Deform实验报告镦粗报告

合集下载

Deform实验报告镦粗报告.pptx

Deform实验报告镦粗报告.pptx
c. 修改 Top Die 的 General,其中设定 Object Type 为 Rigid, Assign Temperature 为 200;设定其 Movement 速度为 500in/sec;
d. 设定 Bottom Die 的 General,其中设定 Object Type 为 Rigid, Assign Temperature 为 200;
e. 设定 Simulation Control 中的 Units 为 SI,Step 中的 Starting Step Number 为-1, Number of Simulation Steps 为 40,Step Increment to Save 为 1, Primary Die 为 Top Die ,With Constant Die Displacement 为 1in.,然后点击 OK 。
第二组数据:
13
第三组数据:
14
第四组数据:
15
5)最大应力分布(抓取6步) 第一组数据:
第二组数据:
16
第三组数据:
17
第四组数据:
18
4实验小结
答: 通过1、2、3、4的变形可以看出,1和3没有在压缩的过程中是属于均
匀的变形过程,而2和4由于存在摩擦力,出现了不均匀的变形,圆柱体四 周出现鼓形轮廓。圆柱体在镦粗时除了受到变形工具的压缩力外,在断面 接 触处有摩擦力作用,摩擦力阻碍金属质点横向流动,使得圆柱体产生鼓 形。 对比2和4可知,2比4出现的鼓形更为明显。
实验报告
实验名称 __ __ _ 实验课程
EFORM-3D镦粗仿真实验 锻造工艺及模具设计
指导教师 ______________ _
专业班级 __________

DEFORM-3D锻压模拟基本过程实验报告书

DEFORM-3D锻压模拟基本过程实验报告书

学生实验报告书实验课程名称开课学院指导老师姓名学生姓名学生专业班级2018—2019学年第二学期检查生成数据库文件2.DEFORM求解(Simulator Processer)3.DEFORM后处理(Post Processer)变形过程显示查看状态参量查看载荷—行程曲线退出DEFORM—3D四、实验任务DEFORM-3D锻压模拟基本过程上机操作模拟条件:基本的镦粗成形工序几何体和工具采用整体分析单位:英制(English)工件材料(Material):AISI-1045温度(temperature):常温(68F)上模速度:1in/sec模具行程:2.6in完成如下操作分为4个主要部分:(1)建立问题,(2)前处理,(3)模拟计算,(4)后处理。

第二部分:实验过程记录(包括实验原始数据记录,实验现象记录,实验过程发现的问题等)一、前处理1.创建一个新的问题(1)DEFORM-3D软件的打开:选择开始菜单→程序→DEFORM-3D V6.1→DEFORM-3D。

进入DEFORM-3D的主窗口,如图1所示。

图1 DEFORM-3D的主窗口(2)选择File→New Problem命令或在主窗口左上角点击按钮,弹出图2所示的界面。

图2 分析问题类型(3)在弹出的窗口中默认进入普通前处理(Deform-3D preprocessor),单击按钮,弹出图3所示问题位置界面。

图3 问题位置(4)接下来在弹出的窗口中使用默认选项,然后点击按钮。

(5)在下一个界面中输入问题名称(Problem name)block,如图4所示。

单击按钮,就进入前处理模块,如图5所示。

图4 问题名称图5 前处理(6)前处理区域的介绍,如图6所示:图形显示区:该区用于展示几何图形和网格以及工艺分析状况。

物体树区:把分析工艺所包含的坯料和模具名称显示出来。

物体资料输入区:用于设置物体的对应属性,包括基本信息、几何体输入、网格划分、材料分配,边界条件的分配等。

DEFORM

DEFORM

k = (d max− d min)
d min
12.5% 2.4%
从对比图和尺寸的比较可以看出, 从对比图和尺寸的比较可以看出,扭压成型可以明 显减小鼓形。 为鼓形系数 扭压鼓形系数只有2.4,而 为鼓形系数,扭压鼓形系数只有 显减小鼓形。K为鼓形系数 扭压鼓形系数只有 而 普通镦粗达到了12.5 普通镦粗达到了
扭压复合加载成型
LOGO
锻造镦粗出现的问题 工件与工具接触面存在摩擦,阻碍 金属流动,使成型所需的压力增加及导 致不均匀的变形,可能产生裂纹,鼓形 等。 在高温下镦粗时,温度降低快,屈 服极限较高,产生不均匀变形更为明显。
Your site here
LOGO
如上图所示,开始镦粗后上下表面有摩擦力, 如上图所示,开始镦粗后上下表面有摩擦力,阻碍金属向外 流动,中间不存在摩擦力,而由于塑性变形总体积不变, 流动,中间不存在摩擦力,而由于塑性变形总体积不变,所以出 现了如图的鼓形。 现了如图的鼓形。 Your site here
Your site here
LOGO
提高镦粗时均匀性的工艺方法
B :结果分析 结果分析
鼓形对比 以下是每20步的对比图(上边为普通镦粗,下边为 扭压加载)
Your site here
LOGO
提高镦粗时均匀性的工艺方法
最终尺寸比较 最终尺寸
成型方法
最小直径 普通镦粗 扭压复合加载 104.1 112.1 最大直径 117.1 114.8
Your site here
LOGO
提高镦粗时均匀性的工艺方法 第三类方法: 第三类方法:扭压复合加载成型 一.原理:扭压复合成型工艺是在
工件高度方向上施加压力的同时, 使工件产生扭转运动,将被动摩擦 转化为促进金属流动的主动摩擦的 一种新型工艺。

套环对镦粗鼓形的影响及有限元模拟Deform分析

套环对镦粗鼓形的影响及有限元模拟Deform分析

套环对镦粗鼓形的影响及有限元模拟分析姓名:杜宇杰学号: 201314030106时间: 2016.11.10指导老师:刘建生套环对镦粗鼓形的影响及有限元模拟分析1.前言:镦粗是锻造中重要的制坯工步,是使坯料高度减小而横截面积增大的成形工步。

但是在成型过程中,圆柱形会随着高度(轴向)的逐渐减小 ,其径向尺寸不断增大。

由于坯料端面与模具之间的接触面存在摩擦,以及坯料与冷的模具接触温度较低所以硬度较大变形抗力也同样较芯部大,镦粗后坯料的侧表面成形为鼓形,同时造成坯料内部变形区中的金属变形不均匀 ,这样必然引起锻件晶粒大小不均匀, 从而导致锻件性能不均匀。

平砧镦粗圆柱形坯料时,整个坯料按变形程度大小大致可以分为 3 个区,如图1所示。

第Ⅰ变形区程度最小,一般成为困难变形区,第Ⅱ变形区变形程度最大,第Ⅲ变形区变形程度居中。

这种变形不均匀虽然受到温度的影响,但主要的原因还是由于镦粗砧板与毛坯端面之间的摩擦造成的。

由于第Ⅱ变形区变形程度大,第Ⅲ变形区变形程度小,于是在第Ⅱ变形区金属向外流动时便对第Ⅲ变形区金属有径向压应力,并使其在切向受拉应力,越靠近时表面切向拉应力越大。

当切向拉应力超过材料的强度极限或切向变形超过材料允许的变形程度时,便引起纵向裂纹。

2.现阶段减小墩粗的主要方法:现在减小鼓形影响的主要方法有四种:侧凹坯料镦粗、软金属垫镦粗、套环内镦粗、改变镦粗板形、旋转90度对鼓形经行精墩减小。

1)侧凹坯料镦粗:该方法在镦粗前,需要首先对坯料进行侧凹成形,常用铆镦或端面碾压的方法获得侧表面的凹形,然后再对坯料进行镦粗。

侧凹坯料在镦粗过程中,在侧凹面上产生了径向压应力分量,模具对坯料端部的金属流动阻碍较小,这样不仅可以避免坯料侧表面的纵向开裂,并能够显著减小鼓形的产生,使坯料变形均匀。

2)软金属垫镦粗:该方法是将坯料置于两软金属垫之间进行镦粗,软金属垫的作用在于减小坯料端面摩擦的影响,使端头金属在变形过程中不容易形成难变形区,从而使坯料获得均匀变形。

deform分析报告.

deform分析报告.

课程名称材料成型数值模拟仿真实验名称利用DEFORM3D模拟镦粗锻造成型成绩实验者专业班级组别同组者实验日期年月日第一部分:实验预习报告(包括实验目的、意义,实验基本原理与方法,主要仪器设备及耗材,实验方案与技术路线等)一、实验目的1)了解认识DEFORM-3D软件的窗口界面。

2)了解DEFORM-3D界面中功能键的作用。

3)掌握利用DEFORM-3D有限元建模的基本步骤。

4)学会对DEFORM-3D模拟的数据进行分析。

二、实验原理DEFORM-3D是在一个集成环境内综合建模、成形、热传导和成形设备特性进行模拟仿真分析。

适用于热、冷、温成形,提供极有价值的工艺分析数据。

如:材料流动、模具填充、锻造负荷、模具应力、晶粒流动、金属微结构和缺陷产生发展情况等。

DEFORM- 3D功能与2D 类似,但它处理的对象为复杂的三维零件、模具等。

不需要人工乾预,全自动网格再剖分。

前处理中自动生成边界条件,确保数据准备快速可靠。

DEFORM- 3D模型来自CAD系统的面或实体造型(STL/SLA)格式。

DEFORM -3D 是一套基于工艺模拟系统的有限元系统(FEM),专门设计用于分析各种金属成形过程中的三维(3D) 流动,提供极有价值的工艺分析数据,有关成形过程中的材料和温度流动。

典型的DEFORM-3D 应用包括锻造、挤压、镦头、轧制,自由锻、弯曲和其他成形加工手段。

三、实验步骤1.DEFORM前处理过程(Pre Processer)进入DEFORM前处理窗口。

了解DEFORM前处理中的常用图标设置模拟控制增加新对象网格生成材料的选择确立边界条件温度设定凸模运动参数的设置模拟控制设定设定对象间的位置关系对象间关系“Inter-Object”的设定生成数据库退出前处理窗口2.DEFORM求解(Simulator Processer)3.DEFORM后处理(Post Processer)了解DEFORM后处理中的常用图标。

DEFORM实验报告

DEFORM实验报告

铜陵学院课程实验报告实验名称圆柱体压缩过程模拟实验课程材料成型计算机模拟指导教师张金标. 专业班级10 材控(2)姓名孟来福学号 1 0 1 0 1 2 1 0 5 82013年05月14日实验一 圆柱体压缩过程模拟1 实验目的与内容1.1 实验目的进一步熟悉AUTOCAD 或PRO/E 实体三维造型方法与技艺,掌握DEFORM 软件的前处理、后处理的操作方法与热能,学会运用DEFORM 软件分析压缩变形的变形力学问题。

1.2 实验内容运用DEFORM 模拟如图1所示的圆柱坯压缩过程。

(一)压缩条件与参数锤头与砧板:尺寸200×200×20mm ,材质DIN-D5-1U,COLD ,温度室温。

工件:材质DIN_CuZn40Pb2,尺寸如表1所示,温度室温。

(二)实验要求砧板工件锤头图1 圆柱体压缩过程模拟(1)运用AUTOCAD或PRO/e绘制各模具部件及棒料的三维造型,以stl格式输出;(2)设计模拟控制参数;(3)DEFORM前处理与运算(参考指导书);(4)DEFORM后处理,观察圆柱体压缩变形过程,载荷曲线图,通过轴对称剖分观察圆柱体内部应力、应变及损伤值分布状态;(5)比较方案1与2、3与4、1与3和2与4的模拟结果,找出圆柱体变形后的形状差别,说明原因;(6)提交分析报告(纸质和电子版)、模拟数据文件、日志文件。

2 实验过程2.1工模具及工件的三维造型根据给定的几何尺寸,运用AUTOCAD或PRO/E分别绘制坯料、锤头和砧板的几何实体,文件名称分别为workpiece,topdie,bottomdie,输出STL格式。

2.2 压缩过程模拟2.2.1 前处理建立新问题:程序→DEFORM5.03→File→New Problem→Next→在Problem Name栏中填写“Forging”→ Finish→进入前前处理界面;单位制度选择:点击Simulation Conrol按钮→Main按钮→在Units栏中选中SI (国际标准单位制度)。

2020年Deform实验报告镦粗报告

2020年Deform实验报告镦粗报告

实验报告实验名称EFRH-3D徹粗仿真实验实验课程锻造工艺及模具设计指导教师专业班级姓名学号成绩213年 4月1日实验一 DEFRM-3D徹粗仿真实验1实验目的与内容实验目的通过DEFORM软件平台实现徹粗过程的仿真模拟实验。

了解材料在不同工艺条件下的变形流动情况,熟悉徹粗变形工艺待点。

掌握圆柱体徹粗过程的应力应变场分布特点。

实验内容运用DEFORM模拟如图1所示的圆柱坯压缩过程。

图1傲粗实验模型(一)工艺条件上模①2X5,刚性材料,初始温度2°C;下模2X2X4o工件16钢,尺寸如表1所示。

表1实验参数序号圆柱体直径,mm圆柱体高度, mm摩擦系数,滑动摩擦加热温度°C锤头运动速度,mm/s 徹粗行程1815954281512543SO2595448251254(二)实验要求(1)运用三维如阿健绘制各模具部件及棒料的三维造型,以St2格式输出;(2)设计模拟控制参数;(3)DEFORM前处理与运算;(4)DEFORM后处理,观察圆柱体压缩变形过程,载荷曲线图;(5)比较方案1与2、3与4、1与3和2与4的模拟结果,找出圆柱体变形后的形状差别,说明原因;(6)提交分析报告及分析日志文件(log)。

2实验过程1)建模通过UG将压缩的模型绘制出来,分别为坯料圆柱直径8mm高15mm 和圆柱直径8mm高25mm,并将它们各自的三部分分别导出为stl格式,并保存。

2)徹粗模拟打开一个deform软件,新建一个文件。

(Insert object)添加坯料Workpiece,上模Top Die,下模Bottom Die,并导入相应的之前保存的stl格式文件(Import );修改坯料的General,其中设定Object Type为plastic , AssignTemperature 为给定的9/12;(Mesh)将坯料分为 2/4 份,并预览(Preview), General Mesh选择坯料的材料(Material)为 16号钢;在Property中计算坯料的体积,选择自动计算(Active);修改 Top Die 的 General,其中设定 Object Type 为 Rigid, Assign Temperature 为2;设定其 Movement 速度为 5in/sec;设定 Bottom Die 的 General ,其中设定 Object Type 为 Rigid, Assign Temperature 为 2设定 Simulation Control 中的 Units 为 SI, Step 中的 Starting Step Number■为T, Number of Simula tion St eps 为 4, Step Increme nt to Save 为 1, Primary Die 为Top Die , With Constant Die Displacement 为lin.,然后点击OK。

实验报告镦粗报告

实验报告镦粗报告

实验报告镦粗报告实验报告:镦粗实验报告一、实验目的本实验旨在探究镦粗方法对工件表面质量和尺寸精度的影响,了解镦粗工艺的原理与优势,并探索其应用范围及适用条件。

二、实验原理镦粗是一种通过在工件表面进行压力处理来改善其表面质量和尺寸精度的机械加工方法。

其原理是利用镦针在工件表面施加大的压力,使得细小的凸起部分被破坏、挤压或冷变形,从而实现整体表面平整化和尺寸控制。

三、实验设备与材料1.镦粗机床:本实验使用了XJ5232型镦粗机床;2.工件材料:实验选用了铝合金材料。

四、实验步骤1.准备工作:将镦粗机床正确放置好,并将工件固定在机床工作台上;2.调整刀具:根据工件的尺寸和形状,选择合适的镦针,并调整其镦锤长度和行程;3.开始镦粗:打开镦粗机床的电源,并按照操作要求将刀具和工件安全放置好。

调节镦针的进给速度和镦压力,并逐渐降低镦压力进行镦粗;4.镦粗结束:根据工件的实际需要,提前结束镦粗操作。

关闭镦粗机床的电源。

五、实验结果与分析本实验在铝合金工件上进行了镦粗试验。

通过观察工件表面的质量和尺寸精度,得出了以下结论:1.镦粗对工件表面质量的改善效果显著。

经过一次镦粗后,工件表面的细小凸起和瑕疵被破坏、挤压或冷变形,工件表面变得更加平整光滑,质量得到了显著提升;2.镦粗对工件尺寸精度的改善效果有限。

由于镦针的径向压力对工件的尺寸变形较小,因此镦粗对尺寸精度的改善有限。

仅当工件表面有明显凸起或尺寸不符合要求时,镦粗才能起到一定的矫正作用;3.镦粗的适用范围较广。

除了对表面质量和瑕疵要求较高的工件外,镦粗还可以应用于轻度尺寸矫正和外观改善等方面。

具体的镦粗参数需要根据工件材料、形状和要求等因素进行调整。

六、实验总结通过本次实验,我们了解到了镦粗方法对工件表面质量和尺寸精度的影响。

镦粗是一种简便有效的工件表面处理方法,可以显著改善工件表面质量和外观,并在一定程度上矫正尺寸偏差。

然而,镦粗并不适用于对尺寸要求较高的工件,其改善尺寸精度的效果有限。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验报告
实验名称EFORM-3D镦粗仿真实验实验课程锻造工艺及模具设计
指导教师
专业班级
姓名
学号
2013年4月 1 日
实验一DEFORM-3D镦粗仿真实验
1 实验目的与内容
1.1 实验目的
通过DEFORM软件平台实现镦粗过程的仿真模拟实验。

了解材料在不同工艺条件下的变形流动情况,熟悉镦粗变形工艺特点。

掌握圆柱体镦粗过程的应力应变场分布特点。

1.2 实验内容
运用DEFORM模拟如图1所示的圆柱坯压缩过程。

图1 镦粗实验模型
(一)工艺条件
上模:Φ200×50,刚性材料,初始温度200℃;
下模:200×200×40。

工件:16钢,尺寸如表1所示。

序号圆柱体直
径,mm
圆柱体高
度,mm
摩擦系数,
滑动摩擦
加热温
度℃
锤头运动速度,
mm/s
镦粗行程
00 40
2 80 150 0.2 1200 500 40
3 8 40
4 80 250 0.2 1200 500 40 (二)实验要求
(1)运用三维如阿健绘制各模具部件及棒料的三维造型,以stl格式输出;
(2)设计模拟控制参数;
(3)DEFORM前处理与运算;
(4)DEFORM后处理,观察圆柱体压缩变形过程,载荷曲线图;
(5)比较方案1与2、3与4、1与3和2与4的模拟结果,找出圆柱体变形后的形状差别,说明原因;
(6)提交分析报告及分析日志文件(log)。

2 实验过程
1)建模
通过UG将压缩的模型绘制出来,分别为坯料圆柱直径80mm高150mm和圆柱直径80mm高250mm,并将它们各自的三部分分别导出为stl格式,并保存。

2)镦粗模拟
a. 打开一个deform软件,新建一个文件。

(Insert object)添加坯料Workpiece,上模Top Die,下模Bottom Die,并导入相应的之前保存的stl格式文件(Import);
b. 修改坯料的General,其中设定Object Type为plastic,AssignTemperature 为给定的900/1200;(Mesh)将坯料分为20000/40000份,并预览(Preview),General Mesh;选择坯料的材料(Material)为16号钢;在Property中计算坯料的体积,选择自动计算(Active);
c. 修改Top Die的General,其中设定Object Type 为Rigid,Assign Temperature 为200;设定其Movement 速度为500in/sec;
d. 设定Bottom Die 的General ,其中设定Object Type 为Rigid,Assign Temperature 为200;
e. 设定Simulation Control 中的Units为SI,Step中的Starting Step Number 为-1,Number of Simulation Steps 为40,Step Increment to Save 为1,Primary Die 为Top Die ,With Constant Die Displacement为1in.,然后点击OK。

f. 设置摩擦系数,分别为0和0.2
g. 保存并检核(Check),然后退出
h. 运行(Run)
3)后处理
可以通过选择查看压缩的每一步的变形过程,Damage ,Strain-Effective ,Strain Rate -Effective ,Stress Effective ,Stress Max-Principal ,Temperature ,以及载荷行程曲线等。

通过这些参数来检查所设定的这些数据是否合理。

3 实验结果及讨论
1)变形过程(抓取6步)
第一组数据:
第二组数据:
第三组数据:
第四组数据:
2)载荷行程曲线第一组数据:
第二组数据:
第三组数据:
第四组数据:
3)等效应变(抓取6步)第一组数据:
第二组数据:
第三组数据:
第四组数据:
4)等效应力(抓取6步)第一组数据:
第二组数据:
第三组数据:
第四组数据:
5)最大应力分布(抓取6步)第一组数据:
第二组数据:
第三组数据:
第四组数据:
4 实验小结
答:
通过1、2、3、4的变形可以看出,1和3没有在压缩的过程中是属于均匀的变形过程,而2和4由于存在摩擦力,出现了不均匀的变形,圆柱体四周出现鼓形轮廓。

圆柱体在镦粗时除了受到变形工具的压缩力外,在断面接触处有摩擦力作用,摩擦力阻碍金属质点横向流动,使得圆柱体产生鼓形。

对比2和4可知,2比4出现的鼓形更为明显。

比较损伤情况,由于1和3是不存在摩擦力的,它们是属于均匀变形的,损伤系数几乎为0。

而2和4存在摩擦系数不为0,产生的不均匀变形,出现了鼓形,存在缺陷或缺陷隐患。

无摩擦镦粗时应变分布比较均匀,有摩擦存在时镦粗应变是不均匀的。

摩擦系数和高度都对变形有影响。

比较1和3的变形情况可以看出1和3变形都比较均匀,因为他们的摩擦力都是0,温度也是相同的900摄氏度;损伤度也几乎很少;但是1最终的等效应变约为0.31,而3最终等效应变约为0.17;就等效应力看,1的最终等效应力约为47,而3最终的等效应力就比它小,约为38;
圆柱体的摩擦系数为0的时候,其表面应变与内部的应变分布都比较均匀,变形为均匀的变形;摩擦系数为0.2的时候,表面的应变与内部的应变分布不均匀,各部分的最大应变都存在明显的差异。

比较载荷行程曲线,1、2、3、4都是上升的趋势,主要分为两段,第一段为弹性变形阶段,载荷曲线的斜率较大;第二段为塑性变形阶段,载荷曲线的斜率比较小。

摩擦力越大,载荷力越大;反之,载荷力越小。

高度越低载荷力越大,高度越高,载荷越小。

综上所诉:工具与坯料之间的摩擦力会影响坯料变形的均匀性,若是存在摩擦力变形会容易不均匀。

同样的温度的不均匀也会使得坯料产生不均匀的变形。

摩擦系数的不同和圆柱体的高度不同都在不同程度上的影响到镦粗的变形情况,应力应变分布等情况。

本次试验通过三维软件UG和模拟软件Deform对镦粗试验进行了模拟试验,通过比较不同的摩擦系数、不同的变形温度、不同的高度对坯料的变形、载荷力、应变、应力等进行了模拟。

通过这样的分析,比较出了摩擦和高度对各指标的影响,以及分析这样的工艺参数是不是有不合理,是否会出现缺陷,通过这样的模拟,选择到合适的工艺参数,方便了镦粗的进行。

相关文档
最新文档