年中考数学复习专题22 圆的有关性质
中考考点突破之圆的专题复习

中考考点突破之圆的专题复习考点精讲1.理解圆、弧、弦、圆心角、圆周角的概念,了解等圆、等弧的概念;2.探索并证明垂径定理;3.探索圆周角与圆心角及其所对弧的关系,了解并证明圆周角定理及其推论;考点解读考点1:垂径定理及其运用①与圆有关的概念和性质:(1)圆:平面上到定点的距离等于定长的所有点组成的图形.如图所示的圆记做⊙O. (2)弦与直径:连接圆上任意两点的线段叫做弦,过圆心的弦叫做直径,直径是圆内最长的弦.(3)弧:圆上任意两点间的部分叫做弧,小于半圆的弧叫做劣弧,大于半圆的弧叫做优弧. (4)圆心角:顶点在圆心的角叫做圆心角.(5)圆周角:顶点在圆上,并且两边都与圆还有一个交点的角叫做圆周角.(6)弦心距:圆心到弦的距离.②垂径定理及其推论:(1)定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.(2)推论:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧.(3)延伸:根据圆的对称性,如图所示,在以下五条结论中:①弧AC=弧AD; ②弧B D=弧C B;③C E=D E; ④AB⊥CD; ⑤AB是直径.只要满足其中两个,另外三个结论一定成立,即推二知三.考点2:圆周角定理及其运用①圆心角、弧、弦的关系:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.②圆周角定理及其推论:(1)定理:一条弧所对的圆周角等于它所对的圆心角的一半. 如图a ,∠A =1/2∠O .图a 图b 图c( 2 )推论:① 在同圆或等圆中,同弧或等弧所对的圆周角相等.如图b ,∠A =∠C .② 直径所对的圆周角是直角.如图c ,∠C =90°.圆内接四边形的对角互补.如图a ,∠A +∠C =180°,∠ABC +∠ADC =180°.考点3:点与圆的位置关系①点与圆的位置关系:设点到圆心的距离为d .(1)d <r ⇔点在⊙O 内;(2)d =r ⇔点在⊙O 上;(3)d >r ⇔点在⊙O 外.考点4:切线性质及其证明①切线的判定:(1)与圆只有一个公共点的直线是圆的切线(定义法).(2)到圆心的距离等于半径的直线是圆的切线.(3)经过半径外端点并且垂直于这条半径的直线是圆的切线.②切线的性质:(1)切线与圆只有一个公共点.(2)切线到圆心的距离等于圆的半径.(3)切线垂直于经过切点的半径考点5:正多边形与圆①正多边形的有关概念:边长(a )、中心(O )、中心角(∠AOB )、半径(R ))、边心距(r ),如图所示①. 222⎪⎭⎫ ⎝⎛-=a R r 边心距n ︒=360中心角②内切圆的有关概念:与三角形各边都相切的圆叫三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.三角形的内心就是三角形三个内角角平分线的交点.考点6:与圆有关的计算①弧长和扇形面积的计算:扇形的弧长l =180n r π;扇形的面积S =2360n r π=12lr②圆锥与侧面展开图(1)圆锥侧面展开图是一个扇形,扇形的半径等于圆锥的母线,扇形的弧长等于圆锥的底面周长.(2)计算公式:2180n R l r ππ==, S 侧=12lR =πrl考点突破1.(2021秋•德城区校级期中)在平面直角坐标系中,⊙C 的圆心坐标为(1,0),半径为1,AB 为⊙C 的直径,若点A 的坐标为(a ,b ),则点B 的坐标为( )A .(﹣a ﹣1,﹣b )B .(﹣a +1,﹣b )C .(﹣a +2,﹣b )D .(﹣a ﹣2,﹣b )2.(2021秋•普兰店区期末)如图,⊙O 的半径为5,C 是弦AB 的中点,OC =3,则AB 的长是()A.6 B.8 C.10 D.123.(2021秋•禹州市期中)如图拱桥可以近似地看作直径为250m的圆弧,桥拱和路面之间用数根钢索垂直相连,这些钢索中最长的一根的长度为25m,那么其正下方的路面AB的长度为()A.100m B.130m C.150m D.180m4.(2020秋•永城市期末)如图,点A,B,C,D均在以点O为圆心的圆O上,连接AB,AC 及顺次连接O,B,C,D得到四边形OBCD,若OD=BC,OB=CD,则∠A的度数为()A.20°B.25°C.30°D.35°5.(2021秋•郾城区期末)如图,在⊙O中,=,直径CD⊥AB于点N,P是上一点,则∠BPD的度数是()A.30°B.45°C.60°D.15°6.(2022•泗洪县一模)圆内接四边形ABCD,∠A,∠B,∠C的度数之比为3:4:6,∠D 的度数为()A.60°B.80°C.100°D.120°7.(2016•中山市模拟)如图,正方形ABCD内接于⊙O,点P在劣弧AB上,连接DP,交AC 于点Q.若QP=QO,则的值为()A.B.C.D.8.(2021秋•舞阳县期末)⊙O的半径为R,点P到圆心O的距离为d,并且d≥R,则P点()A.在⊙O内或⊙O上B.在⊙O外C.在⊙O上D.在⊙O外或⊙O上9.(2021秋•丛台区校级期中)下列说法正确的是()A.过一点A的圆的圆心可以是平面上任意点B.同一平面内,过两点A、B的圆的圆心在一条直线上C.过三点A、B、C的圆的圆心有且只有一点D.过四点A、B、C、D的圆不存在10.(2021秋•射阳县校级期末)下列语句中,正确的是()A.经过三点一定可以作圆B.等弧所对的圆周角相等C.相等的弦所对的圆心角相等D.三角形的外心到三角形各边距离相等11.(2021秋•禹州市期末)如图,AB是⊙O的直径,C是BA延长线上一点,点D在⊙O上,且CD=OA,CD的延长线交⊙O于点E.若∠C=20°,则∠BOE的度数是.12.(2021•五通桥区模拟)如图,圆O的直径AB垂直于弦CD,垂足是E,∠A=22.5°,OC =4,CD的长为.13.(2021秋•甘州区校级期末)在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB=1尺(1尺=10寸),则该圆材的直径为寸.14.(2021秋•西峡县期末)如图,ABCD是⊙O的内接四边形,AD=CD,点E在AD的延长线上,∠CDE=52°,则∠AOD=.15.(2021秋•郾城区期末)如图,在⊙O中,AB为直径,∠ACB的平分线交⊙O于D,AB=6,则BD=.16.(2021•内乡县二模)婆罗摩笈多(公元598﹣660),印多尔北部乌贾因地方人(现巴基斯坦信德地区),在数学、天文学方面有所成就.他编著了《婆罗摩修正体系》《肯达克迪迦》等著作,他还提出了几何界的“婆罗摩笈多定理”.该定理可概述如下:如图,圆O的两条弦AB和CD互相垂直,垂足为E,连接BC,AD,若过点E作BC的垂线EF,延长FE与AD相交于点G,则G为AD的中点.为了说明这个定理的正确性,需要对其进行证明.如下给出了不完整的“已知”和“求证”,请补充完整,并写出“证明”过程.已知:如图,在圆O的内部,AB⊥CD,垂足为E,.求证:.17.(2021秋•长垣市期末)豫东北机场待建在即,国道515围机场绕道而行.如图是公路转弯处的一段圆弧,点O是这段圆弧的圆心.直径CD⊥AB于点F.BE平分∠ABC交CD 于点E,AB=3km,DF=450m.(1)求圆的半径;(2)请判断A、B、E三点是否在以点D为圆心DE为半径的圆上?并说明理由.18.(2022•眉山模拟)如图所示,⊙O中,弦AB与CD相交于点E,AB=CD,连接AD,BC,求证:(1)=;(2)AE=CE.19.(2021秋•内乡县期末)如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点D,交BC于点E.(1)求证:BE=CE;(2)若BD=3,CE=4,求AC的长.20.(2021•信阳模拟)定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角.(1)如图1,∠E是△ABC中∠A的遥望角,若∠A=α,请用含α的代数式表示∠E.(2)如图2,四边形ABCD内接于⊙O,=,四边形ABCD的外角平分线DF交⊙O于点F,连接BF并延长交CD的延长线于点E.求证:∠BEC是△ABC中∠BAC的遥望角.。
九年级数学专题复习圆的有关概念、性质与圆有关的位置关系

总复习圆的有关概念、性质与圆有关的位置关系【考纲要求】1. 圆的基本性质和位置关系是中考考查的重点,但圆中复杂证明及两圆位置关系中证明会有下降趋势,不会有太复杂的大题出现;2.中考试题中将更侧重于具体问题中考查圆的定义及点与圆的位置关系,对应用、创新、开放探究型题目,会根据当前的政治形势、新闻背景和实际生活去命题,进一步体现数学来源于生活,又应用于生活.【知识网络】【考点梳理】考点一、圆的有关概念及性质 1.圆的有关概念圆、圆心、半径、等圆;弦、直径、弦心距、弧、半圆、优弧、劣弧、等弧;三角形的外接圆、三角形的内切圆、三角形的外心、三角形的内心、圆心角、圆周角. 要点进阶:等弧:在同圆或等圆中,能够互相重合的弧叫做等弧. 2.圆的对称性圆是轴对称图形,任何一条直径所在直线都是它的对称轴,圆有无数条对称轴; 圆是以圆心为对称中心的中心对称图形; 圆具有旋转不变性. 3.圆的确定不在同一直线上的三个点确定一个圆.要点进阶:圆心确定圆的位置,半径确定圆的大小. 4.垂直于弦的直径垂径定理 垂直于弦的直径平分这条弦,并且平分弦所对的两条弧. 推论 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.要点进阶:在图中(1)直径CD ,(2)CD ⊥AB ,(3)AM =MB ,(4)C C A B =,(5)AD BD =.若上述5个条件有2个成立,则另外3个也成立.因此,垂径定理也称“五二三定理”.即知二推三.注意:(1)(3)作条件时,应限制AB不能为直径.5.圆心角、弧、弦之间的关系定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量也相等.6.圆周角圆周角定理在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论1 在同圆或等圆中,相等的圆周角所对的弧也相等.推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径.要点进阶:圆周角性质的前提是在同圆或等圆中.7.圆内接四边形(1)定义: 圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.(2)性质:圆内接四边形对角互补,外角等于内对角(即它的一个外角等于它相邻内角的对角).考点二、与圆有关的位置关系1.点和圆的位置关系设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.要点进阶:圆的确定:①过一点的圆有无数个,如图所示.②过两点A、B的圆有无数个,如图所示.③经过在同一直线上的三点不能作圆.④不在同一直线上的三点确定一个圆.如图所示.2.直线和圆的位置关系(1)切线的判定切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线.(会过圆上一点画圆的切线)(2)切线的性质切线的性质定理圆的切线垂直于过切点的半径.(3)切线长和切线长定理切线长经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长.切线长定理从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.要点进阶:直线l是⊙O的切线,必须符合两个条件:①直线l经过⊙O上的一点A;②OA⊥l.(4)三角形的内切圆:与三角形各边都相切的圆叫做三角形的内切圆.(5)三角形的内心:三角形内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心. 三角形的内心到三边的距离都相等.要点进阶:(1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径).(3) 三角形的外心与内心的区别:名称确定方法图形性质外心(三角形外接圆的圆心) 三角形三边中垂线的交点(1)到三角形三个顶点的距离相等,即OA=OB=OC;(2)外心不一定在三角形内部内心(三角形内切圆的圆心) 三角形三条角平分线的交点(1)到三角形三边距离相等;(2)OA、OB、OC分别平分∠BAC、∠ABC、∠ACB; (3)内心在三角形内部.3.圆和圆的位置关系(1)基本概念两圆相离、相切、外离、外切、相交、内切、内含的定义.(2)请看下表:要点进阶:①相切包括内切和外切,相离包括外离和内含.其中相切和相交是重点.②同心圆是内含的特殊情况.③圆与圆的位置关系可以从两个圆的相对运动来理解.④“R-r”时,要特别注意,R>r.考点三、与圆有关的规律探究1.和圆有关的最长线段和最短线段了解和圆有关的最长线段与最短线段,对有关圆的性质的了解极为重要,下面对有关问题进行简单论述.(1)圆中最长的弦是直径.如图①,AB是⊙O的直径,CD为非直径的弦,则AB>CD,即直径AB是最长的弦.过圆内一点最短的弦,是与过该点的直径垂直的弦,如图②,P是⊙O内任意一点,过点P作⊙O的直径AB,过P作弦CD⊥AB于P,则CD是过点P的最短的弦.(2)圆外一点与圆上一点的连线中,最长的线段与最短的线段都在过圆心的直线上.如图所示,P在⊙O外,连接PO交⊙O于A,延长PO交⊙O于B,则在点P与⊙O上各点连接的线段中,PB最长,PA最短.(3)圆内一点与圆上一点的连线中,最长的线段与最短的线段也都在过圆心的直线上.如图所示,P为⊙O内一点,直径过点P,交⊙O于A、B两点,则PB最长、PA最短.2.与三角形内心有关的角(1)如图所示,I是△ABC的内心,则∠BIC1902A =+∠°.(2)如图所示,E是△ABC的两外角平分线的交点,1902BEC A ∠=-∠°.(3)如图所示,E是△ABC内角与外角的平分线的交点,12E A ∠=∠.(4)如图所示,⊙O是△ABC的内切圆,D、E、F分别为切点,则∠DOE=180°-∠A.(5)如图所示,⊙O是△ABC的内切圆,D、E、F为切点,1902DFE A ∠=-∠°.(6)如图所示,⊙O是△ABC的内切圆,D、E、F为切点,P为DE上一点,则1902 DPE A ∠=+∠°.【典型例题】类型一、圆的性质及垂径定理的应用例1.已知:如图所示,⊙O中,半径OA=4,弦BC经过半径OA的中点P,∠OPC=60°,求弦BC的长.例2.如图所示,在⊙O 中,弦AB 与CD 相交于点M ,AD BC =,连接AC . (1)求证:△MAC 是等腰三角形;(2)若AC 为⊙O 直径,求证:AC 2=2AM ·AB .举一反三:【变式】如图所示,在⊙O 中,AB =2CD ,则( )A .2AB CD > B .2AB CD <C .2AB CD = D .AB 与2CD 的大小关系无法确定例3.已知:如图所示,△ABC 内接于⊙O ,BD ⊥半径AO 于D .(1)求证:∠C =∠ABD ;(2)若BD =4.8,sinC =45,求⊙O 的半径.类型二、圆的切线判定与性质的应用例4.如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB 的延长线相交于点P,弦CE平分∠ACB,交AB于点F,连接BE.(1)求证:AC平分∠DAB;(2)求证:△PCF是等腰三角形;(3)若AC=8,BC=6,求线段BE的长.举一反三:【变式】如图,以△ABC的BC边上一点O为圆心的圆,经过A,B两点,且与BC边交于点E,D为BE的下半圆弧的中点,连接AD交BC于F,AC=FC.(1)求证:AC是⊙O的切线;(2)已知圆的半径R=5,EF=3,求DF的长.类型三、切线的性质与等腰三角形、勾股定理综合运用例5.如图所示,⊙O是Rt△ABC的外接圆,AB为直径,∠ABC=30°,CD是⊙O的切线,ED⊥AB于F.(1)判断△DCE的形状;(2)设⊙O的半径为1,且312OF-=,求证△DCE≌△OCB.举一反三:【变式】如图所示,PQ=3,以PQ为直径的圆与一个以5为半径的圆相切于点P,正方形ABCD的顶点A、B在大圆上,小圆在正方形的外部且与CD切于点Q,则AB=________.例6.如图所示,⊙O的直径AB=4,点P是AB延长线上的一点,PC切⊙O于点C,连接AC.PM平分∠APC交AC于M.(1)若∠CPA=30°,求CP的长及∠CMP的度数;(2)若点P在AB的延长线上运动,你认为∠CMP的大小是否发生变化?若变化,说明理由;若不变化,请求出∠CMP的度数;(3)若点P在直径BA的延长线上,PC切⊙O于点C,那么∠CMP的大小是否变化?请直接写出你的结论.举一反三:A的中点,CD⊥AB于D,CD与AE相交于F.【变式】如图所示,AB是⊙O的直径,C是E(1)求证:AC2=AF·AE;(2)求证:AF=CF.【巩固练习】一、选择题1. 在△ABC中,,∠C=45°,AB=8,以点B为圆心4为半径的⊙B与以点C为圆心的⊙C相离,则⊙C的半径不可能为()A.5 B.6 C.7 D.152.如图,AB为⊙ O 的直径,CD 为弦,AB⊥CD,如果∠BOC=70°,那么∠A的度数为()A. 70°B.35°C. 30°D. 20°3.已知AB是⊙O的直径,点P是AB延长线上的一个动点,过P作⊙O的切线,切点为C,∠APC的平分线交AC于点D,则∠CDP等于()A.30°B.60°C.45°D.50°第2题第3题第4题第5题4.如图,⊙O的半径为5,弦AB的长为8,M是弦AB 上的动点,则线段OM长的最小值为()A. 5B. 4C. 3D. 25.如图所示,四边形ABCD中,DC∥AB,BC=1,AB=AC=AD=2.则BD的长为()A. 14B. 15C. 32D. 236. 如图,O 为原点,点A 的坐标为(3,0),点B 的坐标为(0,4),⊙D 过A 、B 、O 三点,点C 为0AB 上一点(不与O 、A 两点重合),则cosC 的值为( )A .34B .35 C .43D .45二、填空题7.已知⊙O 的半径为1,圆心O 到直线l 的距离为2,过l 上任一点A 作⊙O 的切线,切点为B ,则线段AB 长度的最小值为 .8.如图,AD ,AC 分别是⊙O 的直径和弦.且∠CAD=30°.O B⊥AD,交AC 于点B .若OB=5,则BC 的长等于 .9.如图所示,已知⊙O 中,直径MN =10,正方形ABCD 的四个顶点分别在半径OM 、OP 以及⊙O 上,并且∠POM =45°,则AB 的长为________.第8题 第9题 第10 题10.如图所示,在边长为3 cm 的正方形ABCD 中,1O 与2O 相外切,且1O 分别与,DA DC 边相切,2O 分别与,BA BC 边相切,则圆心距12O O = cm .11.如图所示,,EB EC 是O 的两条切线,,B C 是切点,,A D 是O 上两点,如果∠E=46°,∠DCF=32°那么∠A 的度数是 .12.如图,在⊙O 中,AB 是直径,点D 是⊙O 上一点,点C 是的中点,CE⊥AB 于点E ,过点D 的切线交EC 的延长线于点G ,连接AD ,分别交CE 、CB 于点P 、Q ,连接AC ,关于下列结论:①∠BAD=∠ABC;②GP=GD;③点P 是∠ACQ 的外心,其中正确结论是 (只需填写序号).三、解答题13.如图所示,AC 为⊙O 的直径且PA⊥AC,BC 是⊙O 的一条弦,直线PB 交直线AC 于点D ,DB DC 2DP DO 3==.(1)求证:直线PB 是⊙O 的切线; (2)求cos∠BCA 的值.14.如图所示,点A、B在直线MN上,AB=11厘米,⊙A、⊙B的半径均为1厘米.⊙A以每秒2厘米的速度自左向右运动,与此同时,⊙B的半径也不断增大,其半径r(厘米)与时间t(秒)之间的关系式为r =1+t(t≥0).(1)试写出点A、B之间的距离d(厘米)与时间t(秒)之间的函数关系式;(2)问点A出发后多少秒两圆相切?15.已知⊙O的直径AB=10,弦BC=6,点D在⊙O上(与点C在AB两侧),过D作⊙O的切线PD.(1)如图①,PD与AB的延长线交于点P,连接PC,若PC与⊙O相切,求弦AD的长;(2)如图②,若PD∥AB,①求证:CD平分∠ACB;②求弦AD的长.16. 如图1至图4中,两平行线AB、CD间的距离均为6,点M为AB上一定点.思考如图1,圆心为0的半圆形纸片在AB,CD之间(包括AB,CD),其直径MN在AB上,MN=8,点P 为半圆上一点,设∠MOP=α.当α=度时,点P到CD的距离最小,最小值为.探究一在图1的基础上,以点M为旋转中心,在AB,CD 之间顺时针旋转该半圆形纸片,直到不能再转动为止,如图2,得到最大旋转角∠BMO=度,此时点N到CD的距离是.探究二将如图1中的扇形纸片NOP按下面对α的要求剪掉,使扇形纸片MOP绕点M在AB,CD之间顺时针旋转.(1)如图3,当α=60°时,求在旋转过程中,点P到CD的最小距离,并请指出旋转角∠BMO的最大值;(2)如图4,在扇形纸片MOP旋转过程中,要保证点P能落在直线CD上,请确定α的取值范围.(参考数椐:sin49°=34,cos41°=34,tan37°=34.)。
中考数学《圆的有关概念及性质》专题复习

中考数学《圆的有关概念及性质》专题复习【基础知识回顾】一、圆的定义:1、⑴形成性定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转形成的图形叫做圆,固定的端点叫线段OA叫做⑵描述性定义:圆是到定点的距离等于的点的集合【名师提醒:1、在一个圆中,圆心决定圆的半径决定圆的2、直径是圆中的弦,弦不一定是直径】3、弦与弧:弦:连接圆上任意两点的叫做弦弧:圆上任意两点间的叫做弧,弧可分为、、三类4、圆的对称性:⑴轴对称性:圆是轴对称图形,有条对称轴的直线都是它的对称轴.⑵中心对称性:圆是中心对称图形,对称中心是【名师提醒:圆不仅是中心对称图形,而且具有旋转性,即绕圆心旋转任意角度都被与原来的图形重合】5、垂径定理及推论:(1)垂径定理:垂直于弦的直径,并且平分弦所对的几何语言:∵CD过圆心, 且___________∴ , , .(2)推论:平分弦()的直径,并且平分弦所对的几何语言:∵CD过圆心, 且___________∴ , , .【名师提醒:1、垂径定理及其推论实质是指一条直线满足:⑴过圆心⑵垂直于弦⑶平分弦⑷平分弦所对的优弧⑸平分弦所对的劣弧五个条件中的两个,那么可推出其中三个,注意解题过程中的灵活运用2、圆中常作的辅助线是过圆心作弦的线3、垂径定理常用作计算,在半径r弦a弦心d和弦h中已知两个可求另外两个】三、圆心角、弧、弦之间的关系:1、圆心角定义:顶点在的角叫做圆心角2、定理:在中,两个圆心角、两条弧、两条弦中有一组量它们所对应的其余各组量也分别几何语言:∵在圆O中,_______∴ , .∵在圆O中,________∴ , .∵在圆O中,________∴ , .【名师提醒:注意:该定理的前提条件是“在同圆或等圆中”】四、圆周角定理及其推论:1、圆周角定义:顶点在并且两边都和圆的角叫圆周角2、圆周角定理:在同圆或等圆中,圆弧或等弧所对的圆周角都等于这条弧所对的圆心角的推论1、在同圆或等圆中,如果两个圆周角那么它们所对的弧推论2、半圆(或直弦)所对的圆周角是 900的圆周角所对的弦是【名师提醒:1、在圆中,一条弦所对的圆心角只有一个,而它所对的圆周角有个,它们的关系是2、作直弦所对的圆周角是圆中常作的辅助线】3、圆内接四边形定义:如果一个多边形的所有顶点都在圆上,这个多边形叫做这个圆叫做性质:圆内接四边形的对角【名师提醒:圆内接平行四边形是圆内接梯形是】考点一:垂径定理例1、一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是A. 4B. 5C. 6D. 8例2、绍兴市著名的桥乡,如图,石拱桥的桥顶到水面的距离CD为8m,桥拱半径OC为5m,则水面宽AB 为_________考点二:圆心角定理例3、如图,DC 是⊙O直径,弦AB⊥CD于F,连接BC,DB,则下列结论错误的是()A.B.AF=BF C.OF=CF D.∠DBC=90°例4、如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,则AD的长为____________对应训练2.如图,AB是半圆的直径,点D是弧AC的中点,∠ABC=50°,则∠DAB等于().A.55° B.60°C.65° D.70°考点三:圆周角定理例5、如图,将直角三角板60°角的顶点放在圆心O上,斜边和一直角边分别与⊙O相交于A、B两点,P 是优弧AB上任意一点(与A、B不重合),则∠APB= .例6、如图,已知⊙O是△ABD的外接圆,AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD等于_____________对应训练6、△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是()A.80° B.160° C.100° D.80°或100°7、如图,AB是⊙O的直径,弦CD⊥AB于点N,点M在⊙O上,∠1=∠C(1)求证:CB∥MD;(2)若BC=4,sinM= ,求⊙O的直径.考点四:圆内接四边形的性质例3 如图,⊙C过原点,且与两坐标轴分别交于点A、点B,点A的坐标为(0,3),M是第三象限内上一点,∠BMO=120°,则⊙C的半径长为()A.6 B.5 C.3 D.3对应训练【聚焦中考】1.如图,AB是的直径,C是上一点,AB=10,AC=6,,垂足为D,则BD的长为(A)2 (B)3 (C)4 (D)62.如图,⊙O的直径AB=12,CD是⊙O的弦,CD⊥AB,垂足为P,且BP:AP=1:5,则CD的长为(). A. B. C. D.3.如图,在⊙O中,∠CBO=45°,∠CAO=15°,则∠AOB的度数是(A)75°. (B)60°. (C)45°. (D)30°.4.如图,已知圆心角∠BOC=78°,则圆周角∠BAC的度数是()A.156°B.78°C.39°D.12°5.如图,点A,B,C,在⊙O上,∠ABO=32°,∠ACO=38°,则∠BOC等于()A.60° B.70° C.120° D.140°6.如图,AB是⊙O的直径,,AB=5,BD=4,则sin∠ECB=______7.如图,在⊙O中,已知∠OAB=22.5°,则∠C的度数为()A. 135°B. 122.5°C. 115.5°D.112.5°8.如图,在△ABC中,以BC为直径的圆分别交边AC、AB于D、E两点,连接BD、DE.若BD平分∠ABC,则下列结论不一定成立的是A.BD⊥ACB.AC2=2AB·AEC.△ADE是等腰三角形D. BC=2AD.9.如图(b),已知,⊙O的直径CD为4,点A 在⊙O 上,∠ACD=30°,B 为弧AD 的中点,P为直径CD上一动点,则BP+AP的最小值为__________.10.如图,CD为⊙O的直径,CD⊥AB,垂足为点F,AO⊥BC,垂足为点E,AO=1.(1)求∠C的大小;(2)求阴影部分的面积.11.AB是圆O的直径,BC是圆O的切线,连接AC交圆O于点D,E为弧AD上一点,连接AE、BE,BE交AC于点F,且AF²=EF.EB(1)求证:CB=CF (2)若点E到弦AD的距离为1,cos角C=3/5,求圆O的半径12.某施工工地安放了一个圆柱形饮水桶的木制支架(如图1),若不计木条的厚度,其俯视图如图2所示,已知AD垂直平分BC,AD=BC=48cm,则圆柱形饮水桶的底面半径的最大值是 cm.【备考真题过关】一、选择题1.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为__________2.如图,以M(-5,0)为圆心、4为半径的圆与x轴交于A、B两点,P是⊙M上异于A、B的一动点,直线PA、PB分别交y轴于C、D,以CD为直径的⊙N与x轴交于E、F,则EF的长()A.等于4 B.等于4 C.等于6 D.随P点位置的变化而变化3.如图,在半径为5的⊙O中,AB、CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为()A.3 B.4 C.3 D.44.如图,AB为⊙O的直径,弦CD⊥AB于E,已知CD=12,BE=2,则⊙O的直径为()A.8 B.10 C.16 D.205.如图,CD是⊙O的直径,AB是弦(不是直径),AB⊥CD于点E,则下列结论正确的是()A.AE>BE B.C.∠D=∠AEC D.△ADE∽△CBE6.△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是()A.80° B.160° C.100° D.80°或100°7.如图,在△ABC中,AB为⊙O的直径,∠B=60°,∠BOD=100°,则∠C的度数为()A.50° B.60° C.70° D.80°二、填空题8.如图,AB为⊙O的直径,CD为⊙O的一条弦,CD⊥AB,垂足为E,已知CD=6,AE=1,则⊙0的半径为.9.如图,AB是⊙O的弦,OC⊥AB于C.若AB=2,0C=1,则半径OB的长为.10.如图,在⊙O中,直径AB丄弦CD于点M,AM=18,BM=8,则CD的长为.111314.如图,已知点A(0,2)、B(2,2)、C(0,4),过点C向右作平行于x轴的射线,点P是射线上的动点,连接AP,以AP为边在其左侧作等边△APQ,连接PB、BA.若四边形ABPQ为梯形,则:(1)当AB为梯形的底时,点P的横坐标是;15.如图,△ABC内接于⊙O,AB、CD为⊙O直径,DE⊥AB于点E,sinA=,则∠D的度数是.三、解答题16.如图所示为圆柱形大型储油罐固定在U型槽上的横截面图.已知图中ABCD为等腰梯形(AB∥DC),支点A与B相距8m,罐底最低点到地面CD距离为1m.设油罐横截面圆心为O,半径为5m,∠D=56°,求:U 型槽的横截面(阴影部分)的面积.(参考数据:sin53°≈0.8,tan56°≈1.5,π≈3,结果保留整数)17.如图,⊙O的半径为17cm,弦AB∥CD,AB=30cm,CD=16cm,圆心O位于AB,CD的上方,求AB和CD的距离.18.在⊙O中,直径AB⊥CD于点E,连接CO并延长交AD于点F,且CF⊥AD.求∠D的度数.19.如图,A,P,B,C是半径为8的⊙O上的四点,且满足∠BAC=∠APC=60°,(1)求证:△ABC是等边三角形;(2)求圆心O到BC的距离OD.20.如图△ABC中,BC=3,以BC为直径的⊙O交AC于点D,若D是AC中点,∠ABC=120°.(1)求∠ACB的大小;(2)求点A到直线BC的距离.21.如图,已知AB是⊙O的弦,OB=4,∠OBC=30°,点C是弦AB上任意一点(不与点A、B重合),连接CO并延长CO交⊙O于点D,连接AD、DB.(1)当∠ADC=18°时,求∠DOB的度数;(2)若AC=2,求证:△ACD∽△OCB.。
中考数学复习之圆的基本性质,考点过关与基础练习题

32.圆的有关性质➢ 知识过关1. 圆有相关概念(1)圆:在一个平面内,线段OA 绕它固定的一个端点O 旋转_____,另一个端点A 所于形成的图形叫做圆,圆心为O ,半径为r 的圆可以看成是所有到定点O 的距离等于____r 的点的集合.(2)弧、弦、等圆、等弧①弧:圆上任意_____的部分叫做弧,大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧; ①弦:连接圆上任意两点的____叫做弦,经过_____的弦叫做直径. ①等圆:能够_____的两个圆叫做等圆;①等弧:在_____或等圆中,能够互相重合的弧叫做等弧. 2. 垂径定理及其推论 (1) 对称性:①圆是中心对称图形,其对称中心是圆心 ①圆是轴对称图形,其对称轴是_______. (2) 垂径定理及其推论①垂径定理:垂直于弦的直径______这条弦,并且平分这条弦所对的______; ①推论:平分弦(非直径)的直径______于弦,并且平分这条弦所对的两条弧.➢ 考点分类考点1 圆心角、弧、弦之间的关系例1如图所示,圆O 通过五边形OABCD 的四个顶点,若D AB=150°,A=65°,D=60°,则的度数为( )A.25°B.40°C.50°D.55°考点2垂径定理及简单应用例2如图所示,水平放置的圆柱形排水管道的截面直径是1m,其中水面的宽AB 为0.8m,则排水管内水的深度为_______m.考点3垂径定理与其他知识的综合运用例3如图,线段AB 是⊙O 的直径,弦CD ⊥AB 于点H ,点M 是弧CBD 上任意一点,AH =2,CH =4.(1)求⊙O 的半径r 的长度; (2)求sin ∠CMD ;(3)直线BM 交直线CD 于点E ,直线MH 交⊙O 于点N ,连接BN 交CE 于点F ,求HE •HF 的值.➢ 真题演练1.如图,AB 是⊙O 的弦,半径OC ⊥AB 于点D ,连接AO 并延长,交⊙O 于点E ,连接BE ,DE .若DE =3DO ,AB =4√5,则△ODE 的面积为( )A .4B .3√2C .2√5D .2√62.如图,⊙O 的半径为5,弦AB 的长为8,M 是弦AB 上的一个动点,则线段OM 的长的最小值为( )A .3B .4C .6D .83.在正方形网格中,以格点O 为圆心画圆,使该圆经过格点A ,B ,并在点A ,B 的右侧圆弧上取一点C ,连接AC ,BC ,则sin C 的值为( )A .√32B .12C .1D .√224.如图,半径为5的⊙A 与y 轴交于点B (0,2)、C (0,10),则点A 的横坐标为( )A .﹣3B .3C .4D .65.如图,在⊙O 中,直径AB =10,CD ⊥AB 于点E ,CD =8.点F 是弧BC 上动点,且与点B 、C 不重合,P 是直径AB 上的动点,设m =PC +PF ,则m 的取值范围是( )A .8<m ≤4√5B .4√5<m ≤10C .8<m ≤10D .6<m <106.在⊙O 中内接四边形ABCD ,其中A ,C 为定点,AC =8,B 在⊙O 上运动,BD ⊥AC ,过O 作AD 的垂线,垂足为E ,若⊙O 的直径为10,则OE 的最大值接近于( )A .52B .5√23C .4D .57.如图,点A ,B ,C 都在⊙O 上,B 是AC ̂的中点,∠OBC =50°,则∠AOB 等于 °.8.如图,将半径为rcm 的⊙O 折叠,弧AB 恰好经过与AB 垂直的半径OC 的中点D ,已知弦AB 的长为4√15cm ,则r = cm .9.如图,AB是⊙O的直径,∠BOD=120°,C为弧BD的中点,AC交OD于点E,DE =1,则AE的长为.10.如图,AB为⊙O的直径,AE为⊙O的弦,C为优弧ABÊ的中点,CD⊥AB,垂足为D.若AE=8,DB=2,则⊙O的半径为.11.如图,⊙O中,直径CD⊥弦AB于E,AM⊥BC于M,交CD于N,连接AD.(1)求证:AD=AN;(2)若AB=8,ON=1,求⊙O的半径.➢课后练习1.如图,在⊙O中,直径CD垂直弦AB于点E,且OE=DE.点P为BĈ上一点(点P不与点B,C重合),连接AP,BP,CP,AC,BC.过点C作CF⊥BP于点F.给出下列结论:①△ABC是等边三角形;②在点P从B→C的运动过程中,CFAP−BP的值始终等于√32.则下列说法正确的是()A.①,②都对B.①对,②错C.①错,②对D.①,②都错2.如图,在半径为5的⊙O 内有两条互相垂直的弦AB 和CD ,AB =8,CD =8,垂足为E .则tan ∠OEA 的值是( )A .1B .√63C .√156D .2√1593.如图,四边形ABCD 内接于半径为5的⊙O ,AB =BC =BE ,AB ⊥BE ,则AD 的长为( )A .5B .5√2C .5√3D .104.如图,点A ,B ,C 在⊙O 上,∠AOC =90°,AB =√2,BC =1,则⊙O 的半径为( )A .√3B .√52C .√102D .√2+125.下列说法正确的是( )A .同弧或等弧所对的圆心角相等B .所对圆心角相等的弧是等弧C .弧长相等的弧一定是等弧D .平分弦的直径必垂直于弦6.如图,A ,B 为圆O 上的点,且D 为弧AB 的中点,∠ACB =120°,DE ⊥BC 于E ,若AC =√3DE ,则BE CE的值为( )A .3B .2C .√33+1D .√3+17.如图所示,在⊙O 中,BC 是弦,AD 过圆心O ,AD ⊥BC ,E 是⊙O 上一点,F 是AE 延长线上一点,EF =AE .若AD =9,BC =6,设线段CF 长度的最小值和最大值分别为m 、n ,则mn =( )A .100B .90C .80D .708.如图,A ,B 是⊙O 上的点,∠AOB =120°,C 是AB̂的中点,若⊙O 的半径为5,则四边形ACBO 的面积为( )A .25B .25√3C .25√34D .25√329.如图,AB 是⊙O 的直径,点C 是半圆上的一个三等分点,点D 是AĈ的中点,点P 是直径AB 上一点,若⊙O 的半径为2,则PC +PD 的最小值是 .10.如图,一下水管道横截面为圆形,直径为260cm ,下雨前水面宽为100cm ,一场大雨过后,水面宽为240cm ,则水位上升 cm .11.如图,在⊙O 中,点C 在弦AB 上,连接OB ,OC .若OB =5,AC =1,BC =5,则线段OC 的长为 .12.如图,以G(0,3)为圆心,半径为6的圆与x轴交于A,B两点,与y轴交于C,D 两点,点E为⊙G上一动点,CF⊥AE于F,点E在⊙G的运动过程中,线段FG的长度的最大值为.13.如图,⊙O的半径OD⊥弦AB于点C,连接AO并延长交⊙O于点E,连接EC.若AB =8,OC=3,则EC的长为.14.如图,射线PE平分∠CPD,O为射线PE上一点,以O为圆心作⊙O,与PD边交于点A、点B,连接OA,且OA∥PC.(1)求证:AP=AO.(2)若⊙O的半径为10,tan∠OPB=12,求弦AB的长.15.如图,在⊙O中,直径AB与弦CD相交于点E,OF⊥CD,垂足为F.设已知BE=5,AE=12OE,OF=1,求CD的长.➢冲击A+在Rt①ABC中,①BAC=90°,(1)如图1,D、E分别在BC、BA的延长线上,①ADE=2①CAD,求证:DA=DE;(2)如图2,在(1)的条件下,点F在BD上,①AFB=①EFD,求证:①FAD=①FED(3)如图3,若AB=AC,过点C作CN||AB,连接AN,在AN上取一点G,使GA=AC,连接BG交AC于点H,连接CG,试探究CN、CH、GN之间满足的数量关系式,并给出证明;。
人教版九年级数学中考复习第一轮专题--6.强化训练第六章 圆

∵DO=BO, ∴∠ODB=∠OBD, ∴∠AOD=2∠ODB=∠EDO. ∵∠CAB=∠CDB=45°=∠EDO+∠ODB=3∠ODB, ∴∠ODB=15°=∠OBD. ∵∠BAF=∠DBA=15°,
∴AF=BF,∠AFD=30°. ∵AB 是直径,∴∠ADB=90°, ∴AF=2AD,DF= AD, ∴BD=DF+BF= AD+2AD,
C.G,H,E
D.H,E,F
5.(2018 福建)如图,AB 是☉O 的直径,BC 与☉O 相切于点 B,AC 交
☉O 于点 D,若∠ACB=50°,则∠BOD 等于( D )
A.40°
B.50°
C.60°
D.80°
第 5 题图
第 6 题图
6.(2018 哈尔滨)如图,点 P 为☉O 外一点,PA 为☉O 的切线,A 为切
(1)求证:EG 是☉O 的切线;
(2)延长 AB 交 GE 的延长线于点 M,若 AH=2,CH=2 2,求 OM 的 长. (1)证明:连接 OE,如图,
∵GE=GF,∴∠GEF=∠GFE. 而∠GFE=∠AFH,∴∠GEF=∠AFH. ∵AB⊥CD,∴∠OAF+∠AFH=90°, ∴∠GEA+∠OAF=90°. ∵OA=OE,∴∠OEA=∠OAF, ∴∠GEA+∠OEA=90°,即∠GEO=90°, ∴OE⊥GE,
第23讲 与圆有关的位置关系
1.(2011.(2019 南岗)如图,在 Rt△ABC 中,∠C=90°,AC=3,BC=4,以
点 A 为圆心作圆,如果圆 A 与线段 BC 没有公共点,那么圆 A 的半
中考真题训练圆的有关性质

中考数学试题专题汇编:圆的有关性质1. 如图1,⊙O 弦AB 若AB =6,则⊙O 的半径为( )A. 2 B.2 2 C.22 D.622. 圆柱形油槽内装有一些油。
截面图,油面宽AB 为6分米,如果再注入一些油 后,油面AB 上升1分米,油面宽变为8分米,圆柱形油槽直径MN 为( )分米(A )6(B )8(C )10(D )123. 一个圆形人工湖如图3,弦AB 是湖上的一座桥,已知桥AB 长100m ,测得圆周角45ACB ∠=︒,则这个人工湖的直径AD 为()A.B.C.D.4. 一条排水管的截面如图4.已知排水管的截面圆半径10OB =,截面圆圆心O 到水面的距离OC 是6,则水面宽AB 是( ) A.16 B.10 C.8 D.65. 如下图1,小华同学设计了一个圆直径的测量器,标有刻度的尺子OA 、OB 在O 点钉在一起,并使它们保持垂直,在测直径时,把O 点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,则圆的直径为( )个单位 A . 12 B. 10 C.4 D. 156. 如图(六),△ABC 的外接圆上,AB 、BC 、CA 三弧的度数比为12:13:11.自弧BC 上取一点D ,过D 分别作直线AC 、直线AB 的并行线,且交弧BC 于E 、F 两点,则∠EDF 的度数为何? ( )A . 55B . 60C . 65D . 707. 如图3,⊙O 过点B 、C ,圆心O 在等腰Rt △ABC 的内部,∠BAC=90°,OA=1,BC=6。
则⊙O 的半径为( )A .6B .13CD .8. 如图4,若AB 是⊙0的直径,CD 是⊙O 的弦,∠ABD =58°, 则∠BCD =( )(A)116° (B)32° (C)58° (D)64°9. 如图5,⊙O 是△ABC 的外接圆,∠BAC=60°,若⊙O 的半径OC 为2,则弦BC 的长为( )A .1B C .2 D .10. 如右面图1,⊙O 的直径CD =5cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,O M :OD =3:5,则AB 的长是( )A .2cm B .3cm C .4cm D .221cm11.矩形ABCD 中,AB =8,BC =P 在边AB 上,且BP =3AP ,如果圆P 是以点P 为圆心,PD 为半径的圆,那么下列判断正确的是( ).(A) 点B 、C 均在圆P 外; (B) 点B 在圆P 外、点C 在圆P 内;(C) 点B 在圆P 内、点C 在圆P 外; (D) 点B 、C 均在圆P 内. 12. 如图2,CD 是⊙ O 的弦,直径AB 过CD 的中点M ,若∠ BOC=40°,则∠ ABD=( ) A .40° B .60° C .70° D .80°13. 如上图3,100AOB ∠=,点C 在O 上,且点C 不与A 、B 重合,则ACB ∠的度数为( ) A .50 B .80或50 C .130 D .50 或13014. 如上图4,四边形ABCD 是圆内接四边形,E 是BC 延长线上一点,若∠BAD =105°,则∠DCE 的大小是( ) A . 115°B . 105°C . 100°D . 95°15. 如上图5, AB 为 ⊙ O 的直径, CD 为弦, AB ⊥ CD ,如果∠ BOC = 700 ,那么∠ A 的度数为( ) A .70︒ B . 35︒ C . 30︒ D . 20︒16.如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm2,则该半圆的半径为( )A. (4 cmB. 9 cmC.D.17.如图2,的直径AB 长为10,弦AC 长为6,∠ACB 的平分线交⊙O 于D ,则CD 的长为( )A 、7B 、 C、 D 、918.如图3,MN 是半径为1的⊙O 的直径,点A 在⊙O 上,∠AMN=30°,B 为AN 弧的中点,点P 是直径MN 上一个动点,则PA+PB 的最小值为( ) A .22 B .2 C .1 D .2 19.如图4,在圆⊙O 内有折线OABC ,其中OA =8,AB =12,∠A =∠B =60°,则BC 的长为( )A .19 B .16 C .18 D .2020. 已知⊙O 的半径为13cm ,弦AB//CD ,AB=24cm ,CD=10cm ,则AB 、CD 之间的距离为( ) A .17cm B .7 cm C .12 cmD .17 cm 或7 cm(第3题)ABCOOCA B第10题图D CAO二、填空题1. 如下图1,⊙O 的两条弦AB 、CD 互相垂直,垂足为E ,且AB =CD ,已知CE =1,ED =3,则⊙O 的半径是 .2. 如上图2,⊙O 的弦CD 与直径AB 相交,若∠B AD=50°,则∠ACD=3. 如下图3,在以AB 为直径的半圆中,有一个边长为1的内接正方形CDEF ,则以AC 和BC 的长为两根的一元二次方程是 .4. 如图4,⊙O 的直径AB 与弦CD 相交于点E ,若AE =5,BE =1,CD =则∠AED= .__________.6. 如图上2,点A ,B ,C ,D 都在⊙O上,的度数等于84°,CA 是∠OCD 的平分线,则∠ABD 十∠CAO = °. 7. 如上图3,AB 是⊙ O 的直径,点C ,D 都在⊙ O 上,连结CA ,CB ,DC ,DB .已知∠ D =30°,BC =3,则AB 的长是 .8. 如上图4,OB 是⊙O 的半径,点C 、D 在⊙O 上,∠DCB=27°,则∠OBD= 度。
中考数学专卷2020届中考数学总复习(22)圆-精练精析(1)及答案解析

图形的性质——圆1一.选择题(共8小题)1.如图,正方形ABCD的边AB=1,和都是以1为半径的圆弧,则无阴影两部分的面积之差是()A.B.1﹣C.﹣1 D.1﹣2.已知⊙O的直径CD=10cm,AB是⊙O的弦,AB=8cm,且AB⊥CD,垂足为M,则AC的长为()A.cm B.cm C.cm或cm D.cm或cm3.如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则AB的长为()A.2 B.4 C.6 D.84.如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x 的图象被⊙P截得的弦AB的长为,则a的值是()A.4 B.C.D.5.已知⊙O的面积为2π,则其内接正三角形的面积为()A.3 B.3 C. D.6.如图,半径为3的⊙O内有一点A,OA=,点P在⊙O上,当∠OPA最大时,PA的长等于()A.B.C.3 D.27.在△ABC中,AB=AC=5,sinB=,⊙O过点B、C两点,且⊙O半径r=,则OA的长为()A.3或5 B.5 C.4或5 D.48.如图,B,C,D是半径为6的⊙O上的三点,已知的长为2π,且OD∥BC,则BD的长为()A.3 B.6 C.6 D.12二.填空题(共7小题)9.如图,⊙O的半径是5,AB是⊙O的直径,弦CD⊥AB,垂足为P,若CD=8,则△ACD的面积是_________ .10.正六边形的中心角等于_________ 度.11.如图,以△ABC的边BC为直径的⊙O分别交AB、AC于点D、E,连结OD、OE,若∠A=65°,则∠DOE=_________ .12.如图,AB、CD是半径为5的⊙O的两条弦,AB=8,CD=6,MN是直径,AB⊥MN于点E,CD⊥MN于点F,P为EF上的任意一点,则PA+PC的最小值为_________ .13.如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC,若AB=2cm,∠BCD=22°30′,则⊙O的半径为_________ cm.14.如图,⊙O的半径是2,直线l与⊙O相交于A、B两点,M、N是⊙O上的两个动点,且在直线l的异侧,若∠AMB=45°,则四边形MANB面积的最大值是_________ .15.⊙O的半径为2,弦BC=2,点A是⊙O上一点,且AB=AC,直线AO与BC交于点D,则AD的长为_________ .三.解答题(共8小题)16.一个弓形桥洞截面示意图如图所示,圆心为O,弦AB是水底线,OC⊥AB,AB=24m,sin∠COB=,DE是水位线,DE∥AB.(1)当水位线DE=4m时,求此时的水深;(2)若水位线以一定的速度下降,当水深8m时,求此时∠ACD的余切值.17.如图,已知在△ABC中,AB=AC,以AB为直径的⊙O与边BC交于点D,与边AC交于点E,过点D作DF⊥AC于F.(1)求证:DF为⊙O的切线;(2)若DE=,AB=,求AE的长.18.如图,AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,MD恰好经过圆心O,连接MB.(1)若CD=16,BE=4,求⊙O的直径;(2)若∠M=∠D,求∠D的度数.19.如图,⊙O的直径为10cm,弦AB=8cm,P是弦AB上的一个动点,求OP的长度范围.20.如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,PB与CD交于点F,∠PBC=∠C.(1)求证:CB∥PD;(2)若∠PBC=22.5°,⊙O的半径R=2,求劣弧AC的长度.21.如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD∥BC,OD与AC交于点E.(1)若∠B=70°,求∠CAD的度数;(2)若AB=4,AC=3,求DE的长.22.如图,⊙O是△ABC的外接圆,AB为直径,OD∥BC交⊙O于点D,交AC于点E,连接AD,BD,CD.(1)求证:AD=CD;(2)若AB=10,cos∠ABC=,求tan∠DBC的值.23.如图,PA,PB分别与⊙O相切于点A,B,∠APB=60°,连接AO,BO.(1)所对的圆心角∠AOB=_________ ;(2)求证:PA=PB;(3)若OA=3,求阴影部分的面积.图形的性质——圆1 参考答案与试题解析一.选择题(共8小题) 1.如图,正方形ABCD 的边AB=1,和都是以1为半径的圆弧,则无阴影两部分的面积之差是( )A .B .1﹣C .﹣1D . 1﹣考点: 扇形面积的计算. 分析: 图中1、2、3、4图形的面积和为正方形的面积,1、2和两个3的面积和是两个扇形的面积,因此两个扇形的面积的和﹣正方形的面积=无阴影两部分的面积之差,即﹣1=.解答: 解:如图: 正方形的面积=S 1+S 2+S 3+S 4;① 两个扇形的面积=2S 3+S 1+S 2;② ②﹣①,得:S 3﹣S 4=S 扇形﹣S 正方形=﹣1=.故选:A .点评: 本题主要考查了扇形的面积计算公式及不规则图形的面积计算方法.找出正方形内四个图形面积之间的联系是解题的关键.2.已知⊙O 的直径CD=10cm ,AB 是⊙O 的弦,AB=8cm ,且AB⊥CD,垂足为M ,则AC 的长为( )A . cmB .cmC .cm 或cmD . cm 或cm考点: 垂径定理;勾股定理. 专题: 分类讨论. 分析: 先根据题意画出图形,由于点C 的位置不能确定,故应分两种情况进行讨论.解答:解:连接AC,AO,∵⊙O的直径CD=10cm,AB⊥CD,AB=8cm,∴AM=AB=×8=4cm,OD=OC=5cm,当C点位置如图1所示时,∵OA=5cm,AM=4cm,CD⊥AB,∴OM===3cm,∴CM=OC+OM=5+3=8cm,∴AC===4cm;当C点位置如图2所示时,同理可得OM=3cm,∵OC=5cm,∴MC=5﹣3=2cm,在Rt△AMC中,AC===2cm.故选:C.点评:本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.3.如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则AB的长为()A. 2 B.4C.6D.8考点:垂径定理;勾股定理.专题:计算题.分析:根据CE=2,DE=8,得出半径为5,在直角三角形OBE中,由勾股定理得BE,根据垂径定理得出AB的长.解答:解:∵CE=2,DE=8,∴OB=5,∴OE=3,∵AB⊥CD,∴在△OBE中,得BE=4,∴AB=2BE=8.故选:D.点评:本题考查了勾股定理以及垂径定理,是基础知识要熟练掌握.4.如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是()A. 4 B.C.D.考点:垂径定理;一次函数图象上点的坐标特征;勾股定理.专题:计算题;压轴题.分析:PC⊥x轴于C,交AB于D,作PE⊥AB于E,连结PB,由于OC=3,PC=a,易得D点坐标为(3,3),则△OCD为等腰直角三角形,△PED也为等腰直角三角形.由PE⊥AB,根据垂径定理得AE=BE=AB=2,在Rt△PBE中,利用勾股定理可计算出PE=1,则PD=PE=,所以a=3+.解答:解:作PC⊥x轴于C,交AB于D,作PE⊥AB于E,连结PB,如图,∵⊙P的圆心坐标是(3,a),∴OC=3,PC=a,把x=3代入y=x得y=3,∴D点坐标为(3,3),∴CD=3,∴△OCD为等腰直角三角形,∴△PED也为等腰直角三角形,∵PE⊥AB,∴AE=BE=AB=×4=2,在Rt△PBE中,PB=3,∴PE=,∴PD=PE=,∴a=3+.故选:B.点评:本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理和等腰直角三角形的性质.5.已知⊙O的面积为2π,则其内接正三角形的面积为()A.3B.3C.D.考点:垂径定理;等边三角形的性质.专题:几何图形问题.分析:先求出正三角形的外接圆的半径,再求出正三角形的边长,最后求其面积即可.解答:解:如图所示,连接OB、OC,过O作OD⊥BC于D,∵⊙O的面积为2π∴⊙O的半径为∵△ABC为正三角形,∴∠BOC==120°,∠BOD=∠BOC=60°,OB=,∴BD=OB•sin∠BOD==,∴BC=2BD=,∴OD=OB•cos∠BOD=•cos60°=,∴△BOC的面积=•BC•OD=××=,∴△ABC的面积=3S△BOC=3×=.故选:C.点评:本题考查的是三角形的外接圆与外心,根据题意画出图形,利用数形结合求解是解答此题的关键.6.如图,半径为3的⊙O内有一点A,OA=,点P在⊙O上,当∠OPA最大时,PA的长等于()A.B.C3 D.2考点:垂径定理;圆周角定理.分析:当PA⊥OA时,PA取最小值,∠OPA取得最大值,然后在直角三角形OPA中利用勾股定理求PA的值即可.解答:解:∵OA、OP是定值,∴在△OPA中,当∠OPA取最大值时,PA取最小值,∴PA⊥OA时,PA取最小值;在直角三角形OPA中,OA=,OP=3,∴PA==.故选B.点评:本题考查了解直角三角形.解答此题的关键是找出“当PA⊥OA时,PA取最小值”即“PA⊥OA时,∠OPA取最大值”这一隐含条件.7.在△ABC中,AB=AC=5,sinB=,⊙O过点B、C两点,且⊙O半径r=,则OA的长为()A.3或5 B.5 C.4或5 D.4考点:垂径定理;等腰三角形的性质;勾股定理;解直角三角形.专题:分类讨论.分析:作AD⊥BC于D,由于AB=AC=5,根据等腰三角形的性质得AD垂直平分BC,根据垂径定理的推论得到点O在直线AD上,连结OB,在Rt△ABD中,根据正弦的定义计算出AD=4,根据勾股定理计算出BD=3,再在Rt△OBD中,根据勾股定理计算出OD=1,然后分类讨论:①当点A与点O在BC的两侧,有OA=AD+OD;②当点A与点O在BC的同侧,有OA=AD ﹣OD,即求得OA的长.解答:解:如图,作AD⊥BC于D,∵AB=AC=5,∴AD垂直平分BC,∴点O在直线AD上,连结OB,在Rt△ABD中,sinB==,∵AB=5,∴AD=4,∴BD==3,在Rt△OBD中,OB=,BD=3,∴OD==1,当点A与点O在BC的两侧时,OA=AD+OD=4+1=5;当点A与点O在BC的同侧时,OA=AD﹣OD=4﹣1=3,故OA的长为3或5.故选:A.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧;弦的垂直平分线经过圆心,并且平分弦所对的两条弧.也考查了等腰三角形的性质和勾股定理.8.如图,B,C,D是半径为6的⊙O上的三点,已知的长为2π,且OD∥BC,则BD的长为()A.3B.6 C.6D.12考点:垂径定理;等边三角形的判定与性质;圆周角定理;弧长的计算;解直角三角形.专题:计算题.分析:连结OC交BD于E,设∠BOC=n°,根据弧长公式可计算出n=60,即∠BOC=60°,易得△OBC为等边三角形,根据等边三角形的性质得∠C=60°,∠OBC=60°,BC=OB=6,由于BC∥OD,则∠2=∠C=60°,再根据圆周角定理得∠1=∠2=30°,即BD平分∠OBC,根据等边三角形的性质得到BD⊥OC,接着根据垂径定理得BE=DE,在Rt△CBE中,利用含30度的直角三角形三边的关系得CE=BC=3,CE=CE=3,所以BD=2BE=6.解答:解:连结OC交BD于E,如图,设∠BOC=n°,根据题意得2π=,得n=60,即∠BOC=60°,而OB=OC,∴△OBC为等边三角形,∴∠C=60°,∠OBC=60°,BC=OB=6,∵BC∥OD,∴∠2=∠C=60°,∵∠1=∠2(圆周角定理),∴∠1=30°,∴BD平分∠OBC,BD⊥OC,∴BE=DE,在Rt△CBE中,CE=BC=3,∴BE=CE=3,∴BD=2BE=6.故选:C.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了弧长公式、等边三角形的判定与性质和圆周角定理.二.填空题(共7小题)9.如图,⊙O的半径是5,AB是⊙O的直径,弦CD⊥AB,垂足为P,若CD=8,则△ACD的面积是32 .考点:垂径定理;勾股定理.分析:连接OD,先根据垂径定理得出PD=CD=4,再根据勾股定理求出OP的长,根据三角形的面积公式即可得出结论.解答:解:连接OD,∵⊙O的半径是5,AB是⊙O的直径,弦CD⊥AB,CD=8,∴PD=CD=4,∴OP===3,∴AP=OA+OP=5+3=8,∴S△ACD=CD•AP=×8×8=32.故答案为:32.点评:本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.10.正六边形的中心角等于60 度.考点:正多边形和圆.分析:根据正六边形的六条边都相等即可得出结论.解答:解:∵正六边形的六条边都相等,∴正六边形的中心角==60°.故答案为:60.点评:本题考查的是正多边形和圆,熟知正多边形的性质是解答此题的关键.11.(2014•扬州)如图,以△ABC的边BC为直径的⊙O分别交AB、AC于点D、E,连结OD、OE,若∠A=65°,则∠DOE=50°.考点:圆的认识;三角形内角和定理;等腰三角形的性质;圆周角定理.专题:几何图形问题.分析:如图,连接BE.由圆周角定理和三角形内角和定理求得∠ABE=25°,再由“同弧所对的圆周角是所对的圆心角的一半”进行答题.解答:解:如图,连接BE.∵BC为⊙O的直径,∴∠CEB=∠AEB=90°,∵∠A=65°,∴∠ABE=25°,∴∠DOE=2∠ABE=50°,(圆周角定理)故答案为:50°.点评:本题考查了圆的认识及三角形的内角和定理等知识,难度不大.12.如图,AB、CD是半径为5的⊙O的两条弦,AB=8,CD=6,MN是直径,AB⊥MN于点E,CD⊥MN于点F,P为EF上的任意一点,则PA+PC的最小值为.考点:垂径定理;轴对称的性质.分析:A、B两点关于MN对称,因而PA+PC=PB+PC,即当B、C、P在一条直线上时,PA+PC的最小,即BC的值就是PA+PC的最小值解答:解:连接OA,OB,OC,作CH垂直于AB于H.根据垂径定理,得到BE=AB=4,CF=CD=3,∴OE===3,OF===4,∴CH=OE+OF=3+4=7,BH=BE+EH=BE+CF=4+3=7,在直角△BCH中根据勾股定理得到BC=7,则PA+PC的最小值为.故答案为:点评:正确理解BC的长是PA+PC的最小值,是解决本题的关键.13.如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC,若AB=2cm,∠BCD=22°30′,则⊙O的半径为 2 cm.考点:垂径定理;等腰直角三角形;圆周角定理.专题:计算题.分析:先根据圆周角定理得到∠BOD=2∠BCD=45°,再根据垂径定理得到BE=AB=,且△BOE为等腰直角三角形,然后根据等腰直角三角形的性质求解.解答:解:连结OB,如图,∵∠BCD=22°30′,∴∠BOD=2∠BCD=45°,∵AB⊥CD,∴BE=AE=AB=×2=,△BOE为等腰直角三角形,∴OB=BE=2(cm).故答案为:2.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了等腰直角三角形的性质和圆周角定理.14.如图,⊙O的半径是2,直线l与⊙O相交于A、B两点,M、N是⊙O上的两个动点,且在直线l的异侧,若∠AMB=45°,则四边形MANB面积的最大值是4.考点:垂径定理;圆周角定理.专题:压轴题.分析:过点O作OC⊥AB于C,交⊙O于D、E两点,连结OA、OB、DA、DB、EA、EB,根据圆周角定理得∠AOB=2∠AMB=90°,则△OAB为等腰直角三角形,所以AB=OA=2,由于S四边形MANB=S△MAB+S△NAB,而当M点到AB的距离最大,△MAB的面积最大;当N点到AB的距离最大时,△NAB的面积最大,即M点运动到D点,N点运动到E点,所以四边形MANB面积的最大值=S四边形DAEB=S△DAB+S△EAB=AB•CD+AB•CE=AB(CD+CE)=AB•DE=×2×4=4.解答:解:过点O作OC⊥AB于C,交⊙O于D、E两点,连结OA、OB、DA、DB、EA、EB,如图,∵∠AMB=45°,∴∠AOB=2∠AMB=90°,∴△OAB为等腰直角三角形,∴AB=OA=2,∵S四边形MANB=S△MAB+S△NAB,∴当M点到AB的距离最大,△MAB的面积最大;当N点到AB的距离最大时,△NAB的面积最大,即M点运动到D点,N点运动到E点,此时四边形MANB面积的最大值=S四边形DAEB=S△DAB+S△EAB=AB•CD+AB•CE=AB(CD+CE)=AB•DE=×2×4=4.故答案为:4.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了圆周角定理.15.⊙O的半径为2,弦BC=2,点A是⊙O上一点,且AB=AC,直线AO与BC交于点D,则AD的长为1或3 .考点:垂径定理;勾股定理.专题:分类讨论.分析:根据题意画出图形,连接OB,由垂径定理可知BD=BC,在Rt△OBD中,根据勾股定理求出OD的长,进而可得出结论.解答:解:如图所示:∵⊙O的半径为2,弦BC=2,点A是⊙O上一点,且AB=AC,∴AD⊥BC,∴BD=BC=,在Rt△OBD中,∵BD2+OD2=OB2,即()2+OD2=22,解得OD=1,∴当如图1所示时,AD=OA﹣OD=2﹣1=1;当如图2所示时,AD=OA+OD=2+1=3.故答案为:1或3.点评:本题考查的是垂径定理,在解答此题时要进行分类讨论,不要漏解.三.解答题(共8小题)16.一个弓形桥洞截面示意图如图所示,圆心为O,弦AB是水底线,OC⊥AB,AB=24m,sin∠COB=,DE是水位线,DE∥AB.(1)当水位线DE=4m时,求此时的水深;(2)若水位线以一定的速度下降,当水深8m时,求此时∠ACD的余切值.考点:垂径定理的应用;勾股定理.分析:(1)延长CO交DE于点F,连接OD,根据垂径定理求出BC的长,由sin∠COB=得出OB的长,根据DE∥AB可知∠ACD=∠CDE,∠DFO=∠BCO=90°.由OF过圆心可得出DF的长,再根据勾股定理求出OF的长,进而可得出CF的长;(2)若水位线以一定的速度下降,当水深8m时,即CF=8m,则OF=CF﹣OC=3m,连接CD,在Rt△ODF中由勾股定理求出DF的长,由cot∠ACD=cot∠CDF即可得出结论.解答:解:(1)延长CO交DE于点F,连接OD∵OC⊥AB,OC过圆心,AB=24m,∴BC=AB=12m.在Rt△BCO中,sin∠COB==,∴OB=13mCO=5m.∵DE∥AB,∴∠ACD=∠CDE,∠DFO=∠BCO=90°.又∵OF过圆心,∴DF=DE=×4=2m.在Rt△DFO中,OF===7m,∴CF=CO+OF=12m,即当水位线DE=4m时,此时的水深为12m;(2)若水位线以一定的速度下降,当水深8m时,即CF=8m,则OF=CF﹣OC=3m,连接CD,在Rt△ODF中,DF===4m.在Rt△CDF中,cot∠CDF==.∵DE∥AB,∴∠ACD=∠CDE,∴cot∠ACD=cot∠CDF=.答:若水位线以一定的速度下降,当水深8m时,此时∠ACD的余切值为.点评:本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.17.如图,已知在△ABC中,AB=AC,以AB为直径的⊙O与边BC交于点D,与边AC交于点E,过点D作DF⊥AC于F.(1)求证:DF为⊙O的切线;(2)若DE=,AB=,求AE的长.考点:切线的判定;勾股定理.专题:计算题;证明题.分析:(1)连接AD,OD,则∠ADB=90°,AD⊥BC;又因为AB=AC,所以BD=DC,OA=OB,OD∥AC,易证DF⊥OD,故DF为⊙O的切线;(2)连接BE交OD于G,由于AC=AB,AD⊥BCED⊥BD,故∠EAD=∠BAD,=,ED=BD,OE=OB;故OD垂直平分EB,EG=BG,因为AO=BO,所以OG=AE,在Rt△DGB和Rt△OGB中,BD2﹣DG2=BO2﹣OG2,代入数值即可求出AE的值.解答:(1)证明:连接AD,OD;∵AB为⊙O的直径,∴∠ADB=90°,即AD⊥BC;∵AB=AC,∴BD=DC.∵OA=OB,∴OD∥AC.∵DF⊥AC,∴DF⊥OD.∴∠ODF=∠DFA=90°,∴DF为⊙O的切线.(2)解:连接BE交OD于G;∵AC=AB,AD⊥BC,ED=BD,∴∠EAD=∠BAD.∴.∴ED=BD,OE=OB.∴OD垂直平分EB.∴EG=BG.又AO=BO,∴OG=AE.在Rt△DGB和Rt△OGB中,BD2﹣DG2=BO2﹣OG2∴()2﹣(﹣OG)2=BO2﹣OG2解得:OG=.∴AE=2OG=.点评:本题比较复杂,涉及到切线的判定定理及勾股定理,等腰三角形的性质,具有很强的综合性.18.如图,AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,MD恰好经过圆心O,连接MB.(1)若CD=16,BE=4,求⊙O的直径;(2)若∠M=∠D,求∠D的度数.考点:垂径定理;勾股定理;圆周角定理.专题:几何综合题.分析:(1)先根据CD=16,BE=4,得出OE的长,进而得出OB的长,进而得出结论;(2)由∠M=∠D,∠DOB=2∠D,结合直角三角形可以求得结果;解答:解:(1)∵AB⊥CD,CD=16,∴CE=DE=8,设OB=x,又∵BE=4,∴x2=(x﹣4)2+82,解得:x=10,∴⊙O的直径是20.(2)∵∠M=∠BOD,∠M=∠D,∴∠D=∠BOD,∵AB⊥CD,∴∠D=30°.点评:本题考查了圆的综合题:在同圆或等圆中,相等的弧所对的圆周角相等,直径所对的圆周角为直角;垂直于弦的直径平分弦,并且平分弦所对的弧;19.如图,⊙O的直径为10cm,弦AB=8cm,P是弦AB上的一个动点,求OP的长度范围.考点:垂径定理;勾股定理.专题:几何图形问题.分析:过点O作OE⊥AB于点E,连接OB,由垂径定理可知AE=BE=AB,再根据勾股定理求出OE的长,由此可得出结论.解答:解:过点O作OE⊥AB于点E,连接OB,∵AB=8cm,∴AE=BE=AB=×8=4cm,∵⊙O的直径为10cm,∴OB=×10=5cm,∴OE===3cm,∵垂线段最短,半径最长,∴3cm≤OP≤5cm.点评:本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.20.如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,PB与CD交于点F,∠PBC=∠C.(1)求证:CB∥PD;(2)若∠PBC=22.5°,⊙O的半径R=2,求劣弧AC的长度.考点:垂径定理;圆周角定理;弧长的计算.专题:几何图形问题.分析:(1)先根据同弧所对的圆周角相等得出∠PBC=∠D,再由等量代换得出∠C=∠D,然后根据内错角相等两直线平行即可证明CB∥PD;(2)先由垂径定理及圆周角定理得出∠BOC=2∠PBC=45°,再根据邻补角定义求出∠AOC=135°,然后根据弧长的计算公式即可得出劣弧AC的长度.解答:解:(1)∵∠PBC=∠D,∠PBC=∠C,∴∠C=∠D,∴CB∥PD;(2)连结OC,OD.∵AB是⊙O的直径,弦CD⊥AB于点E,∴=,∵∠PBC=∠C=22.5°,∴∠BOC=∠BOD=2∠C=45°,∴∠AOC=180°﹣∠BOC=135°,∴劣弧AC的长为:=.点评:本题考查了圆周角定理,平行线的判定,垂径定理,弧长的计算,难度适中.(2)中求出∠AOC=135°是解题的关键.21.如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD∥BC,OD与AC交于点E.(1)若∠B=70°,求∠CAD的度数;(2)若AB=4,AC=3,求DE的长.考点:圆周角定理;平行线的性质;三角形中位线定理.专题:几何图形问题.分析:(1)根据圆周角定理可得∠ACB=90°,则∠CAB的度数即可求得,在等腰△AOD中,根据等边对等角求得∠DAO的度数,则∠CAD即可求得;(2)易证OE是△ABC的中位线,利用中位线定理求得OE的长,则DE即可求得.解答:解:(1)∵AB是半圆O的直径,∴∠ACB=90°,又∵OD∥BC,∴∠AEO=90°,即OE⊥AC,∠CAB=90°﹣∠B=90°﹣70°=20°,∠AOD=∠B=70°.∵OA=OD,∴∠DAO=∠ADO===55°∴∠CAD=∠DAO﹣∠CAB=55°﹣20°=35°;(2)在直角△ABC中,BC===.∵OE⊥AC,∴AE=EC,又∵OA=OB,∴OE=BC=.又∵OD=AB=2,∴DE=OD﹣OE=2﹣.点评:本题考查了圆周角定理以及三角形的中位线定理,正确证明OE是△ABC的中位线是关键.22.如图,⊙O是△ABC的外接圆,AB为直径,OD∥BC交⊙O于点D,交AC于点E,连接AD,BD,CD.(1)求证:AD=CD;(2)若AB=10,cos∠ABC=,求tan∠DBC的值.考点:圆周角定理;勾股定理;圆心角、弧、弦的关系;解直角三角形.专题:几何综合题.分析:(1)由AB为直径,OD∥BC,易得OD⊥AC,然后由垂径定理证得,=,继而证得结论;(2)由AB=10,cos∠ABC=,可求得OE的长,继而求得DE,AE的长,则可求得tan∠DAE,然后由圆周角定理,证得∠DBC=∠DAE,则可求得答案.解答:(1)证明:∵AB为⊙O的直径,∴∠ACB=90°,∵OD∥BC,∴∠AEO=∠ACB=90°,∴OD⊥AC,∴=,∴AD=CD;(2)解:∵AB=10,∴OA=OD=AB=5,∵OD∥BC,∴∠AOE=∠ABC,在Rt△AEO中,OE=OA•cos∠AOE=OA•cos∠ABC=5×=3,∴DE=OD﹣OE=5﹣3=2,∴AE===4,在Rt△AED中,tan∠DAE===,∵∠DBC=∠DAE,∴tan∠DBC=.点评:此题考查了圆周角定理、垂径定理以及勾股定理.此题难度适中,注意掌握数形结合思想的应用.23.如图,PA,PB分别与⊙O相切于点A,B,∠APB=60°,连接AO,BO.(1)所对的圆心角∠AOB=120°;(2)求证:PA=PB;(3)若OA=3,求阴影部分的面积.考点:切线的性质;扇形面积的计算.专题:几何综合题.分析:(1)根据切线的性质可以证得∠OAP=∠OBP=90°,根据四边形内角和定理求解;(2)证明直角△OAP≌直角△OBP,根据全等三角形的对应边相等,即可证得;(3)首先求得△OPA的面积,即求得四边形OAPB的面积,然后求得扇形OAB的面积,即可求得阴影部分的面积.解答:(1)解:∵PA,PB分别与⊙O相切于点A,B,∴∠OAP=∠OBP=90°,∴∠AOB=360°﹣90°﹣90°﹣60°=120°;(2)证明:连接OP.在Rt△OAP和Rt△OBP中,,∴Rt△OAP≌Rt△OBP,∴PA=PB;(3)解:∵Rt△OAP≌Rt△OBP,∴∠OPA=∠OPB=∠APB=30°,在Rt△OAP中,OA=3,∴AP=3,∴S△OPA=×3×3=,∴S阴影=2×﹣=9﹣3π.点评:本题考查了圆的切线性质,及解直角三角形的知识.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.。
九年级数学中考一轮复习 微专题二讲义:圆的基本性质

微专题二:圆的基本性质【知识点扫描】1. 圆上各点到圆心的距离都等于.2. 圆是轴对称图形,任何一条直径所在的直线都是它的;圆又是对称图形,是它的对称中心.3. 垂直于弦的直径平分,并且平分;平分弦(不是直径)的垂直于弦,并且平分.4. 在同圆或等圆中,如果两个圆心角,两条弧,两条弦,两条弦心距,两个圆周角中有一组量,那么它们所对应的其余各组量都分别.5. 同弧或等弧所对的圆周角,都等于它所对的圆心角的.6. 半圆(或直径)所对的圆周角是,90°的圆周角所对的弦是.7.圆内接四边形的对角.8.圆的周长为,1°的圆心角所对的弧长为,n°的圆心角所对的弧长为,弧长公式为 .9.圆的面积为,1°的圆心角所在的扇形面积为,n°的圆心角所在的扇形面积为S= ×πr2 = = .10.圆锥的侧面积公式:S=rlπ.(其中为的半径,为的长);圆锥的全面积:S全=S侧+S底=πrl+πr2.【难点突破】重难点1垂径定理及其应用一.选择题:1.如图,AB是⊙O的直径,弦CD⊙AB于点G,点F是CD上一点,且满足CF:FD =3:7,连接AF并延长交⊙O于点E,连接AD、DE,若CF=3,AF=3,给出下列结论:⊙FG=2;⊙5 tanE;⊙495DEFS=;其中正确的是( )A. ⊙⊙B. ⊙⊙C. ⊙⊙D.⊙⊙⊙二、填空题:1.在半径为1的⊙O中,两条弦AB,AC的长分别为3和2,则弧BC的长度为.三、解答题:1.已知:如图,AB是圆O的直径,CD是圆O的弦,AB⊙CD,E为垂足,AE=CD=8,F是CD延长线上一点,连接AF交圆O于G,连接AD、DG.(1)求圆O的半径;(2)求证:⊙ADG⊙⊙AFD;(3)当点G是弧AD的中点时,求⊙ADG得面积与⊙AFD的面积比.重难点2圆周角定理及其推论一、选择题1. 如图,抛物线与x轴交于A、B两点,以线段AB为直径的半圆与抛物线在第二象限的交点为C,与y轴交于D点,设⊙BCD=α,则的值为()A.sin2α B.cos2α C.tan2α D.tan﹣2α2.如图,点C为⊙ABD外接圆上的一点(点C不在上,且不与点B,D重合),且⊙ACB=⊙ABD=45°,若BC=8,CD=4,则AC的长为()A.8.5B.5C.4D.二、填空题1.如图,⊙O是⊙AB C的外接圆,AD⊙B C于D,CE⊙AB于E,AD交CE于H点,交⊙O于N,OM⊙B C于M,BF为⊙O的直径,下列结论:⊙四边形AH CF为平行四边形;⊙AH=2OM,⊙BF=2F C;⊙DN=DH;其中正确的有______(第1题) (第2题)2.如图,在平面直角坐标系中,已知点A (0,2)、B(0,2+m)、C(0,2-m)(m>0),点P 在以D(4,6)为圆心,1 为半径的圆上运动,且始终满足⊙BPC=90°,则m的最大值是3.如图,AB,BC是⊙O的弦,⊙B=60°,点O在⊙B内,点D为上的动点,点M,N,P 分别是AD,DC,CB的中点.若⊙O的半径为2,则PN+MN的长度的最大值是三.解答题1.请完成以下问题:(1)如图1,=,弦AC与半径OD平行,求证:AB是⊙O的直径;(2)如图2,AB是⊙O的直径,弦AC与半径OD平行.已知圆的半径为r,AC=y,CD=x,求y与x的函数关系式.2.如图,已知等腰直角三角形ABC ,点P 是斜边BC 上一点(不与B ,C 重合),PE 是⊙ABP 的外接圆⊙O 的直径.(1)求证:⊙APE 是等腰直角三角形; (2)若⊙O 的直径为2,求PC 2+PB 2的值.3.如图1,已知四边形ABCD 内接于圆0,AD=BC ,延长AB 到E ,使BE=AB ,连接EC ,F 是EC 的中点,连接BF(1)若圆0的半径为3,⊙DAB=120°,求劣弧BD 的长; (2)如图2,连接BD ,求证:BF=21BD ; (3)如图3,G 是BD 的中点,过B 作AE 的垂线交圆0于点P ,连接PG ,PF ,求证:PG=PF图1 图2 图34.如图1,圆O的两条弦AC、BD交于点E,两条弦所成的锐角或者直角记为⊙α(1)点点同学通过画图和测量得到以下近似数据:的度数30.2°40.4°50.0°61.6°的度数55.7°60.4°80.2°100.3°⊙α的度数43.0°50.2°65.0°81.0°猜想:、、⊙α的度数之间的等量关系,并说明理由﹒(2)如图2,若⊙α=60°,AB=2,CD=1,将以圆心为中心顺时针旋转,直至点A与点D 重合,同时B落在圆O上的点,连接CG﹒⊙求弦CG的长;⊙求圆O的半径.重难点3 三角形的外接圆及圆内接四边形 一、选择题1.如图,点A 的坐标为A (8,0),点B 在y 轴正半轴上,且AB=10,点P 是⊙AOB 外接圆上一点,且⊙BOP=45°,则点P 的坐标为( )A .(7,7)B .(7,7)C .(5,5)D .(5,5)2.如图所示,四边形ABCD 中,DC⊙AB ,BC=2,AB=AC=AD=3.则BD 的长为( ) A.13 B.5 C.23 D.243.如图,⊙ABC 内接于圆O ,延长AO 交BC 于点P ,交圆O 于点D ,连结OB ,OC ,BD ,DC ( )A .若AB=AC ,则BC 平分ODB .若OCBD ,则CD :AB=:3C .若⊙ABO=30°,则OC BDD .若BC 平分OD ,则AB=AC二.填空题1.在⊙ABC 中,45AB =5AC =,11BC =,则⊙ABC 的外接圆半径为____________2、如图,⊙ABC内接于⊙O,其外角平分线AD交⊙O于D,DM⊙AC于M,下列结论中正确的是.⊙DB=DC;⊙AC+AB=2CM;⊙AC﹣AB=2AM;⊙S⊙ABD=S⊙ABC.重难点4弧长及扇形面积的有关计算一.选择题1.如图,在半径为2,圆心角为90°的扇形内,以BC为直径作半圆,交弦AB于点D,连接CD,则阴影部分的面积为()A.π﹣1B.2π﹣1C.2π﹣2D.π﹣2二.填空题1、如图,一根长为a的竹竿AB斜靠在墙上,竹竿AB的倾斜角为α,当竹竿的顶端A下滑到点A'时,竹竿的另一端B向右滑到了点B',此时倾斜角为β.(1)线段AA'的长为.(2)当竹竿AB滑到A'B'位置时,AB的中点P滑到了P',位置,则点P所经过的路线长为(两小题均用含a,α,β的代数式表示)2、如图,△ABC中,D为BC的中点,以D为圆心,BD长为半径画一弧交AC于E点,若∠A=60°,∠B=100°,BC=4,则扇形BDE的面积为_ __3、如图,AB为半圆O的直径,C为AO的中点,CD⊙AB交半圆与点D,以C为圆心,CD为半径画弧DE交AB于E点,若AB=4cm,则图中阴影部分面积为cm2.三、简答题1、在⊙O中,己知弦BC所对的圆周角⊙BAC与圆心角⊙BOC互补.(1)求⊙BOC的度数.(2)若⊙O的半径为4,求弦BC和劣弧BC组成的弓形面积.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题22 圆的有关性质☞解读考点知识点名师点晴垂径定理1.垂径定理能运用垂径定理解决有关问题.2.垂径定理逆定理能运用垂径定理的逆定理解决有关问题.圆心角、弧、弦之间相等关系的定理1.圆心角了解圆心角的概念2.圆心角、弧、弦之间相等关系的定理应用弧、弦、圆心角的关系进行证明和计算.圆周角1.圆周角了解圆周角的概念2.圆周角的定理理解圆周角定理及其推论,熟练掌握圆周角的定理及其推理的灵活运用.☞2年中考【2015年题组】1.(2015梧州)如图,AB是⊙O的直径,C.D是⊙O上的两点,分别连接AC、BC、CD、O D.若∠DOB=140°,则∠ACD=()A.20°B.30°C.40°D.70°【答案】A.考点:圆周角定理.2.(2015河池)如图,在⊙O中,直径AB⊥CD,垂足为E,∠BOD=48°,则∠BAC的大小是()A.60°B.48°C.30°D.24°【答案】D.【解析】试题分析:∵直径AB⊥CD,∴BC BD,∴∠BAC=12∠BOD=12×48°=24°.故选D.考点:1.圆周角定理;2.垂径定理.3.(2015淮安)如图,四边形ABCD是⊙O的内接四边形,若∠A=70°,则∠C的度数是()A.100°B.110°C.120°D.130°【答案】B.【解析】试题分析:∵四边形ABCD是⊙O的内接四边形,∴∠C+∠A=180°,∴∠A=180°﹣70°=110°.故选B.考点:圆内接四边形的性质.4.(2015巴中)如图,在⊙O中,弦AC∥半径OB,∠BOC=50°,则∠OAB的度数为()A.25°B.50°C.60°D.30°【答案】A.考点:1.圆周角定理;2.平行线的性质.5.(2015凉山州)如图,△ABC内接于⊙O,∠OBC=40°,则∠A的度数为()A.80°B.100°C.110°D.130°【答案】D.【解析】试题分析:连接OC,如图所示,∵OB=OC,∴∠OCB=∠OBC=40°,∴∠BOC=100°,∵∠1+∠BOC=360°,∴∠1=260°,∵∠A=12∠1,∴∠A=130°.故选D.考点:圆周角定理.6.(2015遂宁)如图,在半径为5cm的⊙O中,弦AB=6cm,OC⊥AB于点C,则OC=()A.3cm B.4cm C.5cm D.6cm 【答案】B.【解析】试题分析:连接OA,∵AB=6cm,OC⊥AB于点C,∴AC=12AB=12×6=3cm,∵⊙O的半径为5cm,∴OC=22OA AC-=2253-=4cm,故选B.考点:1.垂径定理;2.勾股定理.7.(2015襄阳)点O是△ABC的外心,若∠BOC=80°,则∠BAC的度数为()A.40°B.100°C.40°或140°D.40°或100°【答案】C.考点:1.三角形的外接圆与外心;2.圆周角定理;3.分类讨论.8.(2015白银)△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是()A.80°B.160°C.100°D.80°或100°【答案】D.【解析】试题分析:如图,∵∠AOC=160°,∴∠ABC=12∠AOC=12×160°=80°,∵∠ABC+∠AB′C=180°,∴∠AB′C=180°﹣∠ABC=180°﹣80°=100°.∴∠ABC的度数是:80°或100°.故选D.考点:圆周角定理.9.(2015兰州)如图,已知经过原点的⊙P与x、y轴分别交于A、B两点,点C是劣弧OB 上一点,则∠ACB=()A.80°B.90°C.100°D.无法确定【答案】B.考点:1.圆周角定理;2.坐标与图形性质.10.(2015甘南州)⊙O过点B,C,圆心O在等腰直角△ABC内部,∠BAC=90°,OA=1,BC=6,则⊙O的半径为()A10B.23C13D.32【答案】C.【解析】试题分析:过A作AD⊥BC,由题意可知AD必过点O,连接OB,∵△BAC是等腰直角三角形,AD⊥BC,∴BD=CD=AD=3,∴OD=AD﹣OA=2,Rt△OBD中,根据勾股定理,得:OB=22+=13.故选C.BD OD考点:1.垂径定理;2.勾股定理;3.等腰直角三角形.11.(2015莆田)如图,在⊙O中,AB AC=,∠AOB=50°,则∠ADC的度数是()A.50°B.40°C.30°D.25°【答案】D.考点:1.圆周角定理;2.垂径定理.12.(2015龙东)如图,⊙O的半径是2,AB是⊙O的弦,点P是弦AB上的动点,且1≤OP≤2,则弦AB所对的圆周角的度数是()A.60°B.120°C.60°或120°D.30°或150°【答案】C .考点:1.圆周角定理;2.含30度角的直角三角形;3.垂径定理;4.分类讨论. 13.(2015南通)如图,AB 为⊙O 的直径,C 为⊙O 上一点,弦AD 平分∠BAC ,交BC 于点E ,AB =6,AD =5,则AE 的长为( )A .2.5B .2.8C .3D .3.2 【答案】B . 【解析】试题分析:如图1,连接BD 、CD ,∵AB 为⊙O 的直径,∴∠ADB =90°,∴BD =22AB AD -=2265-=11,∵弦AD 平分∠BAC ,∴CD =BD =11,∴∠CBD =∠DAB ,在△ABD 和△BED 中,∵∠BAD =∠EBD ,∠ADB =∠BDE ,∴△ABD ∽△BED ,∴DE DB DB AD =,即1111=,解得DE =115,∴AE =AB ﹣DE =5﹣115=2.8.故选B .考点:1.相似三角形的判定与性质;2.勾股定理;3.圆周角定理;4.综合题.14.(2015扬州)如图,若锐角△ABC内接于⊙O,点D在⊙O外(与点C在AB同侧),则下列三个结论:①sin∠C>sin∠D;②cos∠C>cos∠D;③tan∠C>tan∠D中,正确的结论为()A.①②B.②③C.①②③D.①③【答案】D.考点:1.锐角三角函数的增减性;2.圆周角定理.15.(2015南宁)如图,AB是⊙O的直径,AB=8,点M在⊙O上,∠MAB=20°,N是弧MB的中点,P是直径AB上的一动点.若MN=1,则△PMN周长的最小值为()A.4 B.5 C.6 D.7【答案】B.考点:1.轴对称-最短路线问题;2.圆周角定理;3.综合题.16.(2015雅安)如图所示,MN是⊙O的直径,作AB⊥MN,垂足为点D,连接AM,AN,点C为AN上一点,且AC AM=,连接CM,交AB于点E,交AN于点F,现给出以下结论:①AD=BD;②∠MAN=90°;③AM BM=;④∠ACM+∠ANM=∠MOB;⑤AE=12 MF.其中正确结论的个数是()A.2 B.3 C.4 D.5 【答案】D.【解析】试题分析:∵MN是⊙O的直径,AB⊥MN,∴AD=BD,AM BM=,∠MAN=90°,故①②③正确;∵AC AM=,∴AC AM BM==,∴∠ACM+∠ANM=∠MOB,故④正确;∵∠MAE=∠AME,∴AE=ME,∠EAF=∠AFM,∴AE=EF,∴AE=12MF,故⑤正确.正确的结论共5个.故选D.考点:1.圆周角定理;2.垂径定理;3.压轴题.17.(2015南通)如图,在⊙O中,半径OD垂直于弦AB,垂足为C,OD=13cm,AB=24cm,则CD= cm.【答案】8.考点:1.垂径定理;2.勾股定理.18.(2015甘孜州)如图,AB是⊙O的直径,弦CD垂直平分半径OA,则∠ABC的大小为度.【答案】30.【解析】试题分析:连接OC,∵弦CD垂直平分半径OA,∴OE=12OC,∴∠OCD=30°,∠AOC=60°,∴∠ABC=30°.故答案为:30.考点:1.垂径定理;2.含30度角的直角三角形;3.圆周角定理.19.(2015兰州)已知△ABC的边BC=4cm,⊙O是其外接圆,且半径也为4cm,则∠A的度数是.【答案】30°或150°.考点:1.三角形的外接圆与外心;2.等边三角形的判定与性质;3.圆周角定理;4.分类讨论.20.(2015天水)如图,边长为1的小正方形构成的网格中,半径为1的⊙O在格点上,则∠AED的正切值为.【答案】12.【解析】试题分析:由图可得,∠AED=∠ABC,∵⊙O在边长为1的网格格点上,∴AB=2,AC=1,则tan∠ABC=ACAB=12,∴tan∠AED=12.故答案为:12.考点:1.圆周角定理;2.锐角三角函数的定义;3.网格型.21.(2015漳州)如图,一块直角三角板ABC的斜边AB与量角器的直径恰好重合,点D 对应的刻度是58°,则∠ACD的度数为.【答案】61°.考点:圆周角定理.22.(2015长沙)如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=6,AB=10,OD⊥BC 于点D,则OD的长为.【答案】4.【解析】试题分析:∵OD⊥BC,∴BD=CD=12BC=3,∵OB=12AB=5,∴OD22OB BD=4.故答案为:4.考点:1.垂径定理;2.勾股定理.23.(2015曲靖)如图,在半径为3的⊙O中,直径AB与弦CD相交于点E,连接AC,BD,若AC=2,则cosD= .【答案】13.考点:1.圆周角定理;2.解直角三角形.24.(2015包头)如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径是4,sinB=14,则线段AC的长为.【答案】2.【解析】试题分析:连结CD,如图,∵AD是⊙O的直径,∴∠ACD=90°,∵∠D=∠B,∴sinD=sinB=14,在Rt△ACD中,∵sinD=ACAD=14,∴AC=14AD=14×8=2.故答案为:2.考点:1.圆周角定理;2.解直角三角形.25.(2015山西省)如图,四边形ABCD内接于⊙O,AB为⊙O的直径,点C为BD的中点.若∠A=40°,则∠B= 度.【答案】70°.考点:1.圆周角定理;2.圆心角、弧、弦的关系.26.(2015陕西省)如图,AB是⊙O的弦,AB=6,点C是⊙O上的一个动点,且∠ACB=45°.若点M,N分别是AB,BC的中点,则MN长的最大值是.【答案】32.【解析】试题分析:∵点M,N分别是AB,BC的中点,∴MN=12AC,∴当AC取得最大值时,MN就取得最大值,当AC时直径时,最大,如图,∵∠ACB=∠D=45°,AB=6,∴AD=62,∴MN=12AD=32,故答案为:32.考点:1.三角形中位线定理;2.等腰直角三角形;3.圆周角定理;4.最值问题.27.(2015青海省)如图,点O为BC所在圆的圆心,∠BOC=112°,点D在BA的延长线上,AD=AC,则∠D= .【答案】28°.考点:1.圆周角定理;2.等腰三角形的性质.28.(2015常州)如图,在⊙O的内接四边形ABCD中,AB=3,AD=5,∠BAD=60°,点C 为弧BD的中点,则AC的长是.【答案】833.考点:1.全等三角形的判定与性质;2.勾股定理;3.圆心角、弧、弦的关系;4.圆周角定理;5.综合题;6.压轴题.29.(2015百色)已知⊙O为△ABC的外接圆,圆心O在AB上.(1)在图1中,用尺规作图作∠BAC的平分线AD交⊙O于D(保留作图痕迹,不写作法与证明);(2)如图2,设∠BAC的平分线AD交BC于E,⊙O半径为5,AC=4,连接OD交BC于F.①求证:OD⊥BC;②求EF的长.【答案】(1)作图见试题解析;(2)①证明见试题解析;②3217.(2)①如图2,∵AD 平分∠BAC ,∴∠DAC =∠BAD ,∴CD BD =, ∵OD 过圆心,∴OD ⊥CB ;②∵AB 为直径,∴∠C =90°,∵OD ⊥CB ,∴∠OFB =90°,∴AC ∥OD ,∴OF OBAC AB=,,即5410OF =,∴OF =2,∵FD =5﹣2=3,在RT △OFB 中,BF =22OB OF -=2252-=21,∵OD ⊥BC ,∴CF =BF =21,∵AC ∥OD ,∴△EFD ∽△ECA ,∴34EF FD CE AC ==,∴37EF CF =,∴EF =37CF =3217⨯=3217.考点:1.相似三角形的判定与性质;2.全等三角形的判定与性质;3.勾股定理;4.圆周角定理;5.作图—复杂作图;6.压轴题.30.(2015南京)如图,四边形ABCD是⊙O的内接四边形,BC的延长线与AD的延长线交于点E,且DC=DE.(1)求证:∠A=∠AEB;(2)连接OE,交CD于点F,OE⊥CD,求证:△ABE是等边三角形.【答案】(1)证明见试题解析;(2)证明见试题解析.考点:1.圆内接四边形的性质;2.等边三角形的判定与性质;3.圆周角定理;4.综合题.31.(2015凉山州)如图,⊙O的半径为5,点P在⊙O外,PB交⊙O于A、B两点,PC 交⊙O于D、C两点.(1)求证:P A•PB=PD•PC;(2)若P A=454,AB=194,PD=DC+2,求点O到PC的距离.【答案】(1)证明见试题解析;(2)3.【解析】试题分析:(1)先连接AD,BC,由圆内接四边形的性质可知∠P AD=∠PCB,∠PDA=∠PBC,故可得出△P AD∽△PCB,再由相似三角形的对应边成比例即可得出结论;(2)由P A•PB=PD•PC,求出CD,根据垂径定理可得点O到PC的距离.试题解析:(1)连接AD,BC,∵四边形ABDC内接于⊙O,∴∠P AD=∠PCB,∠PDA=∠PBC,∴△P AD∽△PCB,∴PA PDPC PB,∴P A•PB=PC•PD;(2)连接OD,作OE⊥DC,垂足为E,∵P A=454,AB=194,PD=DC+2,∴PB=16,PC=2DC+2,∵P A•PB=PD•PC,∴454×16=(DC+2,第1题,2DC+2),解得:DC=8或DC=﹣11(舍去),∴DE=4,∵OD=5,∴OE=3,即点O到PC的距离为3.考点:1.相似三角形的判定与性质;2.圆周角定理;3.综合题.32.(2015安徽省)在⊙O中,直径AB=6,BC是弦,∠ABC=30°,点P在BC上,点Q 在⊙O上,且OP⊥PQ.(1)如图1,当PQ∥AB时,求PQ的长度;(2)如图2,当点P在BC上移动时,求PQ长的最大值.【答案】(16;(233.(2)连结OQ ,如图2,在Rt △OPQ 中,PQ =22OQ OP -=29OP -,当OP 的长最小时,PQ 的长最大,此时OP ⊥BC ,则OP =12OB =32,∴PQ 长的最大值为239()2-=332.考点:1.圆周角定理;2.勾股定理;3.解直角三角形;4.最值问题;5.压轴题. 33.(2015镇江) 【发现】如图∠ACB =∠ADB =90°,那么点D 在经过A ,B ,C 三点的圆上(如图①)【思考】如图②,如果∠ACB=∠ADB=a(a≠90°)(点C,D在AB的同侧),那么点D还在经过A,B,C三点的圆上吗?请证明点D也不在⊙O内.【应用】利用【发现】和【思考】中的结论解决问题:若四边形ABCD中,AD∥BC,∠CAD=90°,点E在边AB上,CE⊥DE.(1)作∠ADF=∠AED,交CA的延长线于点F(如图④),求证:DF为Rt△ACD的外接圆的切线;(2)如图⑤,点G在BC的延长线上,∠BGE=∠BAC,已知sin∠AED=25,AD=1,求DG的长.【答案】【思考】证明见试题解析;【应用】(1)证明见试题解析;(221.【应用】(1)如图2,取CD的中点O,则点O是RT△ACD的外心,∵∠CAD=∠DEC=90°,∴点E在⊙O上,∴∠ACD=∠AED,∵∠FDA=∠AED,∴∠ACD=∠FDA,∵∠DAC=90°,∴∠ACD+∠ADC=90°,∴∠FDA+∠ADC=90°,∴OD⊥DF,∴DF为Rt△ACD的外接圆的切线;(2)∵∠BGE=∠BAC,∴点G在过C、A、E三点的圆上,如图3,又∵过C、A、E三点的圆是RT△ACD的外接圆,即⊙O,∴点G在⊙O上,∵CD是直径,∴∠DGC=90°,∵AD∥BC,∴∠ADG=90°,∵∠DAC=90°,∴四边形ACGD是矩形,∴DG=AC,∵sin∠AED=25,∠ACD=∠AED,∴sin∠ACD=25,在RT△ACD中,AD=1,∴ADCD=25,∴CD=52,∴AC=22CD AD=212,∴DG=212.考点:1.切线的判定;2.圆周角定理;3.圆的综合题;4.压轴题.【2014年题组】1.(2014·四川省乐山市)在△ABC中,AB=AC=5,sinB=45,⊙O过点B、C两点,且⊙O半径r=10,则OA的值()A. 3或5 B. 5 C.4或5 D. 4【答案】A.考点:1.垂径定理;2.等腰三角形的性质;3.勾股定理;4.解直角三角形.2.(2014·嘉兴)如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则AB的长为()A.2 B.4 C.6 D.8【答案】C.考点:1.勾股定理;2.垂径定理.3.(2014·凉山)已知⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8cm,则AC的长为()A.25cm B.45cm C.25cm或45cm D.523cm或43cm 【答案】C.【解析】试题分析:根据题意画出图形,由于点C的位置不能确定,故应分两种情况进行讨论连接AC,AO,∵⊙O的直径CD=10cm,AB⊥CD,AB=8cm,∴AM=12AB=12×8=4cm,OD=OC=5cm.当C点位置如答图1所示时,∵OA=5cm,AM=4cm,CD⊥AB,∴2222OM OA AM543=-=-=cm.∴CM=OC+OM=5+3=8cm.∴在Rt△AMC中,2222AC AM CM4845=+=+=cm.当C点位置如图2所示时,同理可得OM=3cm,∵OC=5cm,∴MC=5﹣3=2cm.∴在Rt△AMC中,2222AC AM CM4225=+=+=cm.综上所述,AC的长为25cm或45cm.故选C.考点:1.垂径定理;2.勾股定理;3.分类思想的应用.4.(2014·呼和浩特)已知⊙O的面积为2π,则其内接正三角形的面积为()A.33 B.36 C.332D.362【答案】C.5.(2014·张家界)如图,AB、CD是⊙O两条弦,AB=8,CD=6,MN是直径,AB⊥MN于E,CD⊥MN于点F,P为EF上任意一点,,则P A+PC的最小值为.【答案】72考点:1.轴对称的应用(最短路线问题);2.勾股定理;3.垂径定理.6.(2014·黑龙江省大庆市)在半径为2的圆中,弦AC长为1,M为AC中点,过M点最长的弦为BD,则四边形ABCD的面积为.【答案】2.【解析】试题分析:如图.∵M为AC中点,过M点最长的弦为BD,∴BD是直径,BD=4,且AC⊥BD,∴四边形ABCD的面积=12AC•BD=12×1×4=2.考点:1.垂径定理;2.勾股定理.7.(2014·湖南省湘西州)如图,AB是⊙O的直径,弦CD⊥AB于点E,OC=5cm,CD=6cm,则OE=cm.【答案】4.【解析】试题分析:∵CD⊥AB,∴CE=12CD=12×6=3cm,∵在Rt△OCE中,OE=2222534OC CE-=-=cm.考点:1.垂径定理;2.勾股定理.8.(2014·湖南常德市)如图,AB为⊙O的直径,CD⊥AB,若AB=10,CD=8,则圆心O 到弦CD的距离为.【答案】3.考点:1.垂径定理;2.勾股定理.9.(2014·湖南长沙市)如图,A、B、C是⊙O上的三点,∠AOB=100°,则∠ACB=度.【答案】50.【解析】试题分析:∠ACB=12∠AOB=12×100°=50°.考点:圆周角定理.10.(2014·牡丹江)⊙O的半径为2,弦BC=2,点A是⊙O上一点,且AB=AC,直线AO与BC交于点D,则AD的长为.【答案】1或3.考点:1.垂径定理;2.勾股定理.☞考点归纳归纳1:垂径定理及其推论基础知识归纳:垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧.(3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧.推论2:圆的两条平行弦所夹的弧相等.基本方法归纳:垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题.注意问题归纳:这类题中一般使用列方程的方法,这种用代数方法解决几何问题即几何代数解的数学思想方法一定要掌握.【例1】如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是()A.6 B.5 C.4 D.3【答案】B.考点:1.垂径定理;2.勾股定理.归纳2:弧、弦、弦心距、圆心角之间的关系定理基础知识归纳:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦想等,所对的弦的弦心距相等.推论:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等.基本方法归纳:正确理解和使用圆心角、弧、弦三者的关系:在同圆或等圆中,①圆心角相等,②所对的弧相等,③所对的弦相等,三项“知一推二”,一项相等,其余二项皆相等.注意问题归纳:这源于圆的旋转不变性,即:圆绕其圆心旋转任意角度,所得图形与原图形完全重合.【例2】如图,⊙O是△ABC的外接圆,连接OA、OB,∠OBA=50°,则∠C的度数为()A. 30°B. 40°C. 50°D. 80°【答案】B.考点:圆心角、弧、弦的关系.归纳3:圆周角定理基础知识归纳:一条弧所对的圆周角等于它所对的圆心角的一半.推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等.推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径.推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.基本方法归纳:在解圆的有关问题时,常常需要添加辅助线,构成直径所对的圆周角,这种基本技能技巧一定要掌握.注意问题归纳:①圆周角和圆心角的转化可通过作圆的半径构造等腰三角形.利用等腰三角形的顶点和底角的关系进行转化.②圆周角和圆周角的转化可利用其“桥梁”---圆心角转化.③定理成立的条件是“同一条弧所对的”两种角,在运用定理时不要忽略了这个条件,把不同弧所对的圆周角与圆心角错当成同一条弧所对的圆周角和圆心角.【例3】如图,AB是⊙O的直径,C、D是⊙O上两点,CD⊥AB,若∠DAB=65°,则∠BOC=()A.25°B.50°C.130°D.155°【答案】C.【解析】试题分析:∵CD⊥AB,∠DAB=65°,∴∠ADC=90°-∠DAB=25°.∴∠AOC=2∠ADC=50°.∴∠BOC=180°-∠AOC=130°.故选C.考点:圆周角定理.☞1年模拟1.(2015届湖北省宜昌市调研考试)如图,用直角三角板经过两次画图找到圆形工件的圆心,这种方法应用的道理是()A.垂径定理B.勾股定理C.直径所对的圆周角是直角D.900的圆周角所对的弦是直径【答案】D.考点:圆周角定理.2.(2015届浙江省宁波市联考)如图,点A,B,C在⊙O上,已知∠ABC=130°,则∠AOC=()OCABA.100°B.110°C.120°D.130°【答案】A.【解析】试题分析:在优弧AC上取点D,连接AD,CD,∵四边形ABCD是圆内接四边形,∠ABC=130°,∴∠D=180°-10°=50°.∵∠D与∠AOC是同弧所对的圆周角与圆心角,∴∠AOC=2∠D=100°.故选A.考点:圆周角定理.3.(2015届江苏省盐城东台一模)在平面直角坐标系xOy中,以原点O为圆心的圆过点A (13,0),直线y=kx﹣3k+4与⊙O交于B、C两点,则弦BC的长的最小值为()A.22 B.24 C.510D.312【答案】B.考点:1.垂径定理;2.一次函数图象上点的坐标特征;3.勾股定理.4.(2015届湖北省武汉市联考)如图,AB是⊙O的直径且AB=43C是OA的中点,过点C[,作CD⊥AB交⊙O于D点,点E是⊙O上一点,连接DE,AE交DC的延长线于点F,则AE·AF的值为().FDCA BOA.83B.12C.63D.93【答案】B.考点:相似三角形的判定和性质;圆周角定理.5.(2015届陕西省西安市一模)如图,已知:AB是⊙O的直径,弦CD⊥AB,连结OC、AD,∠OCD=32°,则∠A=()A.32B.29C.58D.45【答案】B.【解析】试题分析:连接OD,由题意,∠COB=90°-32°=58°,由垂径定理知∠COB=∠DOB,所以∠A=29°.故选B.考点:1.圆周角定理;2.垂径定理.6.(2015届山西农业大学附属中校级模拟)如图所示,AB是⊙O的直径,CD是⊙O的弦,连结AC、AD,若∠CAB=35°,则∠ADC的度数为()A、35°B、45°C、55°D、65°【答案】C.考点:圆周角的性质,直角三角形.7.(2015届山西农业大学附属中校级模拟)如图,⊙O的弦AB=8,M是AB的中点,且OM=3,则⊙O的半径等于()A、8B、4C、10D、5【答案】D.【解析】试题分析:连接OA,即可证得△OAM是直角三角形,根据垂径定理即可求得AM=4,根据勾股定理即可求得OA的长22=+=5.OA OM AM考点:垂径定理,勾股定理.8.(2015届广东省黄冈中学校级模拟)如图P A、PB分别与⊙O相切于点A、B,若∠P=40°,∠ABP=____________°.【答案】70°.考点:切线的性质.9.(2015届江西省南昌市校级模拟)在⊙O中,AB是⊙O的直径,AB=8cm,,M是AB上一动点,CM+DM的最小值是cm.【答案】8.【解析】试题分析:如图,作点C关于AB的对称点C′,连接C′D与AB相交于点M,此时,点M 为CM+DM的最小值时的位置,由垂径定理,,∴,∵,AB为直径,∴C′D为直径,∴CM+DM的最小值是8cm.考点:1.轴对称-最短路线问题;2.勾股定理;3.垂径定理.。