5.2.1三角函数的概念
5.2.1 三角函数的概念(教学设计)

5.2.1 三角函数的概念课程目标1.借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义.2.掌握任意角三角函数(正弦、余弦、正切)在各象限的符号.3.掌握公式一并会应用.数学学科素养1.数学抽象:理解任意角三角函数的定义;2.逻辑推理:利用诱导公式一求三角函数值;3.直观想象:任意角三角函数在各象限的符号;4.数学运算:诱导公式一的运用.重点:①借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义;②掌握任意角三角函数(正弦、余弦、正切)在各象限的符号.难点:理解任意角三角函数(正弦、余弦、正切)的定义.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。
教学工具:多媒体。
一、情景导入在初中我们学习了锐角三角函数,那么锐角三角函数是如何定义的?若将锐角放入直角坐标系中,你能用角的终边上的点的坐标来表示锐角三角函数吗?若以单位圆的圆心O为原点,你能用角的终边与单位圆的交点来表示锐角三角函数吗?那么,角的概念推广之后,三角函数的概念又该怎样定义呢?要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本177-180页,思考并完成以下问题1.任意角三角函数的定义?2.任意角三角函数在各象限的符号?3.诱导公式一?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、新知探究 1.单位圆在直角坐标系中,我们称以原点O 为圆心,以单位长度为半径的圆为单位圆. 2.任意角的三角函数的定义(1)条件在平面直角坐标系中,设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么:图1-2-1 (2)结论①y 叫做α的正弦,记作sin_α,即sin α=y ; ②x 叫做α的余弦,记作cos_α,即cos α=x ; ③y x 叫做α的正切,记作tan_α,即tan α=yx (x ≠0). (3)总结正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们将它们统称为三角函数.思考:若已知α的终边上任意一点P 的坐标是(x ,y ),则其三角函数定义为?在平面直角坐标系中,设α的终边上任意一点P 的坐标是(x ,y ),它与原点O 的距离是r (r =x 2+y 2>0). 三角函数定义定义域 名称 sinα yr R 正弦 cosα x r R余弦tanαy x⎩⎨⎧⎭⎬⎫α⎪⎪α≠k π+π2,k ∈Z正切正弦函数、余弦函数、正切函数统称三角函数. 3.正弦、余弦、正切函数在弧度制下的定义域三角函数 定义域 sin α R cos αRtan α⎩⎨⎧⎭⎬⎫x ∈R ⎪⎪x ≠k π+π2,k ∈Z4.正弦、余弦、正切函数值在各象限内的符号 (1)图示:图1-2-2(2)口诀:“一全正,二正弦,三正切,四余弦”.四、典例分析、举一反三题型一 三角函数的定义及应用例1:求53π的正弦、余弦和正切值.例2 在平面直角坐标系中,角α的终边在直线y =-2x 上,求sin α,cos α,tan α的值. 【解析】当α的终边在第二象限时,在α终边上取一点P (-1,2),则r =-12+22=5,所以sin α=25=255,cos α=-15=-55,tan α=2-1=-2.当α的终边在第四象限时, 在α终边上取一点P ′(1,-2), 则r =12+-22=5,所以sin α=-25=-255,cos α=15=55,tan α=-21=-2.基础练习题 1、求π4、3π2、7π6的三角函数值.五、课堂小结让学生总结本节课所学主要知识及解题技巧 本节课我们主要学习了哪些内容? 1.三角函数的定义.2.运用三角函数数学思想解决问题.六、板书设计七、作业课本179页练习及182页练习.本节课主要采用讲练结合与分组探究的教学方法,借助单位圆探究任意角三角函数(正弦、余弦、正切)的概念,且借助单位圆与直角坐标系探究三角函数在各个象限符号,并会灵活运用.。
5.2.1 三角函数的概念

答案:-
-
,tan α=
α= .
,
,则 sin α=
.
?
二、正弦函数、余弦函数、正切函数值在各象限的符号
1.在平面直角坐标系Oxy中,设α是一个任意角,它的终边与单
位圆相交于点P(x,y).
(1)根据三角函数的定义,三角函数值的符号与什么有关系?
提示:与点P的纵坐标和横坐标的符号有关.
(2)当|OP|=r时,sin α,cos α,tan α的值怎样表示?
提示:sin α=,cos
α=,tan α=.
(3)对确定的锐角α,sin α,cos α,tan α的值是否随点P在终边上
的位置的改变而改变?
提示:不会.因为三角函数值是比值,其大小与点P(x,y)在终边
上的位置无关,只与角α的终边位置有关,即三角函数值的大
即=tan α(x≠0).=tan α(x≠0)也是以角为自变量,以单位
圆上点的纵坐标与横坐标的比值为函数值的函数,称为正切
函数.
?
(2)将正弦函数、余弦函数和正切函数统称为三角函数,
记为:正弦函数 y=sin x,x∈R ;余弦函数 y=cos x,x∈R ;
正切函数 y=tan x, x≠ +kπ(k∈Z) .
的实际情况对参数进行分类讨论.
?
【变式训练1】 (1)求角π的正弦值、余弦值和正切值;
(2)已知角α的终边过点P(-3a,4a)(a≠0),求2sin α+cos α的值.
解:(1)因为角π的终边与单位圆的交点坐标为(-1,0),
第5章三角函数5.2.1三角函数的概念

A.1
B.-1
C.
2 2
D.-
2 2
B [由三角函数定义知tan α=-11=-1.]
2.若角α是第三象限角,则点P(2,sin α)所在象限为( )
③yx叫做 α 的 正切 ,记作 tan α ,即 tan α=xy(x≠0).
(3)总结 yx=tan α(x≠0)是以角为自变量,以单位圆上点的纵坐标与横坐标 的比值为函数值的函数,称为正切函数.我们将正弦函数、余弦函数、 正切函数统称为三角函数.
3.正弦、余弦、正切函数在弧度制下的定义域
三角函数
(2)当角α的终边上点的坐标以参数形式给出时,一定注意对字 母正、负的辨别,若正、负未定,则需分类讨论.
三角函数值符号的运用
【例2】 (1)已知点P(tan α,cos α)在第四象限,则角α终边在
() A.第一象限
B.第二象限
C.第三象限
D.第四象限
(2)确定下列三角函数值的符号:
①sin 156°;②cos156π;③cos(-450°);④tan-187π; ⑤sin-34π;⑥tan 556°.
提示:(1)设 P(x,y),根据三角函数的定义知 sin α=yr,cos α=xr, 则 P(rcos α,rsin α).
(2)三角函数值是比值,与点 P(x,y)在终边上的位置无关,只与 角 α 的终边位置有关.
(3)由三角函数的定义知 sin α=yr,cos α=xr,tan α=xy,三角函数 在各象限的符号由角 α 终边上的点 P 的横坐标、纵坐标的正负确定.
提示:sin α,cos α,tan α 的值只与 α 的终边位置有关,不随 P 点在终边上的位置的改变而改变.
【例 1】 (1)已知角 θ 的终边上有一点 P(x,3)(x≠0),且 cos θ=
5.2.1三角函数的概念课件高一数学(人教A版必修第一册)

在射线上的取点 −1, 3 ,
即角 的终边经过点 −1, 3 ,
则 =
−1
2
+
3
2
= 2,
利用三角函数定义可得
sin =
=
3
,cos
2
tan =
=
3
−1
3
2
所以sin =
=
=
−1
2
1
=− ,
2
= − 3;
1
, cos = − 2 , tan = − 3.
(3)在角− 的终边上取一点 , − ,即 = , = −, = ,
= − , −
(4)在角 的终边上取一点
则 −
则 =
,
=−
=
,
−
= −;
−, ,即 = −, = , = ,
当 = 或
时,点的坐标是(, )和(− , )
一般地,任意给定一个角,它的终边与单位圆交点的坐标能唯一确定吗?
∀ ∈ , 其终边与单位圆交点的横坐标, 纵坐标唯一确定.
新知1:三角函数的定义
(1)把点的纵坐标叫做的正弦函数,记作 ,
即 = .
π
转 3 弧度,滚珠 按顺时针方向每秒钟转 6 弧度,相遇后发生碰撞,各自按照原来的速度大小反向运动.
(1)求滚珠 , 第一次相遇时所用的时间及相遇点的坐标;
5.2.1 三角函数的概念(2)--新人教版高中数学第一册

(2)sin73πcos-236π+tan-154πcos133π.
解:(1)原式=tan(360°+45°)-sin(360°+90°)+cos(2×360°+30°)
=tan
45°-sin
90°+cos
30°=1-1+
23=
3 2.
(2)原式=sin2π+π3cos-4π+π6+tan-4π+π4·cos4π+π3
[解析] 由题意知 r=|OP|=
- 232+122=1,
1
3
所以
sin
α=yr=21=12,cos
α=xr=-
2 1
=-
23,
1
tan
α=xy=-223=-
3 3.
[答案]
1 2
-
3 2
-
3 3
(2)已知角 θ 的终边上有一点 P(x,3)(x≠0),且 cos θ= 1100x,
则 sin θ+tan θ 的值为________.
6 .
(2)
原
式
=
sin
-2π+π6
+
cos
2π+25π
·tan(4π
+
0)
=
sin
π 6
+
cos25π×0=12.
[方法技巧] 利用诱导公式一进行化简求值的步骤
(1)定形:将已知的任意角写成 2kπ+α 的形式,其中 α∈ [0,2π),k∈Z ;
(2)转化:根据诱导公式,转化为求角 α 的某个三角函数值. (3)求值:若角为特殊角,可直接求出该角的三角函数值.
则 sin θ+tan θ=3
10-30 10 .
[答案]
3
1100+30或3
5.2.1 三角函数的概念-(新教材人教版必修第一册)(36张PPT)

第二 阶段
课堂探究评价
关键能力 素养提升
类型一:利用三角函数的定义求三角函数值
典例示范
【例 1】 已知角 θ 的终边上一点 P(x,3)(x≠0),且 cos θ= 1100x, 求 sin θ,tan θ.
解:由题意知 r=|OP|= x2+9,由三角函数定义得 cos θ=xr=
x x2+9.
cos cos
xx+ttaann
xx=-2;
当
x
是第三象限角时,cos
x=-cos
x,tan
x=tan
x,∴y=ccooss
x
x
+ttaann xx=0;
当
x
是第四象限角时,cos
x=cos
x,tan
x=-tan
x,∴y=ccooss
x
x
+ttaann xx=0. 故所求函数的值域为{-2,0,2}.
类型三:诱导公式一的应用
典例示范
【例 5】计算下列各式的值: (1)sin(-1 395°)cos 1 110°+cos(-1 020°)·sin 750°; (2)sin-116π+cos152π·tan 4π.
解 : (1) 原 式 = sin( - 4×360°+ 45°)cos(3×360°+ 30°) + cos( -
(1)sin 3,cos 4,tan 5;
(2)sin(cos θ)(θ 为第二象限角). 解:(1)∵π2<3<π<4<32π<5<2π, ∴3,4,5 分别在第二、三、四象限, ∴sin 3>0,cos 4<0,tan 5<0. (2)∵θ 是第二象限角, ∴-π2<-1<cos θ<0,∴sin(cos θ)<0.
三角函数的概念解析
5.2.1 三角函数的概念知识点1 任意角的三角函数1.定义:设α是一个任意角,它的终边与单位圆交于点(,)P x y ,那么:sin y α=,cos x α=,tan (0)yx xα=≠. 2.推广:设点(,)P x y 是角α终边上任意一点且不与原点重合,r OP =,则:sin y r α=,cos x r α=,tan (0)yx xα=≠. 注:三角函数的值与点P 在终边上的位置无关,仅与角的大小有关,我们只需计算点到原点的距离22r OP x y ==+,那么22sin x y α=+22cos x y α=+tan (0)yx xα=≠知识点2 正弦、余弦、正切函数值在各象限内的符号 1.图示:2.口诀:“一全正,二正弦,三正切,四余弦”.意为:第一象限各三角函数值均为正;第二象限只有正弦值为正,其余均为负;第三象限只有正切值为正,其余均为负;第四象限只有余弦值为正,其余均为负.考点一 三角函数的定义及应用解题方略:(1)求已知角三角函数值,一般求已知角的终边与单位圆的交点坐标,再利用三角函数的定义求解. (2)已知角α终边上一点P 的坐标,则可先求出点P 到原点的距离r ,然后用三角函数的定义求解.sin y r α=,cos x r α=,tan y xα=. 注:利用三角函数的定义,求一个角的三角函数值时,需确定三个量:角的终边上任意一个异于原点的点的横坐标x ,纵坐标y ,该点到原点的距离r .(3)已知角α的终边在直线上求α的三角函数值时,常用的解题方法有以下两种:①先利用直线与单位圆相交,求出交点坐标,然后利用三角函数的定义求出相应的三角函数值. ①注意到角的终边为直线,所以应分两种情况来处理,取射线上任一点坐标(,)(0)a b a ≠,则对应角的正弦值22sin a b α=+,余弦值22cos a b α=+tan baα=. 注:若题目中已知角的终边在一条直线上,此时注意“在终边上任取一点”应分两种情况(点所在象限不同)进行分析.(4)当角的终边上的点的坐标以参数的形式给出时,要根据问题的实际情况对参数进行分类讨论.(一)利用定义求角的三角函数值【例1-1】已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点(2,1)-,则sin α的值为( )A .5B 5C .25D 25【答案】B【解析】已知点()2,1P -,则()22215r OP ==-+5sin =5y r α=.变式1-1-1:若角α的终边经过点2(5,)1P -,则sin α=_______,cos α=______,tan α=________.【答案】1213-;513;125- 【解析】因为5,12x y ==-,所以225(12)13r =+-,则12512sin ,cos tan 13135y x y r r x ααα==-====-,.变式1-1-2:已知角α的终边过点()43-,,则2sin cos αα+=( ) A .1 B .25-C .25D .1-【答案】B【解析】因为角α的终边过点()43-,, 所以()()222234sin ,cos 554343αα=-==+-+-,所以3422sin cos 2555αα⎛⎫+=⨯-+=- ⎪⎝⎭,变式1-1-3:(多选)已知函数()()log 2401a f x x a a =-+>≠且的图象经过定点A ,且点A 在角θ的终边上,则11tan sin θθ+的值可能是( ) A .2 B .3 C 171+ D 171+【答案】AC【解析】由题意,可知(3,4)A 或(1,4)A ,当点是(3,4)A 时,由三角函数的定义有2244tan ,sin 3534θθ==+,所以11352tan sin 44θθ+=+=; 当点是(1,4)A 时,由三角函数的定义有224tan 4,sin 11714θθ==+11117171tan sin 4θθ+∴+==变式1-1-4:(多选)若角α的终边上有一点(4,)P a -,且3sin cos αα⋅=,则a 的值为( ) A .3 B 3 C .43-D .43【答案】CD【解析】由三角函数的定义可知,()22sin 4a α=-+()22cos 4a α=-+又3sin cos αα⋅=,则()22434a a -=-+43a =-433(二)由三角函数值求终边上的点或参数【例1-2】已知角α的顶点与平面直角坐标系的原点重合,始边与x 轴的正半轴重合,终边经过点()02,y -,若π3α=,则0y 的值为( ). A .3- B .23C .3D 23【答案】A【解析】因为角α终边经过点()02,y -,且3πα=,所以0πtan332y =-023y =-变式1-2-1:已知角θ的终边经过点(,3)M m m -,且1tan 2θ=,则m =( )A .12B .1C .2D .52【答案】C【解析】由题意31tan 2m m θ-==,解得2m =.变式1-2-2:已知()2,P y -是角θ终边上一点,且22sin θ=y 的值是( ) A .22B 22C .434D 434【答案】D【解析】因为()2,P y -是角θ终边上一点,22sin 05θ=>,故点()2,P y -位于第二象限 所以0y >,2222sin (2)y θ==-+21732y =,因为0y >,所以434y =变式1-2-3:已知角θ的终边经过点()21,2a a +-,且3cos 5θ=,则实数的a 值是( )A .2-B .211C .2-或211D .1【答案】B2235(21)(2)a a =++-且210a +>,即12a >-,①2244195525a a a ++=+,则2112040a a +-=,解得2a =-或211a =,综上,211a =.变式1-2-4:已知角α的终边上有一点(3P m ,且2cos 4mα=,则实数m 取值为______.【答案】0或5【解析】因为角α的终边上有一点(3P m , 所以22cos 43mm α==+,解得0m =或5±(三)由单位圆求三角函数值【例1-3】已知角α的终边与单位圆交于点132P ⎛- ⎝⎭,则sin α的值为( )A. 3 B .12-C 3D .12【答案】C【解析】因为角α的终边与单位圆交于点132P ⎛- ⎝⎭,所以根据三角函数的定义可知,3sin y α==.变式1-3-1:角α的终边与单位圆的交点A 3sin α=________,若点A 沿单位圆逆时针运动到点B ,所经过的弧长为2π,则转过的角度为________. 132π 【解析】α的终边与单位圆的交点A 3可得:3cos α=sin 0α>,则有:22313sin 1cos 14αα⎛⎫=--=⎪⎝⎭点A 沿单位圆逆时针运动到点B ,所经过的弧长为2π,可得:2AOB π∠=变式1-3-2:已知角α的终边与单位圆交于点36(P ,则sin cos αα⋅=( ) A 3 B .2C .3D 2【答案】B【解析】α的终边与单位圆交于点36(P ,故36||1,r OP x y ====, 故636333sin cos 11y x r r αα==== 所以632sin cos 3αα⋅=(=-,(四)已知角α的终边在直线上求三角函数值【例1-4】已知角α的终边落在射线2(0)y x x =≥上,求sin α,cos α的值.【解析】设射线2(0)y x x =≥上任一点00(,)P x y ,则002y x =,220005OP r x y x ∴==+=,00025sin 55y r x α∴===,0005cos 55x r x α===.变式1-4-1:已知α的终边落在直线2y x =上,求sin α,cos α的值255255【解析】①若α的终边在第一象限内,设点(,2)(0)P a a a >是其终边上任意一点22(2)5(0)r OP a a a a ==+=>25sin 55y r a α∴===,5cos 55x r a α===①若α的终边在第三象限内,设点(,2)(0)P a a a <是其终边上任意一点22(2)5(0)r OP a a a a ==+=-<25sin 5y r a α∴===-,5cos 5x r a α===-变式1-4-2:α是第二象限角,其终边上一点(5P x ,且2cos x α=,则sin α的值为( ) A 10 B 6 C 2 D .10 【答案】A【解析】由题意可知0x <,22cos 5x x α=+,解得3x =-510sin 35α==+考点二 三角函数值符号的判定解题方略:三角函数值符号的判断方法要判定三角函数值的符号,关键是要搞清三角函数中的角是第几象限角,再根据正、余弦函数值在各象限的符号确定函数值的符号.如果角不能确定所在象限,那就要进行分类讨论求解.(一)已知角或角的范围确定三角函数式的符号【例2-1】坐标平面内点P 的坐标为()sin5,cos5,则点P 位于第( )象限.A .一B .二C .三D .四【答案】B 【解析】32π2π5<<,sin50,cos50∴<>,则点P 位于第二象限,变式2-1-1:若α为第四象限角,则( )A .cos 2α>0B .cos 2α<0C .sin 2α>0D .sin 2α<0 【答案】D【解析】法一:因为α为第四象限角,22,2k k k Z ππαπ∴-<<∈,424,k k k Z ππαπ∴-<<∈所以2α的终边在第三象限、第四象限或y 轴的负半轴上,所以sin 20α<.法二:因为α为第四象限角,sin 0α∴<,cos 0α>,sin 22sin cos 0ααα∴=<.变式2-1-2:下列各选项中正确的是( )A .sin300>0︒B .cos(305)0-︒<C .22tan 03π⎛⎫-> ⎪⎝⎭D .sin100<【答案】D【解析】30036060︒=︒-︒,则300︒是第四象限角,故sin3000︒<;30536055-︒=-︒+︒,则305-︒是第一象限角,故cos(305)0-︒>;222833πππ-=-+,则223π-是第二象限角,故22tan 03π⎛⎫-< ⎪⎝⎭; 73102ππ<<,则10是第三象限角,故sin100<,故选D.变式2-1-3:下列各式:①()sin 100-︒; ①()cos 220-︒; ①()tan 10-; ①cos π. 其中符号为负的有( )A .1个B .2个C .3个D .4个 【答案】D【解析】100-︒,故()sin 1000-︒<;220-︒在第二象限,故()cos 2200-︒<;710,32ππ⎛⎫-∈-- ⎪⎝⎭在第二象限,故()tan 100-<,cos 10π=-<.(二)由三角函数式的符号确定角的范围或象限【例2-2】已知sin tan 0θθ⋅<,则角θ位于第________象限.【答案】二或三【解析】当θ为第一象限角时,sin 0θ>,tan 0θ>,sin tan 0θθ⋅>; 当θ为第二象限角时,sin 0θ>,tan 0θ<,sin tan 0θθ⋅< 当θ为第三象限角时,sin 0θ<,tan 0θ>,sin tan 0θθ⋅< 当θ为第四象限角时,sin 0θ<,tan 0θ<,sin tan 0θθ⋅> 综上,若sin tan 0θθ⋅<,则θ位于第二或第三象限变式2-2-1:已知sin 0θ<且tan 0θ<,则θ是( )A .第一象限的角B .第二象限的角C .第三象限的角D .第四象限的角【答案】D【解析】sin 0θ<,则θ是第三、四象限的角,tan 0θ<,则θ是第二、四象限的角 ①θ是第四象限的角变式2-2-2:若角α满足sin cos 0αα⋅<,cos sin 0αα-<,则α在( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】B【解析】sin cos 0αα⋅<,α是第二或第四象限角;当α是第二象限角时,cos 0α<,sin 0α>,满足cos sin 0αα-<; 当α是第四象限角时,cos 0α>,sin 0α<,则cos sin 0αα->,不合题意; 综上所述:α是第二象限角.变式2-2-3:若sin tan 0αα<,且cos 0tan αα<,则角α是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角【答案】C【解析】由sin tan 0αα<可知sin α,tan α异号,从而α是第二或第三象限角.由cos 0tan αα<可知cos α,tan α异号,从而α是第三或第四象限角. 综上可知,α是第三象限角.变式2-2-4:已知点P (tan α,cos α)在第四象限,则角α的终边在( )A .第一象限B .第二象限C .第三象限D .第四象限【解析】因为点P 在第四象限,所以有tan 0cos 0αα>⎧⎨<⎩,由此可判断角α的终边在第三象限.变式2-2-5:若cos α与tan α同号,那么α在( )A .第一、三象限B .第一、二象限C .第三、四象限D .第二、四象限 【答案】B【解析】因为cos α与tan α同号,则cos α与tan α的乘积为正,即正弦值为正,所以α在第一、二象限.变式2-2-6:在ABC 中,A 为钝角,则点()cos ,tan P A B 在( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】B【解析】在ABC 中,A 为钝角,则B 为锐角,则cos 0,tan 0A B <>,则点()cos ,tan P A B 在第二象限变式2-2-7:已知角α的终边经过点(39,2)a a -+,且cos 0α≤,sin 0α>,则实数a 的取值范围是( )A .(-2,3]B .(-2,3)C .[-2,3)D .[-2,3] 【答案】A【解析】①cos 0α≤,sin 0α>,①角α的终边落在第二象限或y 轴的正半轴上. ①39020a a -≤⎧⎨+>⎩ ①23a -<≤ .。
三角函数的概念(基础知识+基本题型)(含解析)
5.2.1 三角函数的概念(基础知识+基本题型)知识点一 任意角的三角函数 1、单位圆的概念在直角坐标系中,以原点O 为圆心,以单位长度为半径的圆叫单位圆. 2、任意角的三角函数的定义如图,设α是一个任意角,它的终边与单位圆交于点(,)P x y ,那么:y 叫做α的正弦,记作sin α,即sin y α=;②x 叫做α的余弦,记作cos α,即cos x α=; ③y x 叫做α的正切,记作tan α,即()tan 0yx xα=≠. 正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们将它们统称为三角函数。
拓展:(1)任意角的三角函数的定义一般地,设角α的终边上任意一点的坐标为(,)x y ,它与原点的距离为r =,则sin ,cos ,tan (0)y x yx r r xααα===≠ (2)在任意角的三角函数的定义中,应该明确:α是一个任意角,其范围是使函数有意义的实数集. (3)三角函数值是比值,是一个实数,这个实数的大小和(,)P x y 所在中边上的位置无关,而由角α的终边位置决定.(4)要明确sin α是一个整体,不是sin 与α的乘积,它是“正弦函数”的一个记号,就如()f x 表示自变量为x 的函数一样,离开自变量的“sin α”“cos α”“tan α”等式没有意义的.知识点二 三角函数的定义域和函数值的符号1. 正弦函数、余弦函数、正切函数的定义域如下∶2.在各个象限内的符号,如图所示.【拓展】为了便于记忆,我们把三角函数值在各象限内的符号规律概括为下面口诀:“一全正、二正弦、三正切、四余弦”,意思为:第一象限各三角函数值均为正;第二象限只有正弦值为正,其余均为负;第三象限只有正切值为正,其余均为负;第四象限只有余弦值为正,其余均为负.由于从原点到角的终边上任意一点的距离r 是正值,根据三角函数的定义,知 (1)正弦函数的符号取决于纵坐标y 的符号; (2)余弦函数的符号取决于横坐标x 的符号;(3)正切函数的符号是由,x y 的符号共同决定的,即,x y 同号为正,异号为负. 知识点三 诱导公式一公式一:()sin 2sin k παα+⋅= , ()cos 2cos k παα+⋅=, ()tan 2tan k παα+⋅=, 【提示】(1)诱导公式一说明终边相同的角的同一三角函数值相等.(2)任意给定一个角,它的三角函数值是唯一确定的;若给定一个三角函数值,则有无数个角与之对应. (3)利用诱导公式一,可以把求任意角的三角函数值,转化为求0到2π内的角 的三角 函数值.其中 k Z ∈ . 知识点四 三角函数线 1.有向线段带有方向的线段叫做有向线段. 2.三角函数线的定义如图 1.2-4,设任意角α的顶点在原点o (单位圆的圆心),始边与x 轴的非负半轴重合,终边与单位圆相交于点,()P x y ,过点p 作x 轴的垂线,垂足为点M ;过点(1,0)A 作单位圆的切线,设它与角α 的终边(当α位于第一、四象限时)或其反向延长线(当α位于第二、三象限时)相交于点T (因为过切点的半径垂直于圆的切线,所以AT 平行于y 轴 ).于是sin ,cos ,tan y MP AT y MP x OM AT x OM OAααα======== . 我们规定与坐标轴 同向时 ,方向为正向,与坐标轴反向时,方向为负向,则有向线段MP ,OM ,AT 分别叫做角α 的正弦线、余弦线、正切线,它们统称为三角函数线.【提示】(1)三角函数线的意义是可以表示三角函数的值,其长度等于三角函数的绝对值,方向表示三角函数值的正负.(2)因为三角函数线是与单位圆有关的有向线段,所以作角的三角函数线时,一定要先作出单位圆. (3)有向线段的书写:有向线段的起点字母写在前面,终点字母写在后面.考点一 三角函数的定义及函数值符号 【例1】 有下列说法:①终边相同的角的同名三角函数值相等; ②终边不同的角的同名三角函数值不等; ③若sin20α> ,则α 是第一象限角;④若α 是第二象限角,且(,)P x y 是其终边上一点,则cos α= .其中正确说法的个数是 ( ) A.1B.2C.3D.4解析: 对于此类三角函数的题目,需要逐个判断.充分利用三角函数的定义求解是关键.总结: (1)解决此类问题的关键是准确理解任意角的三角函数的定义.(2)注意问题:①对于不同象限的角,求其三角函数值时,要分象限进行讨论;②终边在坐标轴上的角不属于任何象限.考点二 求三角函数的定义域 【例2】 求下列函数的定义域: (1)sin tan y x x =+ ;(2)sin cos tan x xy x+=.解: (1)要使函数有意义, 必须使sin x 与tan x 都有意义, 所以,().2R x k k Z x ππ∈≠+∈⎧⎪⎨⎪⎩ 所以函数sin tan y x x =+的定义域为 2,k x Z x k ππ∈⎧⎫≠+⎨⎬⎩⎭.(2)要使函数有意义,必须使tan x 有意义,且tan 0x ≠ ,所以,2()Z k x k x k πππ⎧⎪⎨⎪⎩≠+∈≠所以函数sin cos tan x xy x +=的定义域为,2k x x k Z π≠∈⎧⎫⎨⎬⎩⎭. (1)解题时要注意函数本身的隐含条件.(2)求三角函数的定义域,应 熟悉各三角函数在各象限内的符号,并要注意各三角函数的定义域 ,一 般用弧度制表示.考点三 诱导公式一的应用 【例3 】计算下列各式的值:(1) ()()sin 1395cos111cos 1020sin7500︒︒︒︒-+-;(2)1112sin cos tan 465πππ⎛⎫-+ ⎪⎝⎭. 解: (1)原式()()()()sin 454360cos 303360cos 603360sin 302360︒︒︒︒︒︒︒︒=-⨯+⨯+-⨯+⨯ cos30cos60sin30sin 45︒︒︒︒+=1122=⨯14=+=(2)原式()2sin 2cos 2tan 0465πππππ⎛⎫⎛⎫=-+++ ⎪⎪⎝⎭⎝⎭21sincos0652ππ=+⨯= . 利用诱导公式一可把负角的三角函数转化为0~2π 内的角的三角函数,也可把大于2π 的角的三角函数转化为0~2π 内的角的三角函数, 即实现了“负化正 ,大化小”. 要注意记 忆特殊角的三角 函数值.考点四 三角函数线的应用【例4】 利用单位圆中的工角函数线 ,分别确定角θ的取值范围.(1)sin θ(2)1co s 2-≤< .分析: 先作出三角函数在边界时的三角函数线,观察角在什么范围内变化, 再根据范围区域写出θ 的取值范围.解: (1)图①中阴影部分就是满足条件的角θ 的范围, 即,32223k k k Z πππθπ+≤≤∈+ .(2)图②中阴影部分就是满足条件的角θ 的范围,即22362k k πππθπ<--+≤+ 或22,326k k Z k ππθππ<≤+∈+ .解形如()f m α≤ 或()()1f m m α≥< 的式子时,在直角坐标及单位圆中标出满足()f m α= 的两个角的终边(若为正弦函数,则角的终边是直线y m = 与单位圆的两个交点 与原点的连线;若为余弦函数,则角的终边是直线x m = 与单位圆的两个交点与原点的连 线 ;若为正切函数,则角的终边与角的终边的反向延长线表示的正切值相同). 根据三角函数值的大小,先找出α 在0~2π (或 ~ππ- )内 的取值 ,再加上2()k k Z π∈ 即可.。
2019-2020学年新教材高中数学第五章三角函数5.2.1三角函数的概念
[思路导引] 利用三角函数在各象限的符号判断.
[解] (1)因为 105°,230°分别为第二、三象限角,所以 sin105°>0,cos230°<0.
于是 sin105°·cos230°<0.
π
2π
(2)因为 2 <3<π,所以 3 是第二象限角,所以 cos3<0,又因为- 3 是第三象限角,
( ) ( ) 2π
2π
-
-
所以 tan 3 >0,所以 cos3·tan 3 <0.
判断三角函数值正负的 2 个步骤 (1)定象限:确定角 α 所在的象限. (2)定符号:利用三角函数值的符号规律,即“一全正,二正弦,三正切,四余弦”来 判断. 注意:若 sinα>0,则 α 的终边不一定落在第一象限或第二象限内,有可能终边落在 y 轴的非负半轴上.
[答案] D
( )π
- 5.给出下列函数值:①sin(-1000°);②cos 4 ;③tan2,其中符号为负的个数
为( )
A.0
B.1
C.2
D.3
[解析] ①sin(-1000°)=sin(-1080°+80°)
=sin80°>0
( )π
- ②cos 4 >0
π ③∵ 2 <2<π,∴tan2<0,只有③符合,∴选 B.
一、选择题
( ) 3 4
-, 1.已知角 α 的顶点在原点,始边与 x 轴的非负半轴重合,终边过点 5 5 ,则
tanα 的值为( )
4 A.-3
3 B.-4
4 C.-5
3 D.-5
4 5 34 - [解析] 由正切函数的定义可得,tanα= 5=-3.
(新教材)高中数学必修第一册第5章 5.2.1三角函数的概念
=sin 45°cos 30°+cos 60°sin 30°
= 22× 23+12×12= 46+14=1+4
6 .
(2)sin-116π+cos 125πtan 4π. 解 原式=sin-2π+π6+cos2π+25πtan(4π+0) =sin π6+cos 25π×0=12.
1 知识梳理
PART ONE
知识点一 任意角的三角函数的定义
设α是一个任意角,α∈R,它的终边OP与单位圆相交于点P(x,y),
点P的纵坐标 y叫做α的正弦函数,记作sin α,即sin α= y ;点P的横坐标 x 叫做α的余
弦函数,记作cos
α,即cos
α=
x
;把点P的纵坐标与横坐标的比值
y x
叫做α的正切,
记作tan
α,即tan
α= y x
(x≠0).
正弦函数、余弦函数和正切函数统称为三角函数,分别记为:
正弦函数y=sin x,x∈R;
余弦函数y=cos x,x∈R;
正切函数y=tan
x,x≠
π 2
+kπ(k∈Z).
思考 三角函数值的大小与点P在角α终边上位置是否有关? 答案 三角函数值是比值,是一个实数,它的大小与点P在终边上的位置无关,只 与角α的终边位置有关,即三角函数值的大小只与角有关.
其中符号为负的有
A.1个
B.2个
C.3个
√D.4个
解析 -100°在第三象限,故sin(-100°)<0; -220°在第二象限,故cos(-220°)<0; -10∈-72π,-3π,在第二象限,故 tan(-10)<0,cos π=-1<0.
反思
感悟 判断三角函数值正负的两个步骤
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
答案 C
4.已知角α的终边经过点(3a-9,a+2),且sin α>0,cos α≤0,则实数a的取值范围是 ________. 解析 由三角函数的定义可知sin α>0 a+2>0,cos α≤0 3a-9≤0,∴-2<a≤3. 答案 (-2,3]
(2)x 叫做 的余弦,记作 cos,即 cos x ;
y
(3)
叫做
的正切,记作tan ,即 tan y (x 0)
x
x
y
α的终边
Px, y﹒
所以,正弦,余弦,正切都是 以角为自变量,以单位圆上点的坐 标或坐标的比值为函数值的函数,
O
A1,0 我x 们将他们称为三角函数.
而 48是第一象限角,所以 tan(672) 0 ;
(3)因为
p
4
是第四象限角,所以
sin
p
4
0
.
例5 求下列三角函数值:
(1)
cos 9p
4
(2) tan( 11p )
6
解:(1)cos
9p
4
cos(p
4
2p ) cos p
4
2 2
(2)tan( 11p ) tan( p 2p ) tan p tan p 3
求 0到2p 或0到360 角的三角函数值 .
例4 确定下列三角函数值的符号:
(1)cos 250(2)tan( 672)(3)sin p
解:(1)因为
250 是第三象限角,所以cos250 0
4
;
(2)因为 tan(672) = tan(48 2 360) tan 48,
y
O
x
P0 3,4
定义推广:
设角 是一个任意角,P(x, y) 是终边上的任意一点,
点 P 与原点的距离 r x2 y2 0
那么① y 叫做 的正弦,即 sin y
r
r
②
x r
叫做
的余弦,即
cos x
r
③
y x
叫做 的正弦,即
tan ቤተ መጻሕፍቲ ባይዱy x 0
A.1
B.-1
2 C. 2
D.-
2 2
解析 ∵角 α 的终边上一点的坐标为(1,-1),它与原点的距离 r= 12+(-1)2
=
2,∴cos
α=xr=
1= 2
2 2.
答案 C
3.若角 α 的终边过点(5,12),则 cos α-sin α=( )
5
7
A.13
B.13
C.-173
D.-153
解析 由题意知 r= 52+122=13,所以,cos α=153, sin α=1123,所以,cos α-sin α=-173,故选 C.
a
tan b
你能在直角坐标系中表示出锐角α吗?
P
y
Ox M y
x
1.在直角坐标系中如何用坐标表示锐角三角函数?
其中 :
OM x, MP y
OP r x2 y2
y
﹒Px, y
sin MP y
OP r
cos OM x
OP r
o
﹒ Mx
tan MP y
3
解:在直角坐标系中,作AOB 5p ,易知 AOB
3
,
y 的终边与单位圆的交点坐标为 (1 , 3 ) 22
所以 sin 5p 3
,
32
cos 5p 1
32
tan 5p 3
3
5p
3
o
﹒
A
x
﹒
B
例2 已知角 的终边经过点 P0(3,4),求角 的
正弦、余弦和正切值 .
长度为半径的圆叫做 单位圆.
Y
P(x,y)
O
M
sin MP y OP
cos OM x
X
OP
tan MP y OM x
2.任意角的三角函数定义
设 是一个任意角,它的终边与单位圆交于点P(x, y)
y 那么:(1) 叫做 的正弦,记作 sin ,即 sin y ;
x
任意角 的三角函数值仅与 有关,而与点 P在角的
终边上的位置无关.
探究:
三角函数值在各象限的符号
y
()
o
x
( )( )
sin
y
( )( )
o
x
( )( )
cos
y
( ) ( )
o
x
(
)(
tan
)
例3 求证:当且仅当下列不等式组成立时,
角 为第三象限角.反之也对。
任意角的三角函数
5.2.1三角函数的概念
课标要求
素养要求
1.借助单位圆理解任意角的三角函数定义. 2.能利用定义解决相关问题.
通过对正弦函数、余弦函数、正切函数定义的 理解,重点提升学生的数学抽象和直观想象素 养.
在初中我们是如何定义锐角三角函数的?
P c
a
Ob M
a
sin c
b
cos c
证明:
sin 0 ①
tan
0
②
因为①式sin 0 成立,所以 角的终边可能位于第三
或第四象限,也可能位于y 轴的非正半轴上;
又因为②式tan 0 成立,所以角 的终边可能位于
第一或第三象限.
因为①②式都成立,所以角 的终边只能位于第三象限. 于是角 为第三象限角.
OM x
如果改变点P在终边上的位置,这三个比值会改变吗?
y
P
﹒ P(x,y)
O
M M
OMP ∽ OMP
sin MP M P
OP OP
cos OM
OP
OM OP
x
tan MP
OM
M P OM
能否通过|op|取特殊值将表达式简化呢?
若OP r 1,则以原点为圆心,以单位
反过来请同学们自己证明.
如果两个角的终边相同,那么这两个角的 同一三角函数值有何关系?
终边相同的角的同一三角函数值相等(公式一)
sin( k 2p ) sin cos( k 2p ) cos tan( k 2p ) tan
其中 k z
利用公式一,可以把求任意角的三角函数值,转化为
使比值有意义的角的集合 即为三角函数的定义域.
由于角的集合以实数集之间可以建立一一 对应关系,三角函数可以看成以实数为自变量 的函数。在弧度制下,正弦、余弦、正切函数 的定义域如下:
三角函数
y=sinα y=cosα y=tan α
定义域
R
R
{
p
2
kp,k
z}
例1 求 5p 的正弦、余弦和正切值.
6
6
6
63
二、素养训练
1.若角α的终边上有一点P(0,3),则下列式子无意义的是( )
A.tan α
B.sin α
C.cos α
D.都有意义
解析 由三角函数的定义 sin α=yr,cos α=xr,tan α=yx,可知 tan α 无意义.
答案 A
2.若角 α 的终边上一点的坐标为(1,-1),则 cos α 为( )