线性代数方程组数值解法及MATLAB实现综述

合集下载

(完整word版)线性方程组的直接解法及matlab的实现

(完整word版)线性方程组的直接解法及matlab的实现

本科毕业论文(2010 届)题目线性方程组的直接解法及matlab的实现学院数学与信息工程学院专业数学与应用数学班级2006级数学1 班学号0604010127学生姓名胡婷婷指导教师王洁完成日期2010年5月摘要随着科技技术的发展及人类对自然界的不断探索模拟。

在自然科学和工程问题中的很多问题的解决常常归结为线性代数问题!本文的主要内容是对线性方程组求解方法的探讨,主要介绍了四种求解线性方程组的方法,第一种是教科书上常见的消元法,我们称之为基本法。

第二种方法是标准上三角形求解法,即将增广矩阵经过初等变换后化成标准上三角形,然后求解.它改进了一般教科书上的常见方法,与常见方法比较有如下优点:1)规范了自由未知量的选取;2)只用矩阵运算;3)减少了计算量.第三种方法是对特定的方程组(系数矩阵A为n阶对称正定矩阵,且A的顺序主子式均不为零。

)的求解方法进行描述,并且为这种线性方程的求解提供了固定的公式化的方法。

第四种方法是对现在实际问题中常常会遇到的系数矩阵为三对角矩阵的方程组的求解方法。

同时给出这几种方法的数值解法(matlab程序),由于运用电脑软件求解,所以必须考虑计算方法的时间、空间上的效率以及算法的数值稳定性问题,所以针对不同类型的线性方程组有不同的解法.但是,基本的方法可以归结为两大类,即直接法和迭代法.关键词高斯消去法;三角分解法;乔莱斯基分解法;追赶法AbstractSystems of linear equations are associated with many problems in engineering and scinence ,as well as with applications of mathematics to the social sciences and the quantitative study of business and economic problems.The main content of this article is the method for solving linear equations,we introduce four methods for solving linear equations in this paper。

MATLAB计算方法3解线性方程组计算解法

MATLAB计算方法3解线性方程组计算解法

直到(n-1) 原方程组化为
a11 x1 a12 x2 a1n xn a1,n1 a22 x2 a2 n xn a2 ,n1

ann xn an ,n1
(上三角方程组) (3.2) 以上为消元过程。
(n) 回代求解公式
a n ,n1 xn a nn n x k 1 [a k ,n1 a kj x j ] a kk j k 1 ( k n 1, n 2,...,1)
由矩阵乘法 (1) 1) l11 a11 l11
umj 1 ukj a kj ukj a kj l km umj
m 1
k 1
2 求L的第k列:用L的第i行 u的第k列
(i k 1, , n),即 ( l i 1 , , l ik , l kk , 0 0) ( u1k , u2 k , , ukk , 0 0)' a ik
( 2) 1)求u的第2行:用L的第2行 u的第j列 (j 2, , n) l 21 u1 j 1 u2 j a 2 j u2 j a 2 j l 21u1 j 2)求L的第2列:用L的第i行 u的第2列 (i 3,4, , n) l i 1 u12 l i 2 u22 a i 2 l i 2 (a i 2 l i 1 u12 ) / u22
m 1
l
k 1
im
umk l ik ukk a ik
k 1
l ik a ik l im umk ukk m 1
LU分解式: u1 j a1 j ( j 1,2, n) l i 1 a i 1 u11 ( i 2,3, , n) k 1 ukj a kj l km umj a kj m 1 ( j k , k 1, , n) k 1 l ik a ik l im umk ukk a ik m 1 ( i k 1, , n) ( k 2, 3, , n )

数值分析中求解线性方程组的MATLAB程序(6种)

数值分析中求解线性方程组的MATLAB程序(6种)

数值分析中求解线性方程组的MATLAB程序(6种)1.回溯法(系数矩阵为上三角)function X=uptrbk(A,B)%求解方程组,首先化为上三角,再调用函数求解[N,N]=size(A);X=zeros(N,1);C=zeros(1,N+1);Aug=[A B];for p=1:N-1[Y,j]=max(abs(Aug(p:N,p)));C=Aug(p,:);Aug(p,:)=Aug(j+p-1,:);Aug(j+p-1,:)=C;if Aug(p,p)==0'A was singular.No unique solution.'break;endfor k=p+1:Nm=Aug(k,p)/Aug(p,p);Aug(k,p:N+1)=Aug(k,p:N+1)-m*Aug(p,p:N+1);endendD=Aug;X=backsub(Aug(1:N,1:N),Aug(1:N,N+1));2.系数矩阵为下三角function x=matrix_down(A,b)%求解系数矩阵是下三角的方程组n=length(b);x=zeros(n,1);x(1)=b(1)/A(1,1);for k=2:1:nx(k)=(b(k)-A(k,1:k-1)*x(1:k-1))/A(k,k);end3.普通系数矩阵(先化为上三角,在用回溯法)function X=uptrbk(A,B)%求解方程组,首先化为上三角,再调用函数求解[N,N]=size(A);X=zeros(N,1);C=zeros(1,N+1);Aug=[A B];for p=1:N-1[Y,j]=max(abs(Aug(p:N,p)));C=Aug(p,:);Aug(p,:)=Aug(j+p-1,:);Aug(j+p-1,:)=C;if Aug(p,p)==0'A was singular.No unique solution.'break;endfor k=p+1:Nm=Aug(k,p)/Aug(p,p);Aug(k,p:N+1)=Aug(k,p:N+1)-m*Aug(p,p:N+1);endendD=Aug;X=backsub(Aug(1:N,1:N),Aug(1:N,N+1));4.三角分解法function [X,L,U]=LU_matrix(A,B)%A是非奇异矩阵%AX=B化为LUX=B,L为下三角,U为上三角%程序中并没有真正解出L和U,全部存放在A中[N,N]=size(A);X=zeros(N,1);Y=zeros(N,1);C=zeros(1,N);R=1:N;for p=1:N-1[max1,j]=max(abs(A(p:N,p)));C=A(p,:);A(p,:)=A(j+p-1,:);A(j+p-1,:)=C;d=R(p);R(p)=R(j+p-1);R(j+p-1)=d;if A(p,p)==0'A is singular.No unique solution'break;endfor k=p+1:Nmult=A(k,p)/A(p,p);A(k,p)=mult;A(k,p+1:N)=A(k,p+1:N)-mult*A(p,p+1:N);endendY(1)=B(R(1));for k=2:NY(k)=B(R(k))-A(k,1:k-1)*Y(1:k-1);endX(N)=Y(N)/A(N,N);for k=N-1:-1:1X(k)=(Y(k)-A(k,k+1:N)*X(k+1:N))/A(k,k);endL=tril(A,-1)+eye(N)U=triu(A)5.雅克比迭代法function X=jacobi(A,B,P,delta,max1);%雅克比迭代求解方程组N=length(B);for k=1:max1for j=1:NX(j)=(B(j)-A(j,[1:j-1,j+1:N])*P([1:j-1,j+1:N]))/A(j,j);enderr=abs(norm(X'-P));relerr=err/(norm(X)+eps);P=X';if (err<delta)|(relerr<delta)breakendendX=X';k6.盖斯迭代法function X=gseid(A,B,P,delta,max1);%盖斯算法,求解赋初值的微分方程N=length(B);for k=1:max1for j=1:Nif j==1X(1)=(B(1)-A(1,2:N)*P(2:N))/A(1,1);elseif j==NX(N)=(B(N)-A(N,1:N-1)*(X(1:N-1))')/A(N,N);elseX(j)=(B(j)-A(j,1:j-1)*X(1:j-1)-A(j,j+1:N)*P(j+1:N))/A(j,j);endenderr=abs(norm(X'-P));relerr=err/(norm(X)+eps);P=X';if (err<delta)|(relerr<delta)break;endendX=X';k。

MATLAB计算方法3解线性方程组计算解法

MATLAB计算方法3解线性方程组计算解法

MATLAB计算方法3解线性方程组计算解法线性方程组是数学中的一个重要问题,解线性方程组是计算数学中的一个基本计算,有着广泛的应用。

MATLAB是一种功能强大的数学软件,提供了多种解线性方程组的计算方法。

本文将介绍MATLAB中的三种解线性方程组的计算方法。

第一种方法是用MATLAB函数“linsolve”解线性方程组。

该函数使用高斯消元法和LU分解法求解线性方程组,可以处理单个方程组以及多个方程组的情况。

使用该函数的语法如下:X = linsolve(A, B)其中A是系数矩阵,B是常数向量,X是解向量。

该函数会根据A的形式自动选择求解方法,返回解向量X。

下面是一个使用“linsolve”函数解线性方程组的例子:A=[12;34];B=[5;6];X = linsolve(A, B);上述代码中,A是一个2×2的系数矩阵,B是一个2×1的常数向量,X是一个2×1的解向量。

运行代码后,X的值为[-4.0000;4.5000]。

第二种方法是用MATLAB函数“inv”求解逆矩阵来解线性方程组。

当系数矩阵A非奇异(可逆)时,可以使用逆矩阵求解线性方程组。

使用“inv”函数的语法如下:X = inv(A) * B其中A是系数矩阵,B是常数向量,X是解向量。

该方法先计算A的逆矩阵,然后将逆矩阵与B相乘得到解向量X。

下面是一个使用“inv”函数解线性方程组的例子:A=[12;34];B=[5;6];X = inv(A) * B;上述代码中,A是一个2×2的系数矩阵,B是一个2×1的常数向量,X是一个2×1的解向量。

运行代码后,X的值为[-4.0000;4.5000]。

第三种方法是用MATLAB函数“mldivide”(或“\”)求解线性方程组。

该函数使用最小二乘法求解非方阵的线性方程组。

使用“mldivide”函数的语法如下:X=A\B其中A是系数矩阵,B是常数向量,X是解向量。

线性方程组的直接解法及matlab的实现

线性方程组的直接解法及matlab的实现

本科毕业论文( 2010 届)题目线性方程组的直接解法及matlab的实现学院数学与信息工程学院专业数学与应用数学班级2006级数学1 班学号**********学生姓名胡婷婷指导教师王洁完成日期2010年5月摘要随着科技技术的发展及人类对自然界的不断探索模拟.在自然科学和工程问题中的很多问题的解决常常归结为线性代数问题!本文的主要内容是对线性方程组求解方法的探讨,主要介绍了四种求解线性方程组的方法,第一种是教科书上常见的消元法,我们称之为基本法.第二种方法是标准上三角形求解法,即将增广矩阵经过初等变换后化成标准上三角形,然后求解.它改进了一般教科书上的常见方法,与常见方法比较有如下优点:1)规范了自由未知量的选取;2)只用矩阵运算;3)减少了计算量.第三种方法是对特定的方程组(系数矩阵A为n阶对称正定矩阵,且A的顺序主子式均不为零.)的求解方法进行描述,并且为这种线性方程的求解提供了固定的公式化的方法.第四种方法是对现在实际问题中常常会遇到的系数矩阵为三对角矩阵的方程组的求解方法.同时给出这几种方法的数值解法(matlab程序),由于运用电脑软件求解,所以必须考虑计算方法的时间、空间上的效率以及算法的数值稳定性问题,所以针对不同类型的线性方程组有不同的解法.但是,基本的方法可以归结为两大类,即直接法和迭代法.关键词高斯消去法;三角分解法;乔莱斯基分解法;追赶法AbstractSystems of linear equations are associated with many problems in engineering and scinence ,as well as with applications of mathematics to the social sciences and the quantitative study of business and economic problems.The main content of this article is the method for solving linear equations, we introduce four methods for solving linear equations in this paper. The first is the elimination method which is commonly found in textbooks, and we call the Basic Law. The second method is Standard on the triangle Solution, that first change Augmented matrix into standards in primary triangle, and then solving. It improves the general textbook on common methods, compared with the common method has the following advantages:1) Specification of the free choice of unknowns; 2)Only matrix operations;3) Reduce the computation. The third method describes a way to solve a Specific equations(N coefficient matrix A is symmetric positive definite matrix, and A are not zero-order principal minor), And for this linear equation provides a fixed formulaic approach. The fourth method is to present practical problems often encountered in the coefficient matrix is tridiagonal matrix method for solving the equations. These methods are given numerical solution of (matlab program), As the use of computer software to solve, it is necessary to consider ways of computing time and space efficiency and numerical stability of algorithms, Therefore, different types of linear equations have a different solution. However, the basic method can be classified into two categories, namely direct methods and iterative methods.Key wordsGaussian elimination; Triangular decomposition; Cholesky decomposition method;Thomas algorithm目录1. 引言 (1)2.相关知识 (2)2.1 向量和矩阵 (2)2.2 特殊矩阵 (3)3.问题叙述 (3)4.问题分析 (4)4.1高斯分解法 (4)4.2三角分解法 (6)4.3乔莱斯基分解法 (6)4.4追赶法 (7)5. 举例说明与总结 (9)5.1举例说明 (9)5.1.1高斯分解的matlab程序方法 (9)5.1.2三角分解法的matlab程序方法 (10)5.1.3乔莱斯基分解法的matlab程序方法 (11)5.1.4追赶法的matlab程序方法 (13)5.2总结 (14)参考文献 (16)谢辞 (17)线性方程组的直接解法及matlab的实现Direct solution of linear equations and matlab implementation数学与信息工程学院数学与应用数学专业胡婷婷指导教师:王洁1.引言随着科技技术的发展及人类对自然界的不断探索模拟.在自然科学和工程问题中的很多问题的解决常常归结为线性代数问题!例如电学中的网络问题,用最小二乘法求实验数据拟合问题(如大地测量数据处理),解非线性方程组问题,用差分法或有限元法解常微分方程、偏微分方程边值问题等最终都归结于解线性代数方程组.从实际数据来看,这些方程组的系数矩阵大致分为两种,一种是低阶稠密矩阵(阶数不超过150).另一种是大型稀疏矩阵(矩阵阶数高且零元素较多).所以,现在我们需要对求线性方程组的方法进行探究,以便能够找到一些简便的方法来加以应用!本文主要就线性方程组的直接解法予以讨论.线性方程组是线性代数的主要内容,包括线性方程组有解性的判定、消元法解线性方程组和线性方程组解的结构. 它与矩阵、向量的内容密切相关,与矩阵、向量组相关的许多重要结论都是线性方程组有关结论的应用和推广. 如:一个向量是否可以由一个向量组线性表示、表示形式是否唯一往往与非齐次线性方程组是否有解、有唯一解还是无穷多解是等价的;一个向量组是否线性相关与齐次线性方程组是否有非零解是等价的等等.而且随着现代工业的发展,线性方程组的应用出现在各个领域,伴随着大量方程和多未知数的出现, 例如电学中的网络问题,用最小二乘法求实验数据拟合问题(如大地测量数据处理),解非线性方程组问题,用差分法或有限元法解常微分方程、偏微分方程边值问题等最终都归结于解线性代数方程组。

如何使用Matlab解决数学问题

如何使用Matlab解决数学问题

如何使用Matlab解决数学问题使用Matlab解决数学问题引言:数学作为一门基础学科,广泛应用于各个学科领域。

而Matlab作为一款数学软件,拥有强大的计算能力和丰富的函数库,成为了数学问题解决的得力工具。

本文将介绍如何使用Matlab解决数学问题,并通过实例来展示其强大的功能和灵活性。

一、Matlab的基本使用方法1. 安装和启动Matlab首先,我们需要从官方网站下载并安装Matlab软件。

安装完成后,打开软件即可启动Matlab的工作环境。

2. 变量和运算符在Matlab中,变量可以用来存储数据。

我们可以通过赋值运算符“=”将数值赋给一个变量。

例如,可以使用“a=5”将数值5赋给变量a。

Matlab支持常见的运算符,如加、减、乘、除等,可以通过在命令行输入相应的表达式进行计算。

3. Matirx和向量的操作Matlab中,Matrix和向量(Vector)是常用的数据结构。

我们可以使用方括号将数值组成的矩阵或向量输入Matlab,比如“A=[1 2; 3 4]”可以创建一个2x2的矩阵。

4. 函数和脚本Matlab提供了丰富的内置函数和函数库,可以通过函数来解决各种数学问题。

同时,我们还可以自己编写函数和脚本。

函数用于封装一段可复用的代码,而脚本则是按照特定的顺序执行一系列的命令。

二、解决线性代数问题1. 线性方程组求解Matlab提供了“solve”函数用于求解线性方程组。

例如,我们可以使用“solve([2*x + y = 1, x + 3*y = 1], [x, y])”来求解方程组2x + y = 1和x + 3y = 1的解。

2. 矩阵运算Matlab提供了丰富的矩阵运算函数,如矩阵的加法、乘法、转置等。

通过这些函数,我们可以快速进行矩阵运算,解决线性代数问题。

三、解决数值计算问题1. 数值积分对于某些无法解析求解的积分问题,Matlab可以通过数值积分方法求得近似解。

Matlab提供了“integral”函数用于数值积分,我们只需要给出被积函数和积分区间即可。

利用Matlab进行线性代数问题求解的方法与案例

利用Matlab进行线性代数问题求解的方法与案例

利用Matlab进行线性代数问题求解的方法与案例引言线性代数是数学的一个重要分支,广泛应用于工程、物理、计算机科学等领域。

而Matlab作为一种功能强大的数值计算软件,提供了各种实用的工具和函数,可以方便地解决线性代数问题。

本文将介绍一些常用的线性代数问题求解方法,并通过具体的案例来展示Matlab在实际应用中的效果。

一、线性方程组的求解线性方程组是线性代数中最基础的问题之一。

Matlab提供了多种求解线性方程组的函数,如“backslash”操作符(\)和“linsolve”函数等。

下面通过一个实例来说明Matlab的线性方程组求解功能。

案例:假设有以下线性方程组需要求解:2x + 3y - 4z = 53x - 2y + z = 8x + 5y - 3z = 7在Matlab中输入以下代码:A = [2 3 -4; 3 -2 1; 1 5 -3];b = [5; 8; 7];x = A\b;通过以上代码,我们可以得到线性方程组的解x=[1; -2; 3]。

这表明在满足以上方程组的条件下,x=1,y=-2,z=3。

可以看出,Matlab在求解线性方程组时,使用简单且高效。

二、矩阵的特征值和特征向量求解矩阵的特征值和特征向量也是线性代数中的重要概念。

利用特征值和特征向量可以得到矩阵的许多性质和信息。

在Matlab中,我们可以通过“eig”函数来求解矩阵的特征值和特征向量。

案例:假设有一个2x2矩阵A,需要求解其特征值和特征向量。

在Matlab中输入以下代码:A = [2 3; 1 4];[V, D] = eig(A);通过以上代码,我们可以得到矩阵A的特征向量矩阵V和特征值矩阵D。

具体结果如下:特征向量矩阵V = [0.8507 -0.5257; 0.5257 0.8507]特征值矩阵D = [1.5858 0; 0 4.4142]由结果可知,矩阵A的特征向量矩阵V和特征值矩阵D可以提供有关该矩阵的很多信息,如相关线性变换、对称性等。

MATLAB解代数方程

MATLAB解代数方程

例 用Jacobi迭代法求解下列线性方程组。设迭代初值为0, 迭代精度为10-6。 在命令中调用函数文件Jacobi.m,命令如下: A=[10,-1,0;-1,10,-2;0,-2,10]; b=[9,7,6]'; x= [x,n]=jacobi(A,b,[0,0,0]',1.0e-6) 0.9958
x= -66.5556 25.6667 -18.7778 26.5556
(2) QR分解 对矩阵X进行QR分解,就是把X分解为一个正交矩阵Q和一 个上三角矩阵R的乘积形式。QR分解只能对方阵进行。 MATLAB的函数qr可用于对矩阵进行QR分解,其调用格 式为: [Q,R]=qr(X):产生一个正交矩阵Q和一个上三角矩阵R,使 之满足X=QR。 [Q,R,E]=qr(X):产生一个一个正交矩阵Q、一个上三角矩阵 R以及一个置换矩阵E,使之满足XE=QR。 实现QR分解后,线性方程组Ax=b的解x=R\(Q\b)或 x=E(R\(Q\b))。
-1.7556 n= n1 =
4
1011
非线性方程数值求解
单变量非线性方程求解 在MATLAB中提供了一个fzero函数,可以用来求单变量 非线性方程的根。该函数的调用格式为: z=fzero('fname',x0,tol,trace) 其中fname是待求根的函数文件名,x0为搜索的起点。一个 函数可能有多个根,但fzero函数只给出离x0最近的那个 根。tol控制结果的相对精度,缺省时取tol=eps,trace• 指 定迭代信息是否在运算中显示,为1时显示,为0时不显示, 缺省时取trace=0。
例 用LU分解求解线性方程组。 命令如下: A=[2,1,-5,1;1,-5,0,7;0,2,1,-1;1,6,-1,-4]; b=[13,-9,6,0]'; [L,U]=lu(A); x=U\(L\b) 采用LU分解的第2种格式,命令如下: [L,U ,P]=lu(A); x=U\(L\P*b)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性代数方程组数值解法及MATLAB实现综述廖淑芳20122090 数计学院12计算机科学与技术1班(职教本科)一、分析课题随着科学技术的发展,提出了大量复杂的数值计算问题,在建立电子计算机成为数值计算的主要工具以后,它以数字计算机求解数学问题的理论和方法为研究对象。

其数值计算中线性代数方程的求解问题就广泛应用于各种工程技术方面。

因此在各种数据处理中,线性代数方程组的求解是最常见的问题之一。

关于线性代数方程组的数值解法一般分为两大类:直接法和迭代法。

直接法就是经过有限步算术运算,可求的线性方程组精确解的方法(若计算过程没有舍入误差),但实际犹如舍入误差的存在和影响,这种方法也只能求得近似解,这类方法是解低阶稠密矩阵方程组级某些大型稀疏矩阵方程组的有效方法。

直接法包括高斯消元法,矩阵三角分解法、追赶法、平方根法。

迭代法就是利用某种极限过程去逐步逼近线性方程组精确解的方法。

迭代法具有需要计算机的存储单元少,程序设计简单,原始系数矩阵在计算过程始终不变等优点,但存在收敛性级收敛速度问题。

迭代法是解大型稀疏矩阵方程组(尤其是微分方程离散后得到的大型方程组)的重要方法。

迭代法包括Jacobi法SOR法、SSOR法等多种方法。

二、研究课题-线性代数方程组数值解法一、直接法1、Gauss消元法通过一系列的加减消元运算,也就是代数中的加减消去法,以使A对角线以下的元素化为零,将方程组化为上三角矩阵;然后,再逐一回代求解出x向量。

1.1消元过程1. 高斯消元法(加减消元):首先将A 化为上三角阵,再回代求解。

11121121222212n n n n nnn a a a b a a a b a a a b ⎛⎫⎪ ⎪⎪⎪⎝⎭ (1)(1)(1)(1)(1)11121311(2)(2)(2)(2)222322(3)(3)(3)3333()()00000n n nn n nnn a a a a b a a a b a a b a b ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭步骤如下:第一步:1111,2,,i a i i n a -⨯+=第行第行11121121222212n n n n nnn a a a b a a a b a a a b ⎛⎫⎪ ⎪⎪⎪⎝⎭ 111211(2)(2)(2)2222(2)(2)(2)200n nn nnn a a a b a a b a a b ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭第二步:(2)2(2)222,3,,i a i i n a -⨯+=第行第行 111211(2)(2)(2)2222(2)(2)(2)200n nn nnn a a a b a a b a a b ⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭11121311(2)(2)(2)(2)222322(3)(3)(3)3333(3)(3)(3)300000nn nn nnn a a a a b a a a b a a b a a b ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭类似的做下去,我们有:第k 步:()()k ,1,,k ikk kka i i k n a -⨯+=+第行第行。

n -1步以后,我们可以得到变换后的矩阵为:11121311(2)(2)(2)(2)222322(3)(3)(3)3333()()00000n n nn n nnn a a a a b a a a b a a b a b ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭注意到,计算过程中()k kk a 处在被除的位置,因此整个计算过程要保证它不为0。

所以,Gauss 消元法的可行条件为:()0k kka ≠。

就是要求A 的所有顺序主子式均不为0,即1111det 0,1,,i i ii a a i n a a ⎛⎫ ⎪≠= ⎪ ⎪⎝⎭因此,有些有解的问题,不能用Gauss 消元求解。

另外,如果某个()k kk a 很小的话,会引入大的误差。

例 用Gauss 消去法解方程组:(1)1234123341518311151111631112x x x x -⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪---- ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭ (1)对增广矩阵进行初等变换1221331443()21()121()41233415371512334150522218311155321911116044343111277700444E E E E E E E E E +→-+→-+→-⎛⎫⎪⎛-⎫ ⎪- ⎪ ⎪---- ⎪ ⎪−−−−−−→ ⎪ ⎪ ⎪ ⎪⎪-⎝⎭ ⎪-- ⎪⎝⎭2332443445()677()()6111233412334151537370505151522222211291129000111136367357910000003633E E E E E E E E E +→+→-+→--⎛⎫⎛⎫⎪⎪ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪−−−−−→−−−−−−→ ⎪ ⎪⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭得等价方程组12342343441233415371552221129113691033x x x x x x x x x x -++=⎧⎪⎪-++=⎪⎪⎨+=⎪⎪⎪=⎪⎩ 回代得40x =,33x =,22x =,11x =。

第一步:将(1)/3使x 1的系数化为1,再将(2)、(3)式中x 1的系数都化为零,即由(2)-2×(1)(1)得由(3)-4×(1)(1)得第二步:将(2)(1)除以2/3,使x 2系数化为1,得再将(3)(1)式中x 2系数化为零,由(3)(1)-(-14/3)*(2)(2) ,得第三步:将(3)(2)除以18/3,使x 3系数化为1,得经消元后,得到如下三角代数方程组:)1(321)1( (23)132=++x x x )1(32)2( (034)32=+x x )1(32)3( (63)10314-=--x x )2(32)2(......02=+x x )2(3)3( (63)18-=x )3(3)3(......1-=x1.2回代过程由(3)(3)得x3=1,将x3代入(2)(2)得x2=-2,将x2、x3代入(1)(1)得x2=1,所以,本题解为[x]=[1,2,-1]T1.3高斯消元的公式综合以上讨论,不难看出,高斯消元法解方程组的公式为第一步,消元(1)令a ij(1) = a ij , (i,j=1,2,3,…,n)b i(1) =b i , (i=1,2,3,…,n)(2)对k=1到n-1,若a kk(k)≠0,进行l ik = a ik(k) / a kk(k) , (i=k+1,k+2,…,n)a ij(k+1) = a ij(k) - l ik * a kj(k), (i,j= k+1,k+2,…,n)b i(k+1) = b i(k) - l ik * b k(k), (i= k+1,k+2,…,n)第二步,回代若a nn(n) ≠0x n = b n(n) / a nn(n)x i = (b i(i) – sgm(a ij(i) * x j)/- a ii(i),(i = n-1,n-2,…,1),( j = i+1,i+2,…,n ) 2 、LU分解法求解线性代数方程组除了高斯消元法外,还常用LU分解法(三角形分解法)。

LU分解法的优点是当方程组左端系数矩阵不变,仅仅是方程组右端列向量改变,即外加激励信号变化时,能够方便地求解方程组。

矩阵的三角分解法可分为直接三角分解法,列主元三角分解法,平方根法,三对角方程组的追赶法。

下面讨论直接三角分解法。

设n阶线性方程组Ax=b 。

假设能将方程组左端系数矩阵A,分解成两个三角阵的乘积,即A=LU ,式中,L为主对角线以上的元素均为零的下三角矩阵, 且主对角线元素均为1的上三角矩阵;U为主对角线以下的元素均为零所以有,LUx=b 令Ux=y,则Ly=b由A=LU,由矩阵的乘法公式:a1j = u1j , j=1,2,…,na i1 = l i1u11 , i=1,2,…,n推出u1j = a1j, j=1,2,…,nl i1 = a i1/u11, i=1,2,…,n这样就定出了U的第一行元素和L的第一列元素。

设已定出了U的前k-1行和L的前k-1列,现在确定U的第k行和L的第k列。

由矩阵乘法:.. .… 当r>k 时,l kr =0, 且l kk =1,因为所以,同理可推出计算L 的第k 列的公式:因此得到如下算法——杜利特(Doolittle )算法:(1) 将矩阵分解为A=LU,对k=1,2,…,n ;j=k,k+1,…n ; i=k,k+1,…n ;公式1(2) 解L y =b(3) 解U x =y对大规模稀疏问题,如果能够通过调整方程及未知量的顺序使得方程组的系数矩阵成带状结构,则对系数矩阵使用通常的LU 分解,可以保障单位下三角矩阵L 及上三角矩阵U 仍为带状结构.∑==nr rjkr kj u l a 1∑=+=-=n r rjkr kj kj nk k j u l a u 1,...,1,∑=+=nr rjkr kj kj u l u a 1∑=+=-=nr kkrj kr ik ik nk k i u u l a l 1,...,1,/)(∑-==-=11,...,2,1:2k r rkr k k nk y l b y 公式∑+=-=-=nk r kkrkr k k n n k u x uy x 11,...,1,/)(3:公式⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=-=∑∑==1/)(u 11kkkknr rj ky ik jk nr yj ki kj ki l u u l a l u l a3、直接三角分解法Gauss 消去法还有许多变形,有些变形是为了利用特殊技巧减少误差,把Gauss 消去法改写为更紧凑的形式,还有一些变形时根据某类矩阵的特性作一些修正和简化,这些方法可统称为直接三角分解法。

矩阵的三角分解设A 的顺序主子式0(1,2,,)k k n ∆≠=,则可建立线性方程组Ax b =的Gauss消去法与矩阵分解的关系,即矩阵A 的LU 分解。

这个问题前面已经讲的比较详细了,此处不再赘述。

Doolittle 分解法首先假设A 的顺序主子式k ∆都不为零,则A 可作Doolittle 分解,即A LU =,其中L 是单位下三角阵,有1ii l =,i j <时0ij l =;U 是上三角阵,i j >时0ij u =。

仔细写出为111211112121222212221212111n n n n n n nn n n nn a a a u u u a a a l u u A LU a a a l l u ⎛⎫⎛⎫⎛⎫⎪⎪⎪ ⎪ ⎪⎪=== ⎪ ⎪⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭(2.11) 在前面逐步推导L 和U 的元素公式都要借助于有关的()k ij a 来表示。

相关文档
最新文档