二次根式的加减

合集下载

二次根式的加减法

二次根式的加减法

概念
例子
异类二次根式是指根指数或被开方数不同 的二次根式。
$\sqrt{4}$ 和 $\sqrt{9}$ 是异类二次根式 。
减法运算
加法运算
两个异类二次根式相减,先进行化简,再 进行减法运算。
两个异类二次根式相加,先将它们化成最 简二次根式,再进行加法运算。
运算结果化为最简二次根式
概念
最简二次根式是指被开方数不含分母,被开方数不含能开得尽方的因数或因式 。
乘法运算
$\sqrt{a} \times \sqrt{b}$在$ab \geq 0$ 时成立。
减法运算
$\sqrt{a} - \sqrt{b}$在a=b或ab=0时成立 。
除法运算
$\frac{\sqrt{a}}{\sqrt{b}}$在$ab \geq 0$ 且$a \neq 0$时成立。
二次根式的加减法
总结词
掌握含加减法的二次根式混合运算法则,能 够准确进行运算。
详细描述
含加减法的二次根式混合运算涉及到根式和 整式的加减法,运算顺序是先乘方,再乘除 ,最后加减。在运算中,需要注意各项均需 乘以平方数,根式外的数要移到根号内,相
加减时根式部分不变。
复杂二次根式混合运算的步骤和技巧
总结词
掌握复杂二次根式混合运算的步骤和技巧,能够准确 快速地进行运算。
02
同类二次根式的加减法
概念
同类二次根式是指根指数相同且被开 方数相同的二次根式。
例子
$\sqrt{4}$ 和 $\sqrt{9}$ 是同类二 次根式。
减法运算
两个同类二次根式相减,直接进行减 法运算。
加法运算
两个同类二次根式相加,先将它们化 成最简二次根式,再进行加法运算。

人教版二次根式的加减课件

人教版二次根式的加减课件
3231.55 木板够宽
情境引入
现有一块长为7.5 dm、宽为5 dm的木板, 能否采用如教教材图16.3-1的方式,在这块 木板上截出两个面积分别是8 dm2和18 dm2 的正方形木板?
问题3:从长方形木板上截取两个正方形木板, 长方形木板够长吗?你是如何得出答案的?
8 18 2 2 3 2 (2 3) 2 5 2
(4)(24+ 0.5)-( 1- 6) 8
3
6+
2 4
应用拓展
例 3.已知 4x2+y2-4x-6y+10=0,
求( 2 x 3
9x +y2
x y3 )-(x2
1 x -5x
y x )的值.
分析
本题首先将已知等式进行变形,把它配成完全平方 式,
得(2x-1)2+(y-3)2=0,即 x= 1 ,y=3.
3 a 5 a
8 a
大家有疑问的,可以询问和交流
可以互相讨论下,但要小声点
例题讲解
例2 计算:
(1)2
12 6
1+3 3
48 (2)( 1220 )43;3 3
48
.
2236
3+34 3
3
43-23+123
14 3
例题讲解
例2 计算:
(1)2
12 6
大家来 分享!
课后作业 教材习题16.3第2、3题.
再见!
2
其次,根据二次根式的加减运算,先把各项化成最 简二次根式,再合并同类二次根式,最后代入求值.
巩固提高
练习2
如图,两个圆的圆心相同,它们的面积分别是
12.56和25.12. 求圆环的宽度d(π 取3.14,结果

二次根式加减乘除的运算法则

二次根式加减乘除的运算法则

二次根式加减乘除的运算法则二次根式是数学中的一种特殊形式,它常常出现在代数表达式中。

在进行二次根式的加减乘除运算时,需要遵循一定的运算法则。

本文将从加法、减法、乘法和除法四个方面,详细介绍二次根式的运算法则。

一、加法运算法则对于两个二次根式的加法运算,要求根号下的数相同,即根号内数值和根号外系数相等。

例如√3+√3=2√3。

二、减法运算法则对于两个二次根式的减法运算,同样要求根号下的数相同。

例如√5-√2不能直接进行运算,需要进行化简。

化简的方法是将二次根式的根号内数值和根号外系数相同的项合并在一起,即(√5-√2)=(√5+√2)(√5-√2)=5-2=3。

三、乘法运算法则对于两个二次根式的乘法运算,可以运用分配律进行展开。

例如(√3+√2)(√3-√2)=3-2=1。

四、除法运算法则对于两个二次根式的除法运算,需要将被除数和除数进行有理化处理。

有理化处理的方法是将被除数和除数同除以一个数的平方,使得根号内只剩下一个数。

例如(√7+√3)/(√7-√3)可以进行有理化处理,得到[(√7+√3)(√7+√3)]/[(√7-√3)(√7+√3)]=10。

运用以上的加减乘除运算法则,可以解决二次根式的各种运算问题。

接下来,我们通过一些例题来加深理解。

例题1:计算√5+√2+2√5-3√2的值。

解:根据加法运算法则,可以将√5和2√5合并,将√2和-3√2合并,得到(1+2)√5+(-1-3)√2=3√5-4√2。

例题2:计算(√7+√3)(√7-√3)的值。

解:根据乘法运算法则,展开括号得到(√7+√3)(√7-√3)=7-3=4。

例题3:计算(√5+√3)/(√5-√3)的值。

解:根据除法运算法则,进行有理化处理,得到[(√5+√3)(√5+√3)]/[(√5-√3)(√5+√3)]=8/2=4。

通过以上例题的解答,我们可以看到,只要掌握了二次根式的运算法则,就能够轻松解决各种二次根式的加减乘除运算问题。

二次根式的加减说课稿

二次根式的加减说课稿

二次根式的加减说课稿(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、规章制度、应急预案、条据书信、合同协议、评语大全、演讲致辞、心得体会、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample texts, such as work reports, rules and regulations, emergency plans, policy letters, contract agreements, comprehensive reviews, speeches, insights, teaching materials, and other sample texts. If you want to learn about different sample formats and writing methods, please pay attention!二次根式的加减说课稿二次根式的加减说课稿(精选10篇)作为一名辛苦耕耘的教育工作者,时常需要用到说课稿,说课稿可以帮助我们提高教学效果。

二次根式的加减

二次根式的加减
_________;
2
(3)10 2 + (3 8 − 7 2) =9_______;
4 3−6 2
(4)5 12 − 3 8 + 2 27 = __________.
随堂训练
8.若最简根式
2+1
3 − 2 与 3 可以合并,求 的值.
2 + 1 = 2,
解:积为(2+3) 2=5 2(2 ).
2 2+3 2= (2+3) 2
也可由分配律得出:
2 2+3 2= (2+3) 2= 5 2.
新课导入
议一议
问题2:如果两个正方形的面积分别是18和8,那么大正
方形的边长比小正方形的边长大多少?
此问题需要计算 18 − 8,但由于 18, 8不是最简二次根式,先把它们
上面提到的3 2与2 2, 18与 8都是同类二次根式.
同类二次根式可以像同类项那样进行合并.
知识讲解
思考: 观察新课导入两个问题的计算过程,你能总结出二次根式
加减计算的过程吗?
二次根式的加减
一般地,二次根式相加减,先把各个二次根式分别化成最简二次根
式,然后再将同类二次根式分别合并.有括号时,要先去括号.
1
1
= 48 − 4
−3
+ 4 0.5
8
3
=2 11 − 3 11 − 11 2
2
3
2
=4 3 − 4 ×
−3×
+4×
4
3
2
= − 11 − 11 2.
=4 3 − 2 − 3 + 2 2
=3 3 + 2.
随堂训练

二次根式的加减与乘除

二次根式的加减与乘除

二次根式的加减与乘除二次根式是数学中的一个重要概念,它在代数运算中扮演着重要的角色。

在本文中,我们将讨论二次根式的加减与乘除运算,以帮助读者更好地理解和运用这些概念。

一、二次根式的加法与减法在处理二次根式的加法与减法时,我们需要注意两个基本原则。

首先,二次根式只能与同类相加或相减,即根号下的数必须相同。

其次,根号内的数可以合并,并按照一定的规律进行计算。

举个例子,我们来计算下面两个二次根式的和:√5 + √20首先,我们可以将根号下的数进行合并。

√5 与√20 的根号下的数都不能再进行简化,所以我们只需计算它们前面的系数部分。

即:√5 + √20 = √5 + 2√5考虑到根号下的数相同,我们可以将系数相加,得到:√5 + √20 = 1√5 + 2√5 = 3√5同样的原理,我们可以计算二次根式的减法。

例如:√18 - √8合并根号下的数,我们得到:√18 - √8 = 3√2 - 2√2再将系数相减,得到:√18 - √8 = 3√2 - 2√2 = √2二、二次根式的乘法二次根式的乘法同样有一定的规律可循。

当我们需要计算两个二次根式相乘时,我们可以先合并根号下的数,然后在进行系数的相乘。

举个例子,我们来计算下面两个二次根式的乘积:√3 × √12首先,我们将根号下的数进行合并:√3 × √12 = √(3 × 12) = √36接下来,我们计算根号下的数,得到√36 = 6。

因此,结果为:√3 × √12 = 6同样的方法,我们来计算另一个例子:2√7 × 3√5合并根号下的数,得到:2√7 × 3√5 = 6√(7 × 5)再计算根号下的数,得到√(7 × 5) = √35最终结果为:2√7 × 3√5 = 6√35三、二次根式的除法二次根式的除法相对来说稍微复杂一些。

在进行除法运算时,需要注意不能将根号内的数进行化简,需要保持根号下的数不变。

二次根式的运算

二次根式的运算

二次根式的运算二次根式是代数中常见的一种形式,它包括了平方根和其他次方根。

在数学中,我们经常需要对二次根式进行各种运算。

本文将介绍二次根式的基本运算方法和相关概念。

一、二次根式的定义二次根式可以表示为√a的形式,其中a为非负实数。

根号下的数称为被开方数,它代表了一个数的平方根。

二次根式也可以写为指数形式,如a的1/2次方或a的1/3次方。

二、二次根式的基本运算1. 二次根式的加减法对于同类项的二次根式,可以对它们的被开方数进行加减运算。

例如,√2 + √3可以简化为√(2 + 3),即√5。

2. 二次根式的乘法二次根式的乘法运算需要注意求根的法则。

例如,√2 × √3可以化简为√(2 × 3),即√6。

3. 二次根式的除法同理,对于二次根式的除法运算,我们需要将除数和被除数的根号下的数相除,并合并同类项。

例如,√6 ÷ √2 可以化简为√(6 ÷ 2),即√3。

三、二次根式的化简有时候,我们需要将二次根式进行进一步的化简。

以下是几种常见的化简方式:1. 化简平方根如果一个二次根式的被开方数可以被完全平方数整除,那么我们可以化简为一个整数。

例如,√4可以化简为2。

2. 合并同类项对于具有相同根号下数的二次根式,我们可以合并它们,得到一个更简洁的表达式。

例如,√2 + √2可以合并为2√2。

3. 有理化分母当二次根式出现在分母中时,我们通常需要对分母进行有理化。

有理化的目的是将分母化为有理数,方便进行运算。

例如,将1/√3有理化分母,可以得到√3/3。

四、二次根式的应用二次根式在代数中有着广泛的应用。

它常出现在几何学、物理学等领域的计算中。

在几何学中,二次根式可以表示线段长度、面积以及体积等。

例如,计算某个多边形的面积时,可能需要计算边长的二次根式。

在物理学中,二次根式可以表示物理量的大小。

例如,物体的质量、速度等都可以用二次根式来表示。

总结:二次根式是代数中常见的一种形式,它包括平方根和其他次方根。

二次根式加减ppt课件

二次根式加减ppt课件

答案及解析
计算
化简
$sqrt{27} + sqrt{3} = 3sqrt{3} + sqrt{3} = 4sqrt{3}$
$2sqrt{3} - sqrt{2} = sqrt{3} - sqrt{2}$
比较大小
$sqrt{25} = 5$,因为 $5 > 3$,所以 $sqrt{25} > 3$
判断正误
01
02
03
识别同类二次根式
首先需要识别出表达式中 的同类二次根式,即具有 相同被开方数的二次根式 。
合并同类二次根式
将同类二次根式进行合并 ,即将它们的系数相加减 ,根号下的被开方数保持 不变。
举例说明
将表达式中的 $sqrt{2}$ 和 $sqrt{2}$ 合并为 $2sqrt{2}$。
$sqrt{8} + sqrt{18} = 2sqrt{2} + 3sqrt{2} = 5sqrt{2}$,不等于 $2sqrt{2}$,所以判 断为错。
THANKS
感谢观看
sqrt{2}}{sqrt{2} times sqrt{2}} = frac{sqrt{6}}{2}$。
二次根式的化简技巧
利用平方差公式
对于形如 $sqrt{a^2 - b^2}$ 的表达式,可以利 用平方差公式进行化简。
利用完全平方公式
对于形如 $sqrt{a + b}$ 或 $sqrt{a - b}$ 的表达 式,可以利用完全平方公式进行化简。
二次根式的加减法规则
总结词
掌握二次根式的加减法规则是进行运 算的关键。
详细描述
二次根式的加减法需先将各项化为最 简二次根式,然后合并同类二次根式 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三讲:二次根式的加减
二、二次根式的加减
1、同类二次根式的概念:化成最简二次根式后,如果被开方数相同,这样的二次根式就叫做同类二次根式。

例1.当a =________时,最简二次根式12-a 与73--a 是同类二次根式.
2、二次根式加减法运算步骤:先化为最简二次根式,再合并同类二次根式 例2:计算:
(1)483
2315311312--+
(2))5.0420010
1(08.027252+-+
(3)a a a a a a a 1082
363273223-+-
(4)
2
+
+
-
+
a
b
b
a
b
a
a
b
三、二次根式的混合运算:
注:1、在有理数范围内成立的运算律,在实数范围内仍成立;
2、在二次根式的运算中,多项式乘法法则和乘法公式仍然适用. 例3:计算:
(1)
2
2)3
2
2
3(
)3
2
2
3(-
-
+
(2)
)7
5
3
)(
7
5
3
(-
+
+
-
(3

2
1
2
(π)
--++-+
(4)

÷
-
4
8
)
8
3
2
(3
x
x
x
x
(5)
101
10010
3
10
3)


(-
+.
《二次根式》全章复习与巩固
一、化简
1、无条件的(所有字母取正数)

2、有附加条件的
a<
①0)

5(03)x x --<<
3、 有隐含条件的(有意义的字母的取值范围)

2+

-
4、
需要分类讨论的 ①
-
二、因式分解(实数范围内)

4 a++

2
x x
+--

2
215 x+-
三、解方程(组)

3x -=
②-= +=
四、填空
1
、①
20
-÷+=

1
(2-⎤
--÷=

2
、比大小:-
-
3、∆ABC的三边长为a、b、c,

-=
4
、①
2x
=-
成立的条件是
②=成立的条件是
五、计算技巧:
1

=
2
、-=
3
、+=
4、化简
b ab b a ab a -++
6
、化简ab b a b --÷-
6、已知a+b=-3,ab=1,求a b b a 的值.
7、如图所示,有一块边长为1的正方形铁片,将其每个角都剪下一个小等腰三角形,使其成为每条边都相等的八边形,求这个八边形的边
长,你能将其结果写成没有分母或分
母不带根号的形式吗?
D
C
B A。

相关文档
最新文档