板的轮 廓线呢?

九年级上数学专题复习一:待定系数法求二次函数表达式(含答案)

专题复习一 待定系数法求二次函数表达式二次函数表达式的三种形式:①一般式y=ax 2+bx+c(a ≠0);②顶点式y=a(x-m)2+k(a ≠0);③交点式(分解式)y=a(x-x 1)(x-x 2),求函数表达式时要根据已知条件合理选择表达式形式.1.一抛物线和抛物线y=-2x 2的形状、开口方向完全相同,顶点坐标是(-1,3),则该抛物线的函数表达式为(B ).A.y=-2(x-1)2+3B.y=-2(x+1)2+3C.y=-(2x+1)2+3D.y=-(2x-1)2+32.如图所示,在平面直角坐标系中,二次函数y=ax 2+bx+c 的图象顶点为点A(-2,-2),且过点B(0,2),则y 关于x 的函数表达式为(D ).A.y=x 2+2B.y=(x-2)2+2C.y=(x-2)2-2D.y=(x+2)2-2(第2题) (第3题) (第4题) (第8题)3.如图所示为抛物线的图象,根据图象可知,抛物线的函数表达式可能为(A ). A.y=-x 2+x+2 B.y=-21x 2-21x+2 C.y=-21x 2-21x+1 D.y=x 2-x-2 4.如图所示,二次函数y=x 2+bx+c 的图象过点B(0,-2).该二次函数的图象与反比例函数y=-x8的图象交于点A(m ,4),则这个二次函数的表达式为(A ).A.y=x 2-x-2B.y=x 2-x+2C.y=x 2+x-2D.y=x 2+x+2 5.抛物线y=ax 2+bx+c(a ≠0)经过(1,2)和(-1,-6)两点,则a+c= -2 .6.已知二次函数y=ax 2+bx+c 的图象与x 轴交于A(1,0),B(3,0)两点,与y 轴交于点C(0,3),则二次函数的表达式为 y=x 2-4x+3 .7.老师给出一个函数,四位同学各指出了这个函数的一个性质:①函数的图象不经过第三象限;②函数的图象经过第一象限;③当x <2时,y 随x 的增大而减小;④当x <2时,y >0. 已知这四位同学的叙述都正确,请构造出满足上述所有性质的一个函数: y=(x-2)2(不唯一) . 8.如图所示,将Rt △AOB 绕点O 逆时针旋转90°,得到△A1OB1,若点A 的坐标为(2,1),过点A ,O ,A1的抛物线的函数表达式为 y=65x 2-67x . 9.根据下列条件求二次函数的表达式.(1)二次函数y=ax 2+bx+c 与x 轴的两个交点的横坐标是-21,23,与y 轴交点的纵坐标是-5,求这个二次函数的表达式.(2)二次函数图象的顶点在x 轴上,且图象过点(2,-2),(-1,-8),求此函数的表达式.【答案】(1)设抛物线的函数表达式为y=a (x+21)(x-23).把点(0,-5)代入,得a ×21×(-23)=-5,解得a=320.∴抛物线的函数表达式为y=320(x+21)(x-23)=320x 2-320x-5.(2)设抛物线的函数表达式为y=a (x-k )2.把点(2,-2),(-1,-8)代入,得()()⎪⎩⎪⎨⎧-=---=-812222k a k a ,解得⎪⎩⎪⎨⎧=-=592k a ,或⎩⎨⎧=-=12k a .∴抛物线的函数表达式为y=-92(x-5)2或y=-2(x-1)2.(第10题)10.在平面直角坐标系中,抛物线y=2x 2+mx+n 经过点A(0,-2),B(3,4). (1)求抛物线的函数表达式及对称轴.(2)设点B 关于原点的对称点为C ,点D 是抛物线对称轴上一动点,且点D 的纵坐标为t ,记抛物线在A ,B 两点之间的部分为图象G(包含A ,B 两点).若直线CD 与图象G 有公共点,结合函数图象,求点D 纵坐标t 的取值范围.【答案】(1)把点A(0,-2),B(3,4)代入抛物线y=2x 2+mx+n ,得⎩⎨⎧=++-=43182n m n ,解得⎩⎨⎧-=-=24n m .∴抛物线的函数表达式为y=2x 2-4x-2,对称轴为直线x=1.(第10题答图)(2)如答图所示,作出抛物线在A ,B 两点之间的图象G.由题意得C(-3,-4),二次函数y=2x 2-4x-2的最小值为-4,由函数图象得出点D 纵坐标的最小值为-4.设直线BC 的表达式为y=kx+b ,将点B ,C 的坐标代入得⎩⎨⎧-=+-=+4343b k b k ,解得⎪⎩⎪⎨⎧==034b k .∴直线BC 的表达式y=34x.当x=1时,y=34,∴t 的取值范围是-4≤t ≤34.11.已知二次函数y=ax 2+bx+c(a ≠0)的图象经过点A(1,0),B(0,-3),且对称轴为直线x=2,则这条抛物线的顶点坐标为(B ).A.(2,3)B.(2,1)C.(-2,1)D.(2,-1)12.若一次函数y=x+m 2与y=2x+4的图象交于x 轴上同一点,则m 的值为(D ). A.2 B.±2 C.2 D.±213.若所求的二次函数图象与抛物线y=2x 2-4x-1有相同的顶点,且在对称轴的左侧y 随x 的增大而增大,在对称轴的右侧y 随x 的增大而减小,则所求二次函数的表达式为(D ). A.y=-x 2+2x-5 B.y=ax 2-2ax+a-3(a >0) C.y=-2x 2-4x-5 D.y=ax 2-2ax+a-3(a <0)14.如图所示,已知二次函数y=x 2+bx+c 的图象经过点(-1,0),(1,-2),该图象与x 轴的另一个交点为点C ,则AC 长为 3 .(第14题) (第16题)15.已知二次函数的图象经过原点及点(-2,-2),且图象与x 轴的另一个交点到原点的距离为4,那么该二次函数的表达式为 y=21x 2+2x 或y=-61x 2+32x . 16.如图所示,直线y=x+2与x 轴交于点A ,与y 轴交于点B ,AB ⊥BC ,且点C 在x 轴上.若抛物线y=ax 2+bx+c 以点C 为顶点,且经过点B ,则这条抛物线的函数表达式为 y=21x 2-2x+2 .(第17题)17.如图所示,Rt △AOB 的直角边OA 在x 轴上,OA=2,AB=1,将Rt △AOB 绕点O 逆时针旋转90°得到Rt △COD ,抛物线y=-65x 2+bx+c 经过B ,D 两点. (1)求二次函数的表达式.(2)连结BD ,点P 是抛物线上一点,直线OP 把△BOD 的周长分成相等的两部分,求点P 的坐标.【答案】(1)∵Rt △AOB 绕点O 逆时针旋转90°得到Rt △COD ,∴CD=AB=1,OC=OA=2.则点B(2,1),D(-1,2),代入y=-65x 2+bx+c ,得⎪⎪⎩⎪⎪⎨⎧=+--=++-26512310c b c b ,解得⎪⎪⎩⎪⎪⎨⎧==31021c b .∴二次函数的表达式为y=-65x 2+21x+310.(第17题答图) (2)如答图所示,∵OA=2,AB=1,∴B(2,1).∵直线OP 把△BOD 的周长分成相等的两部分,且OB=OD ,∴DQ=BQ ,即点Q 为BD 的中点,D(-1,2).∴点Q 坐标为(21,23).设直线OP 的表达式为y=kx ,将点Q 坐标代入,得21k=23,解得k=3.∴直线OP 的表达式为y=3x.由⎪⎩⎪⎨⎧++-==310216532x x y xy 得⎩⎨⎧==3111y x ,⎩⎨⎧-=-=12422y x .∴点P 的坐标为(1,3)或(-4,-12).(第18题)18.在平面直角坐标系中,抛物线y=ax 2+bx+2过B(-2,6),C(2,2)两点. (1)试求抛物线的函数表达式.(2)记抛物线的顶点为D ,求△BCD 的面积. (3)若直线y=-21x 向上平移b 个单位所得的直线与抛物线段BDC(包括端点B ,C)部分有两个交点,求b 的取值范围.【答案】(1)由题意⎩⎨⎧=++=+-22246224b a b a ,解得⎪⎩⎪⎨⎧-==121b a .∴抛物线的函数表达式为y=21x 2-x+2.(2)如答图所示,∵y=21x 2-x+2=21(x-1)2+23.∴顶点D 的坐标为(1,23),对称轴为直线x=1.设直线BC 的函数表达式为y=kx+b.将B (-2,6),C (2,2)代入,得⎩⎨⎧=+=+-2262b k b k ,解得⎩⎨⎧=-=41b k .∴直线BC 的函数表达式为y=-x+4,∴对称轴与BC 的交点H(1,3).∴S △BDC=S△BDH+S △DHC =21×23×3+21×23×1=3. (3)由⎪⎪⎩⎪⎪⎨⎧+-=+-=221212x x y b x y 消去y 得x 2-x+4-2b=0,当Δ=0时,直线与抛物线相切,1-4(4-2b)=0,解得b=815.当直线y=-21x+b 经过点C 时,b=3,当直线y=-21x+b 经过点B 时,b=5.∵直线y=-21x 向上平移b 个单位所得的直线与抛物线段BDC(包括端点B ,C)部分有两个交点,∴815<b ≤3.(第19题)19.【贵港】将如图所示的抛物线向右平移1个单位,再向上平移3个单位后,得到的抛物线的函数表达式为(A ).A.y=(x-1)2+1B.y=(x+1)2+1C.y=2(x-1)2+1D.y=2(x+1)2+120.【广州】已知抛物线y1=-x 2+mx+n ,直线y 2=kx+b ,y 1的对称轴与y 2交于点A(-1,5),点A 与y 1的顶点B 的距离是4. (1)求y 1的函数表达式.(2)若y 2随着x 的增大而增大,且y 1与y 2都经过x 轴上的同一点,求y 2的函数表达式. 【答案】(1)∵抛物线y1=-x 2+mx+n ,直线y 2=kx+b ,y 1的对称轴与y 2交于点A(-1,5),点A与y 1的顶点B 的距离是4.∴B(-1,1)或(-1,9).∴-()12-⨯m=-1,()()14142-⨯--⨯m n =1或9,解得m=-2,n=0或8.∴y1=-x 2-2x 或y1=-x 2-2x+8.(2)①当y1=-x 2-2x 时,抛物线与x 轴的交点是(0,0)和(-2,0).∵y 1的对称轴与y 2交于点A(-1,5),∴y 1与y 2都经过x 轴上的同一点(-2,0).把(-1,5),(-2,0)代入得⎩⎨⎧=+-=+-025b k b k ,解得⎩⎨⎧==105b k .∴y 2=5x+10.②当y1=-x 2-2x+8时,令-x 2-2x+8=0,解得x=-4或2.∵y 2随着x 的增大而增大,且过点A(-1,5),∴y 1与y 2都经过x 轴上的同一点(-4,0).把(-1,5),(-4,0)代入得⎩⎨⎧=+-=+-045b k b k ,解得⎪⎪⎩⎪⎪⎨⎧==32035b k .∴y 2=35x+320.综上可得y 2=5x+10或y 2=35x+320.21.如图所示,直线y=-21x+2与x 轴交于点B ,与y 轴交于点C ,已知二次函数的图象经过点B ,C 和点A(-1,0). (1)求B ,C 两点的坐标. (2)求该二次函数的表达式.(3)若抛物线的对称轴与x 轴的交点为点D ,则在抛物线的对称轴上是否存在点P ,使△PCD 是以CD 为腰的等腰三角形?如果存在,直接写出点P 的坐标;如果不存在,请说明理由. (4)点E 是线段BC 上的一个动点,过点E 作x 轴的垂线与抛物线相交于点F ,当点E 运动到什么位置时,四边形CDBF 的面积最大?求出四边形CDBF 的最大面积及此时点E 的坐标.(第21题) 图1 图2(第21题答图)【答案】(1)令x=0,可得y=2;令y=0,可得x=4,∴B,C 两点的坐标分别为B (4,0),C (0,2).(2)设二次函数的表达式为y=ax 2+bx+c ,将点A ,B ,C 的坐标代入表达式得⎪⎩⎪⎨⎧==++=+-204160c c b a c b a ,解得⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=22321c b a .∴该二次函数的表达式为y=-21x 2+23x+2.(3)存在.∵y=-21x 2+23x+2=-21(x-23)2+825,∴抛物线的对称轴是直线x=23.∴OD=23.∵C (0,2),∴OC=2.在Rt △OCD 中,由勾股定理得CD=25.∵△PCD 是以CD 为腰的等腰三角形,∴CP 1=DP 2=DP 3=CD.如答图1所示,作CH ⊥对称轴直线x=23于点H ,∴HP 1=HD=2,∴DP 1=4.∴P 1(23,4),P 2(23,25),P 3(23,-25). (4)如答图2所示,过点C 作CM ⊥EF 于点M ,设E (a ,-21a+2),F (a ,-21a 2+23a+2),∴EF=-21a 2+23a+2-(-21a+2)=-21a 2+2a (0≤a ≤4).∵S 四边形CDBF =S △BCD +S △CEF +S △BEF =21BD·OC+21EF·CM+21EF·BN=25+21a (-21a 2+2a )+21(4-a )(-21a 2+2a )=-a 2+4a+25=-(a-2)2+213,∴当a=2时,四边形CDBF 的面积最大,最大面积为213,此时点E 坐标为(2,1).。

已知三点确定二次函数的表达式


点D.
(1)求直线AC的解析式;
y
(2)连接CD,求△ACD的面积.
BO
Cx
A
D
• 变式1:若抛物线的顶点为M,求△ACM的 面积.
y
BO
Cx
A
M
变式2:若点M为线段AC下方的抛物线上的一 动点,那么,△ACM的面积有最大值吗?若 有,请求出最大面积及此时点M的坐标.
y
BO
Cx
A
M
• 变式3:点P是直线AC上方的抛物线上的一 动点,是否存在点P,使SPAD 2SCAD ,若 存在,求出点P坐标;若不存在,请说明理 由.
二 次 函 数 综 合 应 用(二)
——与二次函数有关的三角形面积研究
一、知识梳理
y
BO
Cx
A
M
2.四个重要的三角形: △ABC、△ABM、△ACM、△BCM
y
BO
Cx
A
M
例:如图,已知抛物线
y 1 x2 4 x 4 33
与y轴交于
A点,与x轴交于不同的两点B和C(点B在C的左
侧). 过点A作一条直线与x轴平行,交抛物线于
y
BO
Cx
A
D
变式4:点P是直线AC上方的抛物线上的一动 点,是否存在点P,使 SPAC 2SACD ,若存在, 求出点P坐标;若不存在,请说明理由.
y
BO
Cxபைடு நூலகம்
A
D
三、触摸中考:

二次函数的六种表达式

二次函数的六种表达式一、标准式二次函数的标准式为y=ax²+bx+c,其中a、b、c均为常数,a不为0。

其中a决定了二次函数的开口方向和开口程度,当a>0时开口向上,当a<0时开口向下;b决定了二次函数的对称轴位置,对称轴方程为x=-b/2a;c决定了二次函数与y轴的交点位置。

在应用中,可以通过标准式方程确定二次函数的各项参数,进而画出函数图像。

同时,可以通过标准式方程求解二次方程,解决实际问题。

二、顶点式二次函数的顶点式为y=a(x-h)²+k,其中a、h、k均为常数,a不为0。

其中(h,k)为二次函数的顶点坐标。

通过顶点式可以方便地确定二次函数的顶点坐标,进而画出函数图像。

同时,可以通过顶点式进行函数的变形,例如平移、压缩、拉伸等操作。

三、描点式二次函数的描点式为y-y₁=a(x-x₁)²,其中(x₁,y₁)为已知点,a为常数且不为0。

通过描点式可以方便地确定二次函数的各项参数,进而画出函数图像。

同时,可以通过描点式求解二次方程,解决实际问题。

四、导数式二次函数的导数式为y'=2ax+b,其中a、b均为常数,a不为0。

通过导数式可以方便地确定二次函数的斜率,进而画出函数图像。

同时,可以通过导数式求解二次方程的极值,解决实际问题。

五、交点式二次函数的交点式为y=k(x-x₁)(x-x₂),其中k、x₁、x₂均为常数,k 不为0,x₁、x₂为二次函数的零点。

通过交点式可以方便地确定二次函数的各项参数,进而画出函数图像。

同时,可以通过交点式求解二次方程,解决实际问题。

六、因式分解式二次函数的因式分解式为y=a(x-x₁)(x-x₂),其中a、x₁、x₂均为常数,a不为0,x₁、x₂为二次函数的零点。

通过因式分解式可以方便地确定二次函数的各项参数,进而画出函数图像。

同时,可以通过因式分解式求解二次方程,解决实际问题。

二次函数有六种常见的表达式,每种表达式都有其特点和应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
确定二次函数的表达解析式时,应该根据条件的特 点,恰当地选用一种函数表达方式.
上时,ON=t,MN= 3t,所以S= 3 t2(0≤t≤2);当点M在AB上时,MN的
2
值不变为 2 3,所以S= 3t(2≤t≤4),故选C.
你学到哪些二次函数表达式的求法? (1)已知图象上三点的坐标或给定x与y的三对对应值, 通常选择一般式. (2)已知图象的顶点坐标,对称轴和最值,通常选择顶点式. (3)已知图象与x轴的交点坐标,通常选择交点式.
【跟踪训练】
(西安·中考)如图,在平面直角坐标系中,抛物线经过
A(-1,0),B(3,0),C(0,-1)三点.
求该抛物线的表达式.
y
【解析】设该抛物线的表达式为y=ax2+bx+c,
根据题意,得
a b c 0, 9a 3b c 0, c 1.
a

1 3
【例题】
【例1】已知一个二次函数的图象过(-1,10),(1, 4),(2,7)三点,求这个函数的表达式.
解析:设所求的二次函数为y=ax2+bx+c,
a-b+c=10,
a=2,
由条件得: a+b+c=4, 解方程组得: b=-3,
4a+2b+c=7,
c=5.
因此,所求二次函数的表达式是
y=2x2-3x+5.
3 确定二次函数的表达式
1.会用待定系数法确定二次函数的表达式. 2.会求简单的实际问题中的二次函数表达式.
二次函数表达式有哪几种表达方式? 一般式:y=ax2+bx+c 顶点式:y=a(x-h)2+k 交点式:y=a(x-x1)(x-x2)
如何求二次函数的表达式? 已知二次函数图象上三个点的坐标,可用待定系数法 求其表达式.
的两边分别交于点M,N(点M在点N的上方),若△OMN
的面积为S,直线l的运动时间为t 秒(0≤t≤4),则
yl
A
B
M
能大致反映S与t的函数关系的图象是( )
s
s
s
s
43
43
43
43
ON
C
x
23
23
23
23
O
24
tO
24
tO
24
tO
24 t
A
B
C
D
解析:选C.过点A作x轴的垂线,垂足为E,则OE=2,AE= 2 3,当点M在OA
【例2】已知抛物线的顶点为(-1,-3),与 y轴交点为(0,-5),求抛物线的表达式.
y
-1
x
o
-3
解析:设所求的二次函数为y=a(x+1)2-3,
由点( 0,-5 )在抛物线上得: a-3=-5, 得a=-2, 故所求的抛物线表达式为y=-2(x+1)2-3.
【规律方法】1.求二次函数y=ax2+bx+c的表达式,关键是 求出待定系数a, b, c的值,由已知条件(如二次函数图象 上三个点的坐标)列出关于a, b, c的方程组,并求出a, b, c,就可以写出二次函数的解析式. 2.当给出的坐标或点中有顶点,可设顶点式y=a(x-h)2+k, 将h,k换为顶点坐标,再将另一点的坐标代入即可求出a的 值.
x
0
1
2
3
4
y
3
0
2
0
3
经检查,发现只有一处数据计算错误,请你写出这 个二次函数的表达式 y=x24x+3 .
3.(潼南·中考)如图,在平面直角坐标系中,四边形OABC是菱形,
点C的坐标为(4,0),∠AOC= 60°,垂直于x轴的直线l从y轴出发,
沿x轴正方向以每秒1个单位长度的速度向右平移,设直线l与菱形OABC
,
解之

b


2 3
,
c 1.


AO B C
x
∴所求抛物线的表达式为 y 1 x2 2 x 1.
33
1.(衢州·中考)下列四个函数图象中,当x>0时, y随x的增大而增大的是( C )
2.(莆田·中考)某同学用描点法画 y=ax2+bx+c(a≠0)的图象时,列出如下表格:
相关文档
最新文档