2019年秋人教版七年级数学上册第二章质量评估测试卷(含答案)
新编【北师大版】2019年秋七年级数学上册:第2章质量检测卷(Word版,含答案)

第二章检测卷分钟 满分:120分一、选择题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项) 1.-1的倒数是( ) A.1 B.-1 C.±1 D.02.下列四个数中,最大的数是( ) A.-2 B.13C.0D.63.如图是南昌市去年一月份某一天的天气预报,则该天最高气温比最低气温高( )A.-3℃B.7℃C.3℃D.-7℃ 4.下列计算错误的是( )A.8-(-2)=10B.-5÷⎝ ⎛⎭⎪⎫-12=10C.(-5)+(+3)=-8D.-1×⎝ ⎛⎭⎪⎫-13=135.将一把刻度尺按如图所示放在数轴上(数轴的单位长度是1cm),刻度尺上的“0cm ”和“8cm ”分别对应数轴上的-3.6和x ,则x 的值为( )A.4.2B.4.3C.4.4D.4.56.数轴上表示整数的点叫作整点.某数轴的单位长度为1cm ,若在这条数轴上任意画出一条长度为2018cm 的线段,则线段盖住的整点个数为( )A.2019个B.2018个C.2019或2018个D.2018或2017个二、填空题(本大题共6小题,每小题3分,共18分) 7.计算:-3+2= .8.曾有微信用户提议应该补全朋友圈只有点赞功能的缺陷,增加“匿名点呸”的功能.如果将点32个赞记作+32,那么匿名点2个呸,应记作 .9.九景衢铁路2017年12月28日正式通车,景德镇从此跨入动车时代.据了解,九景衢铁路总长约333千米,用科学记数法表示为 米.10.如果a 与1互为相反数,则|a +2|= .11.如图所示是一个简单的数值运算程序.当输入x 的值为-1时,输出的数值为 .输入x ―→×(-3)―→-2―→输出12.已知点A 是数轴上的一点,且点A 到原点的距离为2,把点A 沿数轴向右移动5个单位得到点B ,则点B 表示的有理数是 .三、(本大题共5小题,每小题6分,共30分) 13.把下列各数填入集合内:+8.5,-312,0.3,0,-3.4,12,-9,413.(1)正数集合:{} …; (2)整数集合:{} …; (3)负分数集合:{} …. 14.计算:(1)(-2)2×5-(-2)3÷4;(2)⎝ ⎛⎭⎪⎫-56+23÷⎝ ⎛⎭⎪⎫-712×72.15.画出数轴,在数轴上表示下列各数,并用“〉”把它们连接起来.-⎝ ⎛⎭⎪⎫-412,-2,0,(-1)2,|-3|,-313.16.老王在农业银行的存款有28000元,昨天因为急用取出了13500元,今天上午他将收回的货款36000元又存入了银行,并且下午打算去批发市场进货.如果这批货物需要52000元,那么老王的银行存款是否足够支付这批货物的费用?17.如图是一个数值转换机的示意 图,若输入x 的值为3,y 的值为-2,根据程序列出算式并求出输出的结果.四、(本大题共3小题,每小题8分,共24分)18.已知|a-1|+(b+2)2=0,求(a+b)2019的值.19.小明早晨跑步,他从自己家出发,向东跑了2km 到达小彬家,继续向东跑了1.5km 到达小红家,然后又向西跑了4.5km 到达学校,最后又向东跑回到自己家.(1)以小明家为原点,向东为正方向,用1个单位长度表示1km ,在图中的数轴上,分别用点A 表示出小彬家,用点B 表示出小红家,用点C 表示出学校的位置;(2)求小彬家与学校之间的距离;(3)如果小明跑步的速度是250m/min ,那么小明跑步一共用了多长时间?20.已知a ,b 均为有理数,现定义一种新的运算,规定:a#b =a 2+ab -5,例如:1#2=12+1×2-5=-2.求:(1)(-3)#6的值;(2)⎣⎢⎡⎦⎥⎤2#⎝ ⎛⎭⎪⎫-32-[(-5)#9]的值.五、(本大题共2小题,每小题9分,共18分)21.如图所示,在数轴上的三个点A、B、C表示的数分别为-3、-2、2,试回答下列问题.(1)A,C两点间的距离是;(2)若E点与B点的距离是8,则E点表示的数是;(3)若将数轴折叠,使A点与C点重合,则B点与哪个数重合?22.南丰蜜桔是江西抚州的一大特产,现有20筐南丰蜜桔,以每筐25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:(2)与标准重量比较,20筐蜜桔总计超过或不足多少千克? (3)若蜜桔每千克售价5元,则这20筐蜜桔可卖多少元?六、(本大题共12分)23.下面是按规律排列的一列数:第1个式子:1-⎝⎛⎭⎪⎫1+-12;第2个式子:2-⎝ ⎛⎭⎪⎫1+-12⎣⎢⎡⎦⎥⎤1+(-1)23⎣⎢⎡⎦⎥⎤1+(-1)34;第3个式子:3-⎝ ⎛⎭⎪⎫1+-12⎣⎢⎡⎦⎥⎤1+(-1)23⎣⎢⎡⎦⎥⎤1+(-1)34⎣⎢⎡⎦⎥⎤1+(-1)45⎣⎢⎡⎦⎥⎤1+(-1)56. (1)分别计算这三个式子的结果(直接写答案);(2)写出第2017个式子的形式(中间部分用省略号,两端部分必须写详细),然后推测出结果.参考答案与解析1.B2.D3.B4.C5.C6.C 解析:当线段的起点恰好是一个整点时,盖住的整点个数为2019个,其他情况下,盖住的整点个数为2018个.故线段盖住的整点个数为2019或2018个.故选C.7.-1 8.-2 9.3.33×10510.1 11.112.3或7 解析:根据题意,点A 表示的数是-2或2,当点A 表示的数是-2时,点B 表示的数是3;当点A 表示的数是2时,点B 表示的数是7.故点B 表示的有理数是3或7.13.解:(1)正数集合:⎩⎨⎧⎭⎬⎫+8.5,0.3,12,413,…;(2分)(2)整数集合:{}0,12,-9,…;(4分)(3)负分数集合:⎩⎨⎧⎭⎬⎫-312,-3.4,….(6分)14.解:(1)原式=22.(3分) (2)原式=1.(6分) 15.解:如图所示.(3分)由数轴得-⎝ ⎛⎭⎪⎫-412〉|-3|〉(-1)2〉0〉-2〉-313.(6分)16.解:因为28000-13500+36000-52000=-1500<0,(5分) 所以老王的银行存款不够支付这批货物的费用.(6分)17.解:根据程序列式计算如下:\[3×2+(-2)3\]÷2=\[6+(-8)\]÷2=-2÷2=-1.(6分)18.解:由题可知a -1=0,b +2=0,解得a =1,b =-2.(4分)则(a +b)2019=(1-2)2019=-1.(8分)19.解:(1)如图所示.(2分)(2)2-(-1)=3(km).答:小彬家与学校之间的距离是3km.(5分)(3)2+1.5+|-4.5|+1=9(km),9km =9000m ,9000÷250=36(min).(7分) 答:小明跑步一共用了36min.(8分)20.解:(1)(-3)#6=(-3)2+(-3)×6-5=9-18-5=-14.(3分)(2)⎣⎢⎡⎦⎥⎤2#⎝ ⎛⎭⎪⎫-32-[(-5)#9]=⎣⎢⎡⎦⎥⎤22+2×⎝ ⎛⎭⎪⎫-32-5-[(-5)2+(-5)×9-5]=(4-3-5)-(25-45-5)=-4+25=21.(8分)21.解:(1)5(2分) (2)6或-10(5分)(3)因为A 点与C 点重合,所以折痕与坐标轴的交点表示的数为-0.5,则B 点与表示1的点重合.(9分)22.解:(1)2.5-(-3)=5.5(千克).答:最重的一筐比最轻的一筐重5.5千克.(3分)(2)1×(-3)+4×(-2)+2×(-1.5)+3×0+2×1+8×2.5=-3-8-3+2+20=8(千克).答:20筐南丰蜜桔总计超过8千克.(6分) (3)5×(25×20+8)=2540(元).答:这20筐南丰蜜桔可卖2540元.(9分)23.解:(1)第1个数:12;第2个数:32;第3个数:52;(6分)(2)第2017个数:2017-⎝⎛⎭⎪⎫1+-12⎣⎢⎡⎦⎥⎤1+(-1)23⎣⎢⎡⎦⎥⎤1+(-1)34…⎣⎢⎡⎦⎥⎤1+(-1)40324033⎣⎢⎡⎦⎥⎤1+(-1)40334034=2017-12×43×34×…×40344033×40334034=2017-12=201612.(12分)。
人教版七年级上册数学 第一章+第二章+第三章 共3个单元测试卷(Word版,含答案)

人教版七年级上册数学 第一章 有理数 单元测试卷(满分 120分)一、选择题(每题3分,共30分)1. 如图,表示正确的数轴的是( )A. B.C.D.2. -1的相反数是( )A . 1B . -1C . 0D . -123. 下列四个数中,最小的数是( )A . -12B . 0C . -1D . 14. 据统计,近十年中国累积节能1 570 000万吨标准煤,1 570 000这个数用科学记数法表示为( )A . 0.157×107B . 1.57×106C . 1.57×107D . 1.57×1085. 下列说法不正确的是( )A . 最大的负整数为-1B . 最小的正整数为1C . 最小的整数是0D . 相反数等于它本身的数是06. 某旅游景点11月5日的最低气温为-2 ℃,最高气温为8 ℃,那么该景点这天的温差是( )A . 4 ℃B . 6 ℃C . 8 ℃D . 10 ℃7. 某校小卖铺一周的盈亏情况如下表所示(每天固定成本200元,其中“+”表示盈利,“-”表示亏损):则这个周共盈利( )A .715元B .630元C .635元D .605元8. 如果一对有理数a ,b 使等式a -b =a ·b +1成立,那么这对有理数a ,b 叫做“共生有理数对”,记为(a ,b ).根据上述定义,下列四对有理数中不是“共生有理数对”的是( )A .3,12B .2,13C .5,23D .-2,-139. 有理数m ,n 在数轴上的对应点的位置如图所示,则正确的结论是( )A .m +n <0B .m -n >0C .mn >0D .m n<010. 细胞分裂按照一分为二,二分为四,四分为八……如此规律进行.例如:1个细胞分裂10次可以得到细胞的个数为210=1 024个,估计1个细胞分裂40次所得细胞的个数为( )A .七位数B .十二位数C .十三位数D .十四位数二、填空题(每题4分,共28分)11.||-2 022的倒数是________. 12. 如果||a -1+(b +2)2=0,那么(a +b )2 021的值是________.13. 放学静校,值周班的小明同学负责一条东西走向楼道巡视工作.记向东为正,小明巡视过程如下:+5,-3,-1,+7,-9,+4(单位:米),则小明这次巡视共走了________米.14. 如图是一个计算程序,若输入a 的值为-1,则输出的结果应为________.15. 某高山上的温度从山脚处开始每升高100米,就降低0.6 ℃.若山脚处温度是28 ℃,则山上500米处的温度是______℃.16. 已知||a =5,||b =3,则(a +b )(a -b )=________.17. 有一组数据:25,47,811,1619,3235,….请你根据此规律,写出第n 个数是________.三、解答题(一)(每题6分,共18分)18.计算:(1)-14-||1-0.5×13×[2-(-3)2];(2)(-34-56+712)÷124.19. 把下列各数先在数轴上表示出来,再按照从小到大的顺序用“<”号连接起来:-(+6),0,-(-4),+(-52),-||-2.20. 某地发生特大山洪泥石流灾害,消防总队迅速出动支援灾区.在抢险救灾中,消防官兵的冲锋舟沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,约定向东为正方向,当天的航行路程记录如下(单位:千米):+4,-9,+8,-7,+13,-6,+10,-5.(1)B地在A地的何处?(2)救灾过程中,最远处离出发点A有多远?(3)若冲锋舟每千米耗0.5升,油箱里原有油20升,求途中还需补充多少升油.四、解答题(每题8分,共24分)21. 某洗衣粉厂上月生产了30 000袋洗衣粉,每袋标准重量450克,质量检测部门从中抽出了20袋进行检测,超过或不足标准重量的部分分别记为“+”和“-”,记录如下:(1)通过计算估计本厂上月生产的洗衣粉平均每袋多少克?(2)厂家规定超过或不足的部分大于5克时,不能出厂销售,若每袋洗衣粉的定价为2.30元,试估计本厂上月生产的洗衣粉销售的总金额为多少元?22. 小明有5张写着不同数的卡片,请你分别按要求抽出卡片,写出符合要求的算式:(1)从中取出2张卡片,使这2张卡片上的数的乘积最大;(2)从中取出2张卡片,使这2张卡片上的数相除的商最小;(3)从中取出2张卡片,使这2张卡片上的数通过有理数的运算后得到的结果最大;(4)从中取出4张卡片,使这4张卡片通过有理数的运算后得到的结果为24(写出一种即可).23. 有规律的一列数:2,4,6,8,10,12,…,它的每一项可用2n(n为正整数)来表示.现在解决另外有规律排列的一列数:1,-2,3,-4,5,-6,7,-8,….(1)它的第100个数是多少?(2)请用n(n为正整数)表示它的第n个数;(3)计算前2 022个数的和.五、解答题(每题10分,共20分)24. 随着手机的普及,微信的兴起,许多人抓住这种机会,做起了“微商”,很多农产品也改变了来的销售模式,实行了网上销售.刚大学华业的夏明把自家的冬枣产品放到网上销售,他原计划每天卖100斤冬枣,但由于种种原因,实际每天的销售量与计划量相比有出入.下表是某周的销售情况(超出的量记为正数,不足的量记为负数.单位:斤,1斤=500克)(1)根据记录的数据可知,前三天卖出________斤;(2)根据记录的数据可知,销售量最多的一天比销售量最少的一天多销售________斤;(3)本周实际销售总量达到了计划销售量吗?(4)若冬枣每斤按8元出售,每斤冬枣的运费平均为3元,那么夏明这一周一共收入多少元?25. 在数轴上依次有A ,B ,C 三点,其中点A ,C 表示的数分别为-2,5,且BC =6AB .(1)在数轴上表示出A ,B ,C 三点;(2)若甲、乙、丙三个动点分别从A 、B 、C 三点同时出发,沿数轴负方向运动,它们的速度分别是14,12,2(单位长度/秒),当丙追上甲时,甲乙相距多少个单位长度? (3)在数轴上是否存在点P ,使P 到A 、B 、C 的距离和等于10?若存在,结合数轴,写出点P 对应的数;若不存在,请说明理由.参考答案1.D 2.A 3.C 4.B 5.C 6.D 7.D 8.D 9.D 10.C11.12 022 12.-1 13.29 14.-5 15.25 16.16 17.2n3+2n18.解:(1)原式=-1-0.5×13×[2-9]=-1-0.5×13×(-7)=-1-16×(-7)=-1+76=16(2)原式=(-34-56+712)×24=-34×24-56×24+712×24=-18-20+14 =-2419.解:在数轴上表示各数如下:-(+6)<+⎝ ⎛⎭⎪⎫-52<-||-2<0<-(-4)20.解:(1)∵4-9+8-7+13-6+10-5=8, ∴B 地在A 地的东边8千米(2)∵路程记录中各点离出发点的距离分别为: 4千米||4-9=5千米; ||4-9+8=3千米; ||4-9+8-7=4千米; ||4-9+8-7+13=9千米; ||4-9+8-7+13-6=3千米; ||4-9+8-7+13-6+10=13千米;||4-9+8-7+13-6+10-5=8千米.∴最远处离出发点13千米; (3)这一天走的总程为:4+||-9+8+||-7+13+||-6+10+||-5=62(千米), 应耗油62×0.5=31(升),故途中还需补充的油量为:31-20=11(升).21.解:(1)450+(-6×1-3×1-2×1+0×6+1×5+4×2+5×4)÷20=450+1.1=451.1(克) 答:上月生产的洗衣粉平均每袋451.1克.(2)2.30×⎝ ⎛⎭⎪⎫30 000-30 000×120=2.30×28 500=65 550(元). 答:本厂上月生产的洗衣粉销售的总金额为65 550元. 22.解:(1)(-3)×(-5)=15; (2)-5÷3=-53;(3)(-5)4=625;(4)[(-3)-(-5)]×(3×4)=2×12=24 23.解:(1)它的第100个数是:-100 (2)它的第n 个数是:(-1)n +1n(3)(1-2)+(3-4)+…+(2 021-2 022) =(-1)×2 022÷2 =-1 01124.解:(1)4-3-5+300=296(斤) 故答案为296. (2)21+8=29(斤) 故答案为29.(3)+4-3-5+14-8+21-6=17>0 故本周实际销售总量达到了计划销售量. (4)(17+100×7)×(8-3)=717×5 =3 585(元)答:小明本周一共收入3 585元. 25.解:(1)设B 点表示的数为x ,∵点A ,C 表示的数分别为-2,5,且BC =6AB ,∴5-x =6[x -(-2)], 解得:x =-1所以点B 表示的数为-1,(2)7÷⎝ ⎛⎭⎪⎫2-14=4(秒) 4×⎝ ⎛⎭⎪⎫12-14-1=0 答:丙追上甲时,甲乙相距0个单位长度. (3)设P 点表示的数x ,依题意得||x +2+||x +1+||x -5=10,结合数轴得x =-83,2,∴P 点表示的数为-83或2.人教版七年级上册数学 第二章 整式的加减 单元测试卷(满分 120分)一、选择题(每题3分,共30分)1. 单项式-2ab 4c23的系数与次数分别是( )A .-23,6B .-23,7C .23,6D .23,72. 下列各组数是同类项的是( )A .x 2y 和xy 2B .3ab 和-abcC .x 2和12D .0和-53. 下列计算正确的是( )A .7a +a =7a 2B .5y -3y =2C .3x 2y -2x 2y =x 2yD .3a +2b =5ab4. 某商品的原价为每件x 元,后来店主将每件加价10元,再降价25%销售,则现在的单价是() A .(25%x +10)元 B .[(1-25%)x +10]元C .25%(x +10)元D .(1-25%)(x +10)元5. 整式x 2-3x 的值是4,则3x 2-9x +8的值是( )A .20B .4C .16D .-46. 化简a -[-2a -(a -b )]等于( )A .-2aB .2aC .4a -bD .2a -2b7. 如图,阴影部分的面积可表示为( )A .ab -r 2B .12ab -r 2C .12ab -πr 2D .ab8. 观察如图所示的图形,则第n个图形中三角形的个数是( )A.2n+2 B.4n+4 C.4n D.4n-49. 如图,两个六边形的面积分别为16和9,两个阴影部分的面积分别为a,b(a<b),则b-a的值为( )A.4 B.5 C.6 D.710. 如图①是2019年4月份的日历,现用一长方形在日历表中任意框出4个数(如图②),下列表示a,b,c,d之间关系的式子中不正确的是( )A.a-b=b-c B.a+c+2=b+dC.a+b+14=c+d D.a+d=b+c二、填空题(每题4分,共28分)11. “比x的2倍大5的数”用式子表示是________.12. 若单项式x4y n与-2x m y3的和仍为单项式,则这个和为________.13. 一根铁丝的长为5a+4b,剪下一部分围成一个长为a,宽为b的长方形,则这根铁丝还剩下________.14. 某城市按以下规定收取每月的煤气费:用气不超过60立方米,按每立方米0.8元收费;如果超过60立方米,超过部分每立米按1.2元收费.已知某户用煤气x立方米(x>60),则该户应交煤气费________元.15. 按如图所示的程序计算,若开始输入的值为x =3,则最后输出的结果为________.16. 如图所示的每幅图是由若干盆花组成的形如三角形的图案,每条边(包括两个顶点)有n (n >1)盆花,每个图案花盆的总数是s 盆.按此规律推断,s 与n 之间的数量关系可以表示为s =________.17. 已知a ,b ,c 在数轴上的位置如图所示,化简:||a -b +||b +c +||c -a =________.三、解答题(一)(每题6分,共18分)18. 合并同类项4a 2-3b 2+2ab -4a 2-3b 2+5ba .19. 先化简,再求值:2(x 2y +xy )-3(x 2y -xy )-4x 2y ,其中x =2,y =-14.20. 先化简,再求值:3m +4n -[2m +(5m -2n )-3n ],其中m =1n=2.四、解答题(二)(每题8分,共24分)21. 李叔叔买了一套新房,他准备将地面全铺上地板砖,这套新房的平面图如图所示,请解答下列问题:(1)用含x的式子表示这套新房的面积;(2)若每铺1 m2地板砖的费用为120元,当x=6时,求这套新房铺地板砖所需的总费用.22. 已知A =2a 2-a ,B =-5a +1.(1)化简:3A -2B +2;(2)当a =-12时,求3A -2B +2的值.23. 暑假期间,学校组织学生去某景点游玩,甲旅行社说:“如果带队的一名老师购买全票,则学生享受半价优惠.”乙旅行社说:“所有人按全票价的六折优惠.”已知全票为a 元,学生有x 人,带队老师有1人.(1)试用含a 和x 的式子表示甲、乙旅行社的收费情况;(2)若有30名学生参加本次活动,请你为他们选择一家更优惠的旅行社.五、解答题(三)(每题10分,共20分)24. 如下数表,是由从1开始的连续自然数组成的,观察规律完成下列各题的解答.12 3 45 6 7 8 910 11 12 13 14 15 1617 18 19 20 21 22 23 24 2526 27 28 29 30 31 32 33 34 35 36(1)表中第7行的最后一个数是________,它是自然数________的平方,第7行共有________个数;(2)用含n的代数式表示:第n行的第一个数是________,最后一个数是________,第n行共有________个数;(3)若将每行最中间的数取出,得到新的一列数1,3,7,13,21,31…,则第n个数与第(n-1)个数的差是多少?其中有两个相邻的数的差是24,那么这两个数分别在原数表的第几行?25. 某商场销某款西装和领带,西装每套定价1 000元,领带每条定价200元.国庆节期间商场计划开展促销活动,活动期间向客户提供两种优惠方案:方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.现一位客户要到该商场购买西装20套,领带x 条(x >20).(1)若该客户按方案一购买,需付款________________元(用含x 的式子表示),若该客户按方案二购买,需付款________________元(用含x 的式子表示);(2)当x =30时,通过计算说明此时按哪种方案购买较为合算;(3)当x =30时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案.参考答案1.B 2.D 3.C 4.D 5.A 6.C7.C 8.C 9.D 10.A11.2x +5 12.-x 4y 3 13.3a +2b14.1.2x -24 15.231 16.n (n +1)217.-2a18.解:4a 2-3b 2+2ab -4a 2-3b 2+5ba=-6b 2+7ab19.解:2(x 2y +xy )-3(x 2y -xy )-4x 2y=2x 2y +2xy -3x 2y +3xy -4x 2y=-5x 2y +5xy当x =2,y =-14时 原式=-5×22×(-14)+5×2×(-14) =5-52=5220.解:3m +4n -[2m +(5m -2n )-3n ]=3m +4n -(2m +5m -2n -3n )=3m +4n -7m +5n=-4m +9n ,把m =1n=2,n =0.5,代入代数式得 原式=-8+4.5=-3.521.解:(1)这套新房的面积为2x +x 2+4×3+2×3=x 2+2x +12+6=x 2+2x +18(m 2).(2)当x =6时,这套新房的面积是 x 2+2x +18=62+2×6+18=36+12+18=66(m 2).66×120=7 920(元).故这套新房铺地板砖所需的总费用为7 920元.22.解:(1)3A -2B +2=3(2a 2-a )-2(-5a +1)+2=6a 2-3a +10a -2+2=6a 2+7a ;(2)当a =-12时, 3A -2B +2=6×⎝ ⎛⎭⎪⎫-122+7×⎝ ⎛⎭⎪⎫-12 =-2,23.解:(1)由题意可得:甲:a +12ax ,乙:0.6a (x +1); (2)当x =30时,甲所需费用:16a 元;乙所需费用:0.6a (x +1)=18.6a 元因为18.6a >16a ,所以到甲旅行社更优惠.24.解:(1)每行数的个数为1,3,5,…的奇数列,由题意最后一个数是该行数的平方即得49,其他也随之解得:7,13;故答案为49;7;13.(2)由(1)知第n 行最后一数为n 2,则第一个数为n 2-2n +2,每行数由题意知每行数的个数为1,3,5,…的奇数列,故个数为2n -1;故答案为n 2-2n +2;n 2;2n -1.(3)第n 个和第(n -1)个数的差是2(n -1);2(n -1)=24 n -1=12n =13这两个数分别在原数表的第12行和第13行.25.解:(1)方案一:20×1 000+(x -20)×200=200x +16 000方案二:1 000×20×0.9+0.9×200x =180x +18 000故答案为200x +16 000;180x +18 000.(2)方案一:当x =30时,200x +16 000=200×30+16 000=22 000(元)方案二:当x =30时,180x +18 000=180×30+18 000=23 400(元),而22 000<23 400∴按方案一购买较合算.(3)先按方案一购买20套西装获赠送20条领带,再按方案二购买10条领带,此时共花费:20×1 000+10×200×0.9=21 800(元),∵21 800<22 000,∴先按方案一购买20套西装获赠送20条领带,再按方案二购买10条领带最便宜.人教版七年级上册数学 第三章 一元一次方程 单元测试卷(满分 120分)一、选择题(每题3分,共30分)1. 如果方程(m -1)x +2=0是关于x 的一元一次方程,那么m 的取值范围是( ) A . m ≠0 B . m ≠1 C . m =-1 D . m =02. 下列方程的解是x =0的是( )A . 2x +3=x -3B . 3x =xC . x -9+4=5D . x +1=-13. 设x ,y ,c 是有理数,则下列结论正确的是( )A . 若x =y ,则x +c =y -cB . 若x =y ,则xc =ycC . 若x =y ,则x c =y cD . 若x 2c =y 3c,则2x =3y4. 方程x -x -53=1去分母,得( ) A . 3x -2x +10=1 B . x -(x -5)=3C . 3x -(x -5)=3D . 3x -2x +10=65. 如果x =-8是方程3x +8=-a 的解,则a 的值为( )A . -14B . 16C . 32D . -306. 下列两个方程的解相同的是( )A . 方程5x +3=6与方程2x =4B . 方程3x =x +1与方程2x =4x -1C . 方程x +12=0与方程x +12=0 D . 方程6x -3(5x -2)=5与6x -15x =37. 解方程4.5(x +0.7)=9x ,最简便的方法是首先( )A . 去括号B . 在方程两边同时乘10C . 移项D . 在方程两边同时除以4.58. 某车间有工人85人,平均每人每天加工大齿轮16个或小齿轮10个,又知2个大齿轮与3个小齿轮配成一套,若有x 人生产大齿轮,则可列方程为( )A . 2×16x =3×10(85-x )B . 2×10x =3×16(85-x )C . 3×16x =2×10(85-x )D . 3×10x =2×10(85-x )9. 学校食堂提供两种午餐:已知12月份盈盈在学校共吃了22次午餐,每次吃一份,刚好把妈妈给的300元午餐费全部用完,则盈盈这个月的午餐吃自助餐( )A . 6次B . 10次C . 12次D . 16次10. 一商店以每件150元的价格卖出两件不同的商品,其中一件盈利25%,另一件亏损25%,则商店卖这两件商品总的盈亏情况是( )A . 亏损20元B . 盈利30元C . 亏损50元D . 不盈不亏二、填空题(每题4分,共28分)11. 若代数式3x +7的值为-2,则x =________.12. 若代数式x -5的值与2x -4的值互为相反数,则x =________. 13. 若-0.2a3x +4b 3与12ab y 是同类项,则xy =________.14. 在某年全国足球超级联赛前15场比赛中,某队保持连续不败,共积37分,按比赛规则,胜一场得3分,平一场得1分,则该队共胜了________场.15. 如图,母亲节那天,很多同学给妈妈准备了鲜花和礼盒.从图中信息,可知买5束鲜花和5个礼盒的总价为________元.16. 如图,是某年6月份的月历,用一个圈竖着圈3个数,若被圈住的三个数的和为39,则这三个数中最大的一个为________.17. 对于实数p 、q ,我们用符号min {p ,q }表示p ,q 两数中较小的数,如min {1,2}=1,若min {4x +12,1}=x,则x=________.三、解答题(一)(每题6分,共18分)18. 解方程x-3(1-2x)=11.19. 解方程x+53-x-32=1.20. 某校组织学生种植芽苗菜,三个年级共种植909盆,初二年级种植的数量比初一年级的2倍少3盆,初三年级种植的数量比初二年级多25盆.初一、初二、初三年级各种植多少盆?四、解答题(二)(每题8分,共24分)21. 下面是马小哈同学做的一道题: 解方程:2x -13=1-x +24.解:①去分母,得4(2x -1)=1-3(x +2), ②去括号,得8x -4=1-3x -6, ③移项,得8x +3x =1-6+4, ④合并同类项,得11x =-1, ⑤系数化为1,得x =-111.(1)上面的解题过程中最早出现错误的步骤是________;(填代号) (2)请正确地解方程:x -x -12=2-x +24.22. 某学校举行排球赛,积分榜部分情况如下:(1)分析积分榜,平一场比负一场多得________分;(2)若胜一场得3分,七(6)班也比赛了6场,胜场是平场的一半且共积了14分,则七(6)班胜几场?23. 列方程解应用题:某人从家里骑自行车到学校,若每小时行15千米,可比预定的时间早到15分钟;若每小时行9千米,可比预定的时间晚到15分钟;从家里到学校的路程有多少千米?五、解答题(三)(每题10分,共20分)24. 某公园的门票价格规定如下表:某校七年级甲、乙两班共103人(其中甲班人数多于乙班人数,且甲班人数不超过100)去该公园游玩.如果两班都以班级为单位分别购票,那么一共需付486元.(1)如果两班联合起来作为一个团体购票,那么可以节约多少钱?(2)甲、乙两班各有多少人?25. 某商店5月1日当天举行优惠促销活动,当天到该商店购买商品有两种优惠方案:方案1:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的八折优惠;方案2:若不购买会员卡,则购买商店内任何商品,一律按商品价格的九五折优惠.已知小红5月1日前不是该商店的会员.(1)若小红不购买会员卡,所购买商品的总价格为120元,则实际应支付多少元?(2)请问购买商品的总价格是多少时,两种方案的优惠情况相同?(3)你认为哪种方案更合算?(直接写出答案) 参考答案1.B 2.B 3.B 4.C 5.B 6.B 7.D 8.C 9.D 10.A 11.-3 12.3 13.-3 14.11 15.440 16.20 17.-12或118.解:x -3(1-2x )=11x -3+6x =117x =14x =219.解:x +53-x -32=1方程两边同时乘6得, 6×x +53-6×x -32=62(x +5)-3(x -3)=6 2x +10-3x +9=6 -x =6-10-9=-13x =1320.解:设初一年级种植x 盆, 依题意得:x +(2x -3)+(2x -3+25)=909,解得x =178. ∴2x -3=353 2x -3+25=378.答:初一、初二、初三年级各种植178盆、353盆、378盆. 21.解:(1)①. (2)去分母,得4x -2(x -1)=8-(x +2), 去括号,得4x -2x +2=8-x -2, 移项,得4x -2x +x =8-2-2, 合并同类项,得3x =4, 系数化为1,得x =43.22.解:(1)17-16=1;故答案为1. (2)设负1场得x 分. 根据题意得:3×5+x =16. 解得:x =1.∴负1场得1分,平一场得2分. 设七(6)胜y 场,则平2y 场,负6-3y 场. 根据题意得:3y +2×2y +6-3y =14.解得:y =2答:七(6)班胜2场.23.解:设从家到学校有x 千米,15分钟=14小时,依题意得:x 15+14=x 9-14,12x +45=20x -45, 8x =90x =11.25,答:从家里到学校的路程有11.25千米. 24.解:(1)∵103>100∴每张门票按4元收费的总票额为103×4=412(元) 可节省486-412=74(元)答:如果两班联合起来,作为一个团体购票,则可以节约74元钱. (2)∵甲、乙两班共103人,甲班人数>乙班人数∴甲班一定大于50人.,又甲班人数不超过100人,则甲班票价按每人4.5元计算.下面就乙班人数分析:①若乙班少于或等于50人,设乙班有x 人,则甲班有(103-x )人,依题意,得 5x +4.5(103-x )=486 解得x =45, ∴103-45=58(人)即甲班有58人,乙班有45人. ②若乙班此时也大于50人,而 103×4.5=463.5<486.应舍去. 答:甲班有58人,乙班有45人. 25.解:(1)120×0.95=114 (元),若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付114元. (2)设购买商品的价格是x 元, 根据题意,得0.8x +168=0.95x , 解得x =1 120,所以所购买商品的价格是1 120元时,两种方案的优惠情况相同. (3)当不购买会员卡,实际应支付的钱数=购买会员卡应支付的钱数时,则0.8x+168=0.95x,解得:x=1 120,当不购买会员卡,实际应支付的钱数>购买会员卡应支付的钱数时,则0.8x+168>0.95x解得:x<1 120 ,当不购买会员卡,实际应支付的钱数<购买会员卡应支付的钱数时,则0.8x+168<0.95x,解得:x>1 120.所以当购买商品的价格等于1 120元时,两种方案同样合算,当购买商品的价格在1 120元以上时,采用方案一更合算,当购买商品的价格在1 120元以下时,采用方案二合算.。
人教版数学七年级上册第二章《整式的加减》综合测试卷(含答案)

人教版数学七年级上册第二章《整式的加减》综合测试卷(含答案)一、单选题1.代数式22a b +的意义是( ).A .a 的平方与b 的和B .a 与b 的平方的和C .a 与b 两数的平方和D .a 与b 的和的平方 2.用a 表示的数一定是( )A .正数B .正数或负数C .正整数D .以上全不对 3.若2x y +=,3z y -=-,则x z +的值等于( )A .5B .1C .-1D .-54.已知3,2a b c d +=-=,则()()a c b d +--+的值是( )A .5B .-5C .1D .-15.若a ,b 互为相反数,c 的倒数是4,则334a b c +-的值为( )A .8-B .5-C .1-D .166.不改变代数式22a a b c +-+的值,下列添括号错误的是( )A .2(2)a a b c +-+B .2(2)a a b c --+-C .2(2)a a b c --+D .22()a a b c ++-+ 7.用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第①个图案中有9个正方形,第①个图案中有13个正方形,第①个图案中有17个正方形,此规律排列下去,则第①个图案中正方形的个数为( )A .32B .34C .37D .418.化简(2a ﹣b )﹣(2a +b )的结果为( )A .2bB .﹣2bC .4aD .4a9.按如图所示的运算程序,能使输出的结果为12的是( )A .3,3x y ==B .4,2x y =-=-C .2,4x y ==D .4,2x y ==10.某地居民生活用水收费标准:每月用水量不超过17立方米,每立方米a 元;超过部分每立方米()1.2a +元.该地区某用户上月用水量为20立方米,则应缴水费为( ) A .20a 元 B .()2024a +元 C .()17 3.6a +元 D .()20 3.6a +元 11.如图,将图1中的长方形纸片前成①号、①号、①号、①号正方形和①号长方形,并将它们按图2的方式无重叠地放入另一个大长方形中,若需求出没有覆盖的阴影部分的周长,则下列说法中错误的是( )A .只需知道图1中大长方形的周长即可B .只需知道图2中大长方形的周长即可C .只需知道①号正方形的周长即可D .只需知道①号长方形的周长即可12.将全体正偶数排成一个三角形数阵:按照以上排列的规律,第10行第5个数是( )A .98B .100C .102D .10413.化简1(93)2(1)3x x --+的结果是( ) A .21x - B .1x + C .53x + D .3x -14.把图1中周长为16cm 的长方形纸片分割成四张大小不等的正方形纸片A 、B 、C 、D 和一张长方形纸片E ,并将它们按图2的方式放入周长为24cm 的的长方形中.设正方形C 的边长为cm x ,正方形D 的边长为cm y .则下结论中正确的是( )A .正方形C 的边长为1cmB .正方形A 的边长为3cmC .正方形B 的边长为4cmD .阴影部分的周长为20cm15.某超市出售一商品,有如下四种在原标价基础上调价的方案,其中调价后售价最低的是( )A .先打九五折,再打九五折B .先提价50%,再打六折C .先提价30%,再降价30%D .先提价25%,再降价25%16.多项式2835x x -+与多项式323257x mx x +-+相加后,不含二次项,则常数m 的值是( )A .2B .4-C .2-D .8-17.代数式4x 3–3x 3y +8x 2y +3x 3+3x 3y –8x 2y –7x 3的值A .与x ,y 有关B .与x 有关C .与y 有关D .与x ,y 无关18.有n 个依次排列的整式:第一项是a 2,第二项是a 2+2a +1,用第二项减去第一项,所得之差记为b 1,将b 1加2记为b 2,将第二项与b 2相加作为第三项,将b 2加2记为b 3,将第三项与b 3相加作为第四项,以此类推;某数学兴趣小组对此展开研究,得到4个结论: ①b 3=2a +5;①当a =2时,第3项为16;①若第4项与第5项之和为25,则a =7;①第2022项为(a +2022)2;①当n =k 时,b 1+b 2+…+bk =2ak +k 2;以上结论正确的是( )A .①①①B .①①①C .①①①D .①①①19.将正整数按如图所示的规律排列下去,若有序数对(n ,m )表示第n 排,从左到右第m 个数,如(4,3)表示8,已知1+2+3+…+n=()12n n +,则表示2020的有序数对是( ).A .(64,4)B .(65,4)C .(64,61)D .(65,61) 20.当1x =-时,3238ax bx -+的值为18,则1282b a -+的值为( )A .40B .42C .46D .56二、填空题21.化简()x y x y +--=___________.22.在代数式23xy ,m ,263a a -+,12,22145x yzx xy -,23ab 中,单项式有___________个.23.如图,在数轴上,点A 表示1,现将点A 沿x 轴做如下移动:第一次将点A 向左移动3个单位长度到达点1A ,第二次将点1A 向右移动6个单位长度到达点2A ,第三次将点2A 向左移动9个单位长度到达点3A ,按照这种移动规律移动下去,第n 次移动到点n A ,如果点n A 与原点的距离不小于20,那么n 的最小值是_________.24.22213x x ⎛⎫-+ ⎪⎝⎭-_________________=2325x x -+. 25.a 是不为1的有理数,我们把11a-称为a 的差倒数.如:2的差倒数是1112=--,1-的差倒数是111(1)2=--.已知112a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,…,依此类推,则2020a =________.三、解答题26.有这样一道题:“求(2x 3﹣3x 2y ﹣2xy 2)﹣(x 3﹣2xy 2+y 3)+(﹣x 3+3x 2y ﹣y 3)的值,其中x =2020,y =﹣1”.小明同学把“x =2a ab --”错抄成了“x =﹣3m n -”,但他的计算结果竟然正确,请你说明原因,并计算出正确结果.27.如图,用字母表示图中阴影部分的面积.28.小刘、小张两位同学玩数学游戏,小刘说“任意选定一个数,然后按下列步骤进行计算:加上20,乘2,减去4,除以2,再减去你所选定的数”,小张说“不用算了,无论我选什么数,结果总是18”,小张说得对吗?说明理由.29.(1)若(a﹣2)2+|b+3|=0,则(a+b)2019=.(2)已知多项式(6x2+2ax﹣y+6)﹣(3bx2+2x+5y﹣1),若它的值与字母x的取值无关,求a、b的值;(3)已知(a+b)2+|b﹣1|=b﹣1,且|a+3b﹣3|=5,求a﹣b的值.30.已知:a是单项式-xy2的系数,b是最小的正整数,c是多项式2m2n-m3n2-m-2的次数.请回答下列问题:(1)请直接写出a、b、c的值.a=,b=,c=.(2)数轴上,a、b、c三个数所对应的点分别为A、B、C,点A、B、C同时开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒1个单位长度和3个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC.①t秒钟过后,AC的长度为(用含t的关系式表示);①请问:BC-AB的值是否会随着时间t的变化而改变?若变化,请说明理由;若不变,请求出其值.参考答案1--10CDCAC CCBCD 11--20BBDDB BDACB21.2y22.323.1324.2443x x -+- 25.12- 26.解:原式=2x 3﹣3x 2y ﹣2xy 2﹣x 3+2xy 2﹣y 3﹣x 3+3x 2y ﹣y 3=﹣2y 3,①此题的结果与x 的取值无关,y =﹣1时,原式=﹣2×(﹣1)3=2.27.解:由题意得:==S S S mn pq --阴影大长方形空白长方形,①阴影部分的面积为mn pq -.28.正确,理由如下:设此整数是a ,由题意得()a 20242+⨯--a =a+20-2=18,所以说小张说的对.29.解:(1)①(a ﹣2)2+|b +3|=0,且(a ﹣2)2≥0,|b +3|≥0,①a ﹣2=0,b +3=0,解得a =2,b =﹣3,①(a +b )2019=(2﹣3)2019=﹣1.故答案为:﹣1;(2)原式=6x 2+2ax ﹣y +6﹣3bx 2﹣2x ﹣5y +1,=(6﹣3b )x 2+(2a ﹣2)x ﹣6y +7,由结果与x 取值无关,得到6﹣3b =0,2a ﹣2=0,解得:a =1,b =2;(3)①(a +b )2+|b ﹣1|=b ﹣1,①(a +b )2+|b ﹣1|-(b ﹣1)=0,①|b ﹣1|≥(b ﹣1),①|b ﹣1|-(b ﹣1)≥0,(a +b )2≥0,①a +b =0且|b ﹣1|=b ﹣1,①010a b b +=⎧⎨-≥⎩, 解得,1a b b =-⎧⎨≥⎩, ①|a +3b ﹣3|=5,①a +3b ﹣3=5或a +3b ﹣3=-5,①a +3b =8或a +3b =﹣2,把a =﹣b 代入上式得:b =4或﹣1(舍去),①a ﹣b =﹣4﹣4=﹣8.30.(1)解:由题意得,单项式-xy 2的系数a =-1,最小的正整数b =1,多项式2m 2n -m 3n 2-m -2的次数c =5; 故答案为:-1,1,5(2)①t 秒后点A 对应的数为a -t ,点B 对应的数为b +t ,点C 对应的数为c +3t ,故AC =|c +3t -a +t |=|5+4t +1|=6+4t ; 故答案为:6+4t ①①BC =5+3t -(1+t )=4+2t ,AB =1+t -(-1-t )=2+2t ;①BC -AB =4+2t -2-2t =2, 故BC -AB 的值不会随时间t 的变化而改变.其值为2.。
2019-2020学年七年级上册数学第二章检测试卷及答案人教版

2019-2020学年七年级上册数学第二章检测试卷及答案人教版注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.“比a 的32大1的数”用式子表示是A .32a +1B .23a +1C .52a D .32a –12.下列单项式书写不正确的有①312a 2b ;②2x 1y 2;③–32x 2;④–1a 2b .A .1个B .2个C .3个D .4个3.下列各组式中是同类项的为A .4x 3y 与–2xy 3B .–4yx 与7xyC .9xy 与–3x 2D .ab 与bc 4.下列说法正确的是A .a 的系数是0B .1y 是一次单项式C .–5x 的系数是5D .0是单项式5.下列各式计算正确的是A .235a b ab+=B .2538x x x +=C .22523y y -=D .222945a b ba a b -=6.下列整式中,去括号后得a –b +c 的是A .a –(b +c )B .–(a –b )+cC .–a –(b +c )D .a –(b –c )A .a =0,b =3B .a =1,b =3C .a =2,b =3D .a =2,b =18.若长方形长是2a +3b ,宽为a +b ,则其周长是A .6a +8bB .12a +16bC .3a +8bD .6a +4b 9.减去–2x 后,等于4x 2–3x –5的代数式是A .4x 2–5x –5B .–4x 2+5x +5C .4x 2–x –5D .4x 2–510.用棋子摆出如图所示的一组“口”字,若按照这种方法摆下去,则摆第n 个“口”字需用棋子A .4n 枚B .(4n –4)枚C .(4n +4)枚D .n 2枚第Ⅱ卷二、填空题(本题共8小题,每小题3分,共24分)11.212x y 是__________次单项式.12.计算:3a –(2a –b )=__________.13.–2x 2y 4的系数是a ,次数是b ,则a +b =__________.14.已知23x 3m y 2与–14x 6y 2n 是同类项,则5m +3n =__________.15.若a +b =–1,ab =4,则(4a –5b –3ab )–(3a –6b +ab )的值为__________.16.某班a 名同学参加植树活动,其中男生b 名(b <a ).若只由男生完成,每人需植树15棵;若只由女生完成,则每人需植树__________棵.17.若关于x 的多项式(a –4)x 3–x 2+x –2是二次三项式,则a =__________.18.若1314a =-,2111a a =-,3211a a =-,......,则2019a =__________.三、解答题(本题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤)19.(本小题满分6分)计算:(1)3x 2y –3xy 2–12xy 2+23x 2y ;(2)4(a –2b +1)–3(–4a +b –5).20.(本小题满分6分)课堂上老师给大家出了这样一道题,“当2016x =时,求代数式的值”,小明一看(2x 3–3x 2y –2xy 2)–(x 3–2xy 2+y 3–2019)+(–x 3+3x 2y +y 3)中x 的值太大了,又没有y 的值,怎么算呢?”你能帮小明解决这个问题吗?请写出具体过程.21.(本小题满分6分)先化简,再求值:(1)12x –2(x –13y 2)+(–32x +13y 2),其中x =–2,y =23.23.(本小题满分8分)已知222322A x xy y x y =-+++,224623B x xy y x y =-+--.(1)当2x =,15y =-时,求2B A -的值.(2)若22(3)0x a y -+-=,且2B A a -=,求a 的值.24.(本小题满分10分)如图所示.(1)阴影部分的周长是__________;(2)阴影部分的面积是__________;(3)当x =5.5,y =4时,阴影部分的周长是多少?面积是多少?25.(本小题满分10分)阅读材料:对于任何数,我们规定符号a bc d的意义是a bc d=ad–bc,例如:1234=1×4–2×3=–2.(1)按照这个规定,请你计算5628-的值.(2)按照这个规定,请你计算当|x+y–4|+(xy+1)2=0时,132121xy yx+-+的值.26.(本小题满分12分)长春市发起了“保护伊通河”行动,某学校七年级两个班的115名学生积极参与,踊跃捐款.已知甲班有13的学生每人捐了10元,乙班有25的学生每人捐了10元,两个班其余学生每人捐了5元,设甲班有学生x人.(1)用含x的代数式表示乙班人数:__________;(2)用含x的代数式表示两班捐款的总额;(3)若x=60,则两班共捐款多少元?加油!有志者事竟成答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
【精选习题】最新人教版初中数学七年级上册第2章整式的加减单元测试卷.doc

人教版七年级数学第二章整式的加减单元练习(含答案)一、单选题1.单项式 的系数和次数分别是( ) A.2,2B.2,3C.3,2D.2,42.下列说法正确的是( ) A .ab +c 是二次三项式 B .多项式2x 2+3y 2的次数是4 C .0是单项式 D .34ba是整式 3.下列各式中,代数式有( )个 (1)a+b=b+a;(2)1;(3)2x-1 ;(4)23x x+;(5) s = πr 2;(6) -6kA .2B .3C .4D .54.a 的5倍与b 的和的平方用代数式表示为( )A .(5a +b )2B .5a +b 2C .5a 2+b 2D .5(a +b )25.下列各式中,不是整式的是( ). A .3aB .2x = 1C .0D .xy6.23-x yz 的系数和次数分别是( ) A .系数是0,次数是5 B .系数是1,次数是6 C .系数是-1,次数是5D .系数是-1,次数是67.考试院决定将单价为a 元的统考试卷降价20%出售,降价后的销售价为( ) A .20%aB .20%a -C .(120%)a -D .(120%)a +8.有理数a ,b 在数轴上对应点的位置如图所示,则a a b b a -+--化简后的结果是( )A .aB .bC .2a +bD .2b −a9.……依次观察左边三个图形,并判断照此规律从左到右第2019个图形是 ( )A .B .C .D .10.把四张形状大小完全相同的小长方形卡片(如图①)不重叠的放在一个底面为长方形(长为a 厘米,宽为b 厘米)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是( )A .4a 厘米B .4b 厘米C .2(a+b )厘米D .4(a-b )厘米11.使方程3x + 5y - 2 + 3kx + 4k = 0不含 x 的项,则 k 的值为( ) A .k =-1B .k =-2C .k=3D .k = 112.如图,每个图形都是由同样大小的正方形按照一定的规律组成,其中第①个图形面积为2,第②个图形的面积为6,第③个图形的面积为12,…,那么第⑥个图形面积为( )A.20B.30C.42D.56二、填空题13.计算()()3242x y x y --+-的结果是__________. 14.多项式2239x xy π++中,次数最高的项的系数是_______. 15.请将 4 y 2-25xy 3- 5 y 按字母 y 的降幂排列____________ 16.已知212a a -+=,那么21a a -+的值是______________.三、解答题17.把下列代数式的代号填入相应的集合括号里.(A )22a b ab + (B )2315x x -+ (C )2a b + (D )23xy -人教版初中数学七年级上册第二章《整式的加减》 单元测试一、选择题(每题3分,共30分) 1.下列说法正确的是( ) A.a 的系数是0 B.1y是一次单项式 C.-5x 的系数是5 D.0是单项式 2.下列单项式:①312a 2b ;②-2x 1y 2;③-32x 2;④-1a 2b .其中书写不正确的有( ) A.1个 B.2个 C.3个 D.4个3.下列各组中的两项,不是同类项的是( ) A.a 2b 与-6ab 2 B.-5x 3y 与934yx 3C.2πR 与π2RD.-35与53 4.下列说法正确的是( )A.整式就是多项式B.π是单项式C.x 4+2x 3是七次二项次D.315x 是单项式 5.不改变多项式3b 3-2ab 2+4a 2b -a 3的值,把后三项放在前面是“-”号的括号中,正确的是( )A.3b 3-(2ab 2-4a 2b +a 3)B.3b 3-(2ab 2+4a 2b +a 3)C.3b 3-(-2ab 2+4a 2b -a 3)D.3b 3-(2ab 2+4a 2b -a 3) 6.若m ,n 都是正整数,多项式x m +y n +3m +n 的次数是( )A.2m +2nB.m 或nC.m +nD.m ,n 中的较大数7.张老板以每颗a 元的单价买进水蜜桃100颗,现以每颗比单价多两成的价格卖出70颗后,再以每颗比单价低b 元的价格将剩下的30颗卖出,那么全部水蜜桃共卖( )元A.70a +30(a -b )B.70×(1+20%)×a +30bC.100×(1+20%)×a -30(a -b )D.70×(1+20%)×a +30(a -b )8.在一定条件下,若物体运动的路程s (m)与时间t (s)的关系式为s =5t 2+2t ,则当t =6秒时,该物体所经过的路程为( )A.198mB.192mC.188mD.182m9.明明在今天数学课上学习了整式的加减知识,放学后,明明见妈妈的午饭没有做好,拿出课堂笔记,认真地复习课上学习的内容,他突然发现一道题:(-x 2+3xy -12y 2)-(-12x 2+4xy -32y 2)=-12x 2y 2,被钢笔墨水弄污了,那么被弄污的地方应填( ) A.-7xy B.7xy C.-xy D.xy10.多项式-3x 2y -10x 3+3x 3+6x 3y +3x 2y -6x 3y +7x 3-2020的值是( ) A.与x ,y 都无关 B.只与x 有关 C.只与y 有关 D.与x ,y 都有关 二、填空题(每题3分,共24分)11.把多项式3x 2y -4xy 2+x 3-5y 3按y 的降幂排列是___.12.两堆棋子,将第一堆的2个棋子移到第二堆去之后,第二堆棋子数就成了第一堆棋子数的2倍,设第一堆原有a 个棋子,第二堆原有___个棋子.13.如果x 表示一辆火车行驶的速度,那么1.5x 可以解释为___.14.大家知道53是一个两位数,个位数字是3,十位数字是5,若将53写成5×10+3,如果一个两位数的个位数字是b ,十位数字是a ,用含a 、b 的式子表示这个两位数是___.15.化简:―[―(2a―b)]=___.16.的结果是___.17.小颖在计算a+N时,误将“+”看成“―”,结果得3a,则a+N=___.18.数学家发明了一个魔术盒,当任意实数对...(a,b)进入其中时,•会得到一个新的实数:a2+b+1.例如把(3,-2)放入其中,就会得到32+(-2)+1=8,现将实数对...(-2,3)放入其中得到实数m,再将实数对...(m,1)放入其中后,得到的实数是___.三、解答题(共66分)19.化简:(1)-0.8a2b-6ab-3.2a2b+5ab+a2b.(2)5(a-b)2-3(a-b)2-7(a-b)-(a-b)2+7(a-b).20.先化简,再求值:(1)5a2-4a2+a-9a-3a2-4+4a,其中a=-1 2 .(2)5ab-92a2b+12a2b-(114ab+a2b+5),其中a=1,b=-2.(3)2a2-(3ab+b2+a2-ab)-2b2,其中a2-b2=2,ab=-3.21.小明研究汽车行驶时油箱里的剩油量与汽车行驶的路程之间的关系如下表:请写出剩油量A与行驶路程n与耗油量Q之间的关系式,并计算当n=150千米时,A 是多少?22.有这样一道题:“当a=2020,b=-2019时,求多项式7a3-6a3b+3a2b+3a3+6a3b -3a2b-10a3+2019的值.”小明说:本题中a=2020,b=-2019是多余的条件;小强马上反对说:这不可能,多项式中含有a和b,不给出a,b的值怎么能求出多项式的值呢?你同意哪名同学的观点?请说明理由.23.按照下列步骤做一做:第一步:任意写一个两位数;第二步:交换这个两位数的十位数字和个位数字,得到一个新数;第三步:求这两个两位数的差.再写几个两位数重复上面的过程,这些差有什么规律?这个规律对任意一个两位数都成立吗?为什么?24. 甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出300元之后,超出部分按原价的8折优惠;在乙超市购买商品超出200元之后,超出部分按原价的8.5折优惠,设某顾客预计累计购物x元(x >300元).(1)请用含x的代数式分别表示顾客在两家超市购物所付的费用.(2)当该顾客累计购物500元时在哪个超市购物合算.25.永丰学校七年级学生在5名教师的带领下去公园秋游,公园的门票为每人30元.现有两种优惠方案,甲方案:带队教师免费,学生按8折收费;乙方案:师生都7.5折收费.(1)若有m名学生,用代数式表示两种优惠方案各需多少元?(2)当m=70时,采用哪种方案优惠?当m=100时,采用哪种方案优惠?26.在边长为16cm的正方形纸片的四个角各剪去一个同样大小的正方形,折成一个无盖的长方体.(1)如果剪去的小正方形的边长为x cm,请用x来表示这个无盖长方体的容积.(2)当剪去的小正方体的边长x的容积的大小.参考答案:一、1.D;2.C;3.A;4.B;5.A;6.D;7.D;8B;9.C;10.A.点拨:-3x2y-10x3+3x3+6x3y+3x2y -6x3y+7x3-2012=-2012.二、11.-5y3-4xy2+3x2y+x3;12.2a-6;13.这辆火车行驶了1.5小时的路程;14.10a+b;15.2a-b;16.m2-m+1;17.-a;18.66.三、19.(1)-3a2b-ab.(2)(a-b)2.20.(1)5a2-4a2+a-9a-3a2-4+4a=-2a2-4a-4,当a=-12时,原式=-52.(2)5ab-92a2b+12a2b-(114ab+a2b+5)=5ab-92a2b+12a2b-114ab-a2b-5=94ab-5a2b-5,当a=1,b=-2时,原式=12.(3)2a2-(3ab+b2+a2-ab)-2b2=2a2-3ab-b2-a2+ab-2b2=a2-b2-2ab,当a2-b2=2,ab=-3时,原式=8.21.依题意,得A=20-Q,A=20-0.04n,当n=150时,A=20-0.04×150=14(升).22.因为7a3-6a3b+3a2b+3a3+6a3b-3a2b-10a3+2019=2019,所以a=2020,b=-2019是多余的条件,故小明的观点正确.23.第一步:如,24;第二步:得42;第三步:42-24=18,是9的倍数.猜想:这些差的规律是都能被9整除.理由:第一步:设原两位数的十位数字为b,个位数字为a(b>a),则原两位数为10b+a;第二步:交换后的两位数为10人教版初中数学七年级上册第2章《整式加减》单元测试卷(及答案)一.选择题1.a、b、c、m都是有理数,且a+2b+3c=m,a+b+2c=m,那么b 与c的关系是()A.互为相反数B.互为倒数C.相等D.无法确定2.单项式﹣5ab的系数是()A.5B.﹣5C.2D.﹣23.多项式3x2+xy﹣xy2的次数是()A.2B.1C.3D.44.下列多项式是五次多项式的是()A.x3+y2B.x2y3+xy+4C.x5y﹣l D.x5﹣y6+15.与2ab2是同类项的是()A.4a2b B.2a2bC.5ab2D.﹣ab6.下列去括号正确的是()A.﹣3(b﹣1)=﹣3b﹣3B.2(2﹣a)=4﹣a C.﹣3(b﹣1)=﹣3b+3D.2(2﹣a)=2a﹣4 7.在下列整式中,次数为4的单项式是()A.mn2B.a3﹣b3C.x3y D.5st8.计算4a2﹣5a2的结果是()A.﹣a2 B.﹣1C.a2 D.9 a29.已知A=﹣4x2,B是多项式,在计算B+A时,李明同学把B+A看成了B•A,结果得32x5﹣16x4,则B+A为()A.﹣8x3+4x2B.﹣8x3+8x2C.﹣8x3D.8x310.已知:a2+2a=1,则代数式2a2+4a﹣1的值为()A.1B.0C.﹣1D.﹣211.按如图所示的运算程序,能使运算输出结果为﹣5的是()A.x=1,y=﹣2B.x=1,y=2C.x=﹣1,y=2D.x=﹣1,y=﹣212.在式子a2+2,,ab2,,﹣8x,0中,整式有()A.3个B.4个C.5个D.6个13.下列说法中正确的是()A.xy﹣x+y﹣4的项是xy,x,y,4B.单项式m的系数为0,次数为0C.单项式2a2b的系数是2,次数是2D.1是单项式14.甲、乙两个商家对标价相同的同一件商品进行价格调整,甲的方案是:先提价8%,再降价8%;乙的方案是:先降价8%,再提价8%;则甲、乙两个商家对这件商品的最终定价()A.甲比乙多B.乙比甲多C.甲、乙一样多D.无法确定15.已知a﹣b=3,c+d=2,则(a+c)﹣(b﹣d)的值为()A.1B.﹣1C.5D.﹣5二.填空题16.若5a m b2n与﹣9a5b6是同类项,则m+n的值是.17.已知m2+m=﹣2,则2m2+2m+2023=.18.已知多项式x2﹣(3k﹣1)xy﹣3y2+3mxy﹣8中不含xy项,则8k+1×4÷23m+2的值为.19.班主任老师的想法:七年级我班50名同学,想参加元旦长跑活动的同学就举手,当举手的人数和没有举手的人数之差是一个奇数时,全班就不参加;如果是偶数,全班就参加元旦长跑活动.请思考:老师的想法(填“参加”或“不参加”).20.若代数式﹣(3x3y m﹣1)+3(x n y+1)经过化简后的结果等于4,则m﹣n的值是.21.已知(a+b)2=7,|ab|=3,则(a2+b2)﹣ab=.三.解答题22.先化简,再求值:(1)2x3﹣(7x2﹣9x)﹣2(x3﹣3x2+4x),其中x=﹣1.(2)已知x2﹣2y﹣5=0,求3(x2﹣2xy)﹣(x2﹣6xy)﹣4y的值.23.计算:﹣3[b﹣(3a2﹣3ab)]﹣[b+2(4a2﹣4ab)]24.已知代数式A=x2+xy﹣2y,B=2x2﹣2xy+x﹣1(1)求2A﹣B;(2)若2A﹣B的值与x的取值无关,求y的值.25.已知含字母x,y的多项式是:3[x2+2(y2+xy﹣2)]﹣3(x2+2y2)﹣4(xy﹣x﹣1).(1)化简此多项式;(2)若x,y互为倒数,且恰好计算得多项式的值等于0,求x的值.26.已知多项式A=2x2﹣xy+my﹣8,B=﹣nx2+xy+y+7,A﹣2B中不含有x2项和y项,求n m+mn的值.参考答案一.选择题1.A;2.B;3.C;4.B;5.C;6.C;7.C;8.A;9.C;10.A;11.C;12.C;13.D;14.C;15.C;二.填空题16.8;17.2019;18.16;19.参加;20.﹣2;21.﹣或;三.解答题22.解:(1)原式=2x3-7x2+9x-2x3+6x2-8x=-x2+x,当x=-1时,原式=-1-1=-2;(2)原式=3x2-6xy-x2+6xy-4y=2x2-4y=2(x2-2y),由x2-2y-5=0,得到x2-2y=5,则原式=10.23.解:原式=-3b+9a2-9ab-b-8a2+8ab=a2-4b-ab24.解:(1)2A-B=2(x2+xy-2y)-(2x2-2xy+x-1)=2x2+2xy-4y-2x2+2xy-x+1=4xy-x-4y+1;(2)∵2A-B=4xy-x-4y+1=(4y-1)x-4y+1,且其值与x无关,∴4y-1=0,解得y=25. 解:(1)原式=3x 2+6(y 2+xy-2)-3x 2-6y 2-4xy+4x+4 =3x 2+6y 2+6xy-12-3x 2-6y 2-4xy+4x+4 =2xy+4x-8;(2)∵x ,y 互为倒数, ∴xy=1,则2xy+4x-8=2+4x-8=4x-6, 由题意知4x-6=0, 解得:x=26.解:∵A=2x 2-xy+my-8,B=-nx 2+xy+y+7,∴A-2B=2x 2-xy+my-8+2nx 2-2xy-2y-14=(2+2n )x 2-3xy+(m-2)y-22,由结果不含有x 2项和y 项,得到2+2n人教版初中数学七年级上册第2章《整式加减》单元测试卷(含答案)一、选择题(每小题3分,共24分)1.单项式32yx -的系数是( )A.0B.-1C.31 D.31- 2.小明说2a 2b 与5-2ab 是同类项;小颖说2a 2b 与ab 2c 是同类项;小华说2a 2b 与-ba 2是同类项,他们三人说法正确的是( )A 小明 B.小颖 C.小华 D.三人都正确 3.多项式-x 2-3x-2的各项分别是( )A.-x 2,3x ,2B.-x 2,-3x ,-2C.x 2,3x ,2D.x 2,-3x ,-24.若单项式5x a-2y 3与-32x 4y b的和仍是单项式,则a ,b 的值分别为( )A.4,3B.4,-3C.6,3D.6,-35.下面四道去括号的题目是从小马虎的作业本上摘录下来的,其中正确的是( ) A.2(x-y )=2x-y B.-(m-n )=-m+n C.2(a+61)=2a+121D.-(3x 2+2y )=-3x 2+2y 6.化简(x-3y )-(-3x-2y )的结果是( ) A.4x-5y B.4x-y C.-2x-5y D.-2x-y 7.化简x-[y-2x-(x-y )]等于( ) A.-2x B.2x C.4x-2y D.2x-2y8.如果m-n=51,那么-3(n-m )的结果是( ) A.53 B.35 C.53 D.151二、填空题(每小题3分,共24分)9.代数式2x 2y-3x+xy-1-x 3y 2是_______次________项式,次数最高的项是_______. 10.单项式-3m 与3m 的和是________,差是________.11.今年来,国家加大房价调控力度.受此影响,某地房价第二、第三季度不断下跌,第二季度下降a 元/m 2,第三季度又下降了第二季度所降房价的2倍,则该地两季度房价共下降________元/m 2.12.把(a-b )当作一个整体,多项式5(a-b )+7(a-b )-3(a-b )合并同类项的结果是________.13.若x-y=3,则5-x+y=________. 14.如果单项式-21x 2y 3与0.35x m y n 是同类项,则(m-n )2019=_______. 15.一个多项式与3x 2-2+x 的和是x 2-2x ,则这个多项式是_______.16.长方形的一边长为a-3b ,一邻边比这边长2a+b ,则这个长方形的周长为________. 三、解答题(共52分) 17.(8分)已知多项式-73x m+1y 3+x 3y 2+xy 2-5x 5-9是六次五项式,单项式32a 2nb 3-mc 的次数与多项式的次数相同,求n 的值.18.(12分)先化简,再求值:(1)2+(-6x+1)-2(3-4x ),其中x=-21; (2)(2a 3-3a 2b-2ab 2)-(a 3-2ab 2+b 3-a )+(3a 2b-a 3-b 3-b ),其中a=2019,b=-2.19.(10分)贝贝和晶晶两人共同化简:2(m 2n+mn )-3(m 2n-mn )-4m 2n ,他们的化简过程分别如下:贝贝:2(m 2n+mn )-3(m 2n-mn )-4m 2n=2m 2n+2mn-3m 2n-3mn-4m 2n=-5m 2n-mn. 晶晶:2(m 2n+mn )-3(m 2n-mn )-4m 2n=2m 2n+mn-3m 2n-mn-4m 2n=-5m 2n. 如果你和他们是同一个学习小组,你会支持谁?为什么?若你认为他们的计算都不正确,请把你认为正确的化简写下来.20.(10分)有一道题:“先化简,再求值:15a 2-(6a 2+5a )-(4a 2+a-3)+(-5a 2+6a+2019)-3,其中a=2020.”乐乐做题时,把“a=2020”错写成“a=-2020”.但他的计算结果却是正确的,你知道这是为什么吗?21.(12分)某单位要印刷“市民文明出行,遵守交通安全”的宣传材料,甲印刷厂提出:每份材料收1元印刷费,另收150元的制版费;乙印刷厂提出:每份材料收2.5元印刷费,不收制版费设在同一家印刷厂一次印制数量为x 份(x 为正整数)创新提高(满分50分,时间30分钟) 一、选择题(每小题4分,共12分)1.若m 2+mn=2,nm+n 2=-1,则m 2+2mn+n 2的值为( ) A.0 B.-1 C.1 D.无法确定2.若A=2x 2+xy+3y 2,B=x 2-xy+2y 2,则当x=2,y=1时,A-B 的值为( ) A.0 B.1 C.6 D.93.若(ax 2-2xy+y 2)-(-ax 2+bxy+2y 2)=6x 2-9xy+cy 2成立,则a 、b 、c 的值分别是( ) A.a=3,b=-7,c=-1 B.a=-3,b=7,c=-1 C.a=3,b=7,c=-1 D.a=-3,b=-7,c=1 二、填空题(每小题5分,共15分)4.若多项式3x 3-2x 2+3x-1与多项式x 2-2mx 3+2x+3的和是关于x 的二次三项式,则m=________.5.请你写出一个以32为系数,包含z y x 、、的五次单项式_________. 6.若多项式2x 2+3x+1的值为0,则多项式4x 2+6x+2021的值为_________. 三、解答题(共23分)7.(11分)由于看错了运算符号,“小马虎”把一个整式减去多项式2ab-3bc+4,误认为加上这个多项式,结果得出答案是2bc-1-2ab ,问原题的正确答案是多少?8.(12分)已知m 是绝对值最小的有理数,且-2a m+2b y 与3a x b 2是同类项,试求2x 3-3xy+6y 2-3mx 3+mxy-9my 2的值.参考答案 基础训练一、1.D 2.C 3.B 4.C 5.B 6.B 7.C 8.C 二、9.五,五,-x 3y 2 10.0,-6m 11.3a 12.9(a-b ) 13.2 14.-1 15.-2x 2-3x+2 16.8a-10b 三、17.解:由多项式是六次五项式可知m+1+3=6,所以m=2.又单项式与单项式的次数相同,所以2n+3-m+1=6,即2n+3-2+1=6,所以n=2. 18.解:(1)原式=2-6x+1-6+8x=2x-3.当x=-21时,原式=2×(-21)-3=-4. (2)原式=2a 3-3a 2b-2ab 2-a 3+2ab 2+b 3+a+3a 2b-a 3-b 3-b=a-b. 当a=2019,b=-2时,原式=2019-(-2)=2021. 19.贝贝、晶晶的计算都不正确.正确答案如下:2(m 2n+mn )-3(m 2n-mn )-4m 2n=2m 2n+2mn-3m 2n+3mn-4m 2n=-5m 2n+5mn. 20.解:原式=15a 2-6a 2-5a-4a 2-a+3)-5a 2+6a+2019-3=2019.由于计算后的结果中不含字母a ,可知此代数式的值与字母a 的取值无关.所以乐乐将a=2020错写成a=-2020,计算的结果不变. 21. 解:(1)甲每份材料收1元印刷费,另收150元的制版费; 故答案为160,170,150+x ;乙每份材料收2.5元印刷费, 故答案为25,50,2.5x ;(2)对甲来说,印刷大于800份时人教版初中数学七年级上册第2章《整式加减》单元测试卷一、单选题(每小题只有一个正确答案) 1.下列各式:ab ,2x y -,2x,–xy 2,0.1,1π,x 2+2xy+y 2,其中单项式有( ) A .5个B .4个C .3个D .2个2.多项式x 3–2x 2y 2+3y 2每项的系数和是( ) A .1B .2C .5D .63.若单项式–2335a bc 的系数、次数分别是m 、n ,则( )A .m=−35,n=6 B .m=35,n=6 C .m=–35,n=5 D .m=35,n=5 4.下列各式中,不是整式的是( ). A .3aB .2x = 1C .0D .xy5.对[()]a b c d --+去括号后的结果是( ). A .a b c d --+ B .a b c d +-- C .a b c d -++D .a b c d -+-6.单项式﹣x 2y 的系数与次数分别是( ) A.-,3B.-,4C.-π,3D.-π,47.下列各式计算正确的是( ). A .(2)2a a b b --=- B .2(3)242xy y xy xy y --=- C .233336ab a b ab +=D .3()3xy y xy y +-=8.下列各组单项式属于同类项的是( ).A .2a 与22aB .3m -与2mC .223a b 与22ab D .22a 与23a9.一个两位数,十位上的数字比个位上的数字小2,设十位上的数字为x ,则这个两位数可以表示为( ). A .22x +B .22x -C .112x -D .112x +10.若代数式()()222x ax y 62bx 3x 5y 1(a,+-+----b 为常数)的值与字母x 的取值无关,则代数式a 3b +的值为( ) A .0B .1-C .2或2-D .611.规定一种新运算,a *b =a +b ,a #b =a ﹣b ,其中a 、b 为有理数,化简a 2b *3ab +5a 2b #4ab 的结果为( ) A .6a 2b +abB .﹣4a 2b +7abC .4a 2b ﹣7abD .6a 2b ﹣ab12.一个多项式加上2325y y --得到多项式3546y y --,则原来的多项式为( ) A.325321y y y ++- B.325326y y y --- C.325321y y y +-- D.325321y y y ---二、填空题13.多项式2239x xy π++ 人教版初中数学七年级上册第1章《有理数》单元测试题一、选择题(本大题12小题,每小题3分,共36分,每小题只有一个正确选项)1.—2019的相反数是( ) A .-2019B .2019C .12019 D.12019- 2. 下列说法正确的是( )A .分数都是有理数B .﹣a 是负数C .有理数不是正数就是负数D .绝对值等于本身的数是正数3.2018年10月23日,港珠澳大桥开通,港珠澳大桥东起香港国际机场附近的香港口岸 人工岛,向西横跨伶仃洋海域后连按珠海和澳门人工岛,止于珠海祺湾,工程项目总投资额1269亿元,数据1269亿元用科学记数法可表示为( ) A .1269×108元 B .126.9×109元 C .1.269×1011元 D .1.269×108元 4.比-4.5小的负整数是( )A .-3B .-5.5C .-4D .05.如图所示,若A 是实数a 在数轴上对应的点,则关于a ,-a ,1的大小关系表示正确的是( ) A.a <1<-a B.a <-a <1C.1<-a <aD. -a <a <16.又是一年杨梅采摘时!丰景杨梅场每框杨梅以5千克为基准,超过千克数的记为正数,不足千克数的记为负数,记录如图,则这四框杨梅的总质量是( )第5题A .19.7千克B .19.9千克C .20.1千克D .20.3千克7.利用运算律简便计算52×(﹣999)+49×(﹣999)+999正确的是 ( )A .﹣999×(52+49)=﹣999×101=﹣100899B .﹣999×(52+49﹣1)=﹣999×100=﹣99900C .﹣999×(52+49+1)=﹣999×102=﹣101898D .﹣999×(52+49﹣99)=﹣999×2=﹣1998 8.下列运算正确的是 ( )A .(-3)2=-9B .(-1)2019×(-1)=1 C .-9÷3=3 D .﹣|﹣1|=19.在等式[(-8) -□]÷(-2)=4中,□表示的数是 ( )A.1B. -1C. -2D.0 10.若ab>,a+b<,则( ) A .a 、b 都为负数 B .a 、b 都为正数 C .a 、b 中一正一负D .以上都不对 11.在-|-5|3,-(-5)3,(-5)3,-53中,最大的是( ) A .-|-5|3 B .-(-5)3C .(-5)3D .-5312. 观察下列算式:根据表格中个位数的规律可知,22019的个位数是 ( ) A .2 B.4 C.6 D.8二、填空题(本大题4小题,每小题3分,共12分)13.如果节约5.6吨水记作+5.6吨,那么浪费3.2吨水记作 吨. 14.如图,数轴上A 、B 两点所表示的数分别是-4和2, 点C 在线段AB 上且到点A 、B 的距离相等, 则点C 所表示的数是 . 15.已知|x |=3,|y |=15.且xy <0,则x y 的值等于 .16.若()235180a b c ++-+-=,则ab -c =______ 三、解答题(本大题7小题,共52分)第15题17 .(6分)将下列各数在数轴上表示出来,并按照从大到小的顺序排列. -3,-(-1),212,-1.5,4.18.(本题共2小题,每小题4分,共8分) 计算:(1)13+(﹣5)﹣(﹣21)﹣19; (2)11336964⨯(--)19.(本题共2小题,每小题4分,共8分) 计算:(1)﹣8﹣3×(﹣12)+8; (2)﹣6×2334(-)﹣|(﹣8)÷2|20.(本题共2小题,每小题4分,共8分)计算:(1)3527(3 1.2)6⎡⎤-⨯-+-⨯⎢⎥⎣⎦(); (2)-12019-|-3|+16×[10-(-2)3]21. (8分)已知某种机器零件的标准直径是10mm,超过标准直径长度的数量(毫米)记作正数,不足标准直径长度的数量(毫米)记作负数,检验员某次抽查了物件样品,检查的(2)如果规定误差的绝对值在0.18mm之内是正品.误差的绝对值在0.18mm~0.22mm之间是次品,误差的绝对值超过0.22mm的是废品,那么上述五件样品中,哪些是正品,哪些是次品,哪些是废品?22.(8分)某巡警骑摩托车在一条东西大道上巡逻.某天他从岗亭出发,晚上停留在A处.规定向东方向为正.当天行驶记录如下(单位:千米)+10,﹣8,+6,﹣13,+7,﹣12,+3,﹣1(1)A在岗亭何方?距岗亭多远?(2)在岗亭东面6千米处有个加油站,该巡警巡逻时经过加油站几次?(3)若摩托车每行1千米耗油0.05升,那么该摩托车这天巡逻共耗油多少升?23.(6分)阅读下列内容,然后解答问题:因为:11111111111 1,,12223233434910910 =-=-=-⋯=-⨯⨯⨯⨯所以:1111 122334910 +++⋯+⨯⨯⨯⨯1111111122334910⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+⋯+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭1111111122334910=-+-+-+⋯+-1911010=-=问题:计算:(1)111111223342015201620162017+++⋯++⨯⨯⨯⨯⨯ (2)111133557++⨯⨯⨯ (3)111113355720152017+++⋯+⨯⨯⨯⨯龙华中学2019秋学期七年级数学第一次月考试题参考答案一、1.B 2.A 3.C 4.B 5.A 6.C 7.B 8.B 9.D 10.A 11.B 12.D 二、13. -3.2 14.-1 15.﹣15 16.3 三、17.解:(1)正确画出图形………………3分 (2)按照从大到小的顺序排列为:4>12>-(-1)>-1.5>-3.………………6分 18.解:(1)原式=13﹣5+21﹣19………………2分 =34﹣24………………3分 =10;………………4分 (2)原式=………………6分=4﹣6﹣27………………7分 =﹣29;………………8分19. 解:(1)原式=﹣8+36+8………………2分 =36;………………4分(2)原式=﹣4+﹣4………………6分=﹣3.………………8分20.(1)原式==(﹣8)×[﹣7+(3﹣1)] ………………2分=(﹣8)×(﹣5)………………3分=40.………………4分(2)原式=-1-3+3………………6分=-1.………………8分21.解:(1)∵|-0.05|<|+0.1|<|-0.15|<|-0.2|<|+0.25|,∴第4个样品最符合要求;……………………3分(2)∵|-0.05|=0.05<0.18,|+0.1|=0.1<0.18,|-0.05|=0.05<0.18,∴第1、2、4件样品是正品,……………………4分∵|-0.2|=0.2,且0.18<0.2<0.22,∴第3个样品是次品;……………………6分∵|+0.25|=0.25>0.22,∴第5件样品是废品.……………………8分22.解:解:根据题意可得:东方向为正,则西方向为负,将岗亭看为0,加油站为6.(1)+10﹣8+6﹣13+7﹣12+3﹣1=﹣8,即A在岗亭西方8千米处;……………2分(2)巡警巡逻时经过岗亭东面6千米处加油站,应该是4次,第一次向东走10千。
成都师大附中外国语学校学校人教版初中七年级数学上册第二章《整式的加减》模拟测试题(有答案解析)

一、选择题1.(0分)[ID :68029]代数式x 2﹣1y的正确解释是( )A .x 与y 的倒数的差的平方B .x 的平方与y 的倒数的差C .x 的平方与y 的差的倒数D .x 与y 的差的平方的倒数2.(0分)[ID :68055]把有理数a 代入|a +4|﹣10得到a 1,称为第一次操作,再将a 1作为a 的值代入得到a 2,称为第二次操作,…,若a =23,经过第2020次操作后得到的是( ) A .﹣7 B .﹣1C .5D .113.(0分)[ID :68052]有一组单项式如下:﹣2x ,3x 2,﹣4x 3,5x 4……,则第100个单项式是( ) A .100x 100B .﹣100x 100C .101x 100D .﹣101x 1004.(0分)[ID :68014]如下图所示:用火柴棍摆“金鱼”按照上面的规律,摆n 个“金鱼”需用火柴棒的根数为( ) A .2+6nB .8+6nC .4+4nD .8n5.(0分)[ID :68011]如图,填在下面各正方形中的4个数之间都有相同的规律,根据此规律,m 的值是( )A .38B .52C .74D .666.(0分)[ID :68010]一个多项式加上3y 2-2y -5得到多项式5y 3-4y -6,则原来的多项式为( ). A .5y 3+3y 2+2y -1B .5y 3-3y 2-2y -6C .5y 3+3y 2-2y -1D .5y 3-3y 2-2y -17.(0分)[ID :68009]已知有理数1a ≠,我们把11a-称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是()11112=--.如果12a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数…依此类推,那么2020a 的值是( ) A .2-B .13C .23D .328.(0分)[ID :68008]下面四个代数式中,不能表示图中阴影部分面积的是( )A .()()322x x x ++-B .25x x +C .()232x x ++D .()36x x ++9.(0分)[ID :68004]下列各式中,符合代数书写规则的是( )A .273x B .14a ⨯C .126p - D .2y z ÷10.(0分)[ID :67997]下列式子中,是整式的是( )A .1x +B .11x + C .1÷x D .1x x+ 11.(0分)[ID :67988]已知m ,n 是不相等的自然数,则多项式2m n m n x x +-+的次数是( ) A .m B .nC .m n +D .m ,n 中较大者 12.(0分)[ID :67969]一个多项式与221a a -+的和是32a -,则这个多项式为( ) A .253a a -+B .253a a -+-C .2513a a --D .21a a -+-13.(0分)[ID :67967]下列各对单项式中,属于同类项的是( ) A .ab -与4abcB .213x y 与212xy C .0与3-D .3与a14.(0分)[ID :67963]小明乘公共汽车到白鹿原玩,小明上车时,发现车上已有(6a ﹣2b )人,车到中途时,有一半人下车,但又上来若干人,这时车上共有(10a ﹣6b )人,则中途上车的人数为( ) A .16a ﹣8b B .7a ﹣5b C .4a ﹣4b D .7a ﹣7b 15.(0分)[ID :67958]长方形一边长为2a +b ,另一边为a -b ,则长方形周长为( )A .3aB .6a +bC .6aD .10a -b二、填空题16.(0分)[ID :68137]化简:226334xx x x_________.17.(0分)[ID :68134]如图,阴影部分的面积用整式表示为_________.18.(0分)[ID :68131]m ,n 互为相反数,则(3m –2n )–(2m –3n )=__________. 19.(0分)[ID :68129]某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为a 元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为__元.20.(0分)[ID :68126]某数学老师在课外活动中做了一个有趣的游戏:首先发给A 、B 、C 三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成以下三个步骤:第一步,A 同学拿出二张扑克牌给B 同学; 第二步,C 同学拿出三张扑克牌给B 同学;第三步,A 同学手中此时有多少张扑克牌,B 同学就拿出多少张扑克牌给A 同学. 请你确定,最终B 同学手中剩余的扑克牌的张数为______.21.(0分)[ID :68110]如图,在整式化简过程中,第②步依据的是_______.(填运算律)化简:()22253a b ab a b ab +--+解:()22253ab ab a b ab +--+22253a b ab a b ab =++-① 22253a b a b ab ab =++-②()222(53)a b a b ab ab =++-③232a b ab =+.④22.(0分)[ID :68107]若212m ma b -是一个六次单项式,则m 的值是______. 23.(0分)[ID :68102]一列数a 1,a 2,a 3…满足条件a 1=12,a n =111n a --(n ≥2,且n 为整数),则a 2019=_____.24.(0分)[ID :68082]两堆棋子,将第一堆的2个棋子移到第二堆去之后,第二堆棋子数就成了第一堆棋子数的2倍.设第一堆原有a 个棋子,第二堆原有______个棋子. 25.(0分)[ID :68080]多项式223324573x x y x y y --+-按x 的降幂排列是______。
【数学试题】最新人教版初中数学七年级上册第2章《整式的加减》单元同步检测试题.doc

人教版七年级数学第二章整式的加减单元练习(含答案)一、单选题1.单项式 的系数和次数分别是( ) A.2,2B.2,3C.3,2D.2,42.下列说法正确的是( ) A .ab +c 是二次三项式 B .多项式2x 2+3y 2的次数是4 C .0是单项式 D .34ba是整式 3.下列各式中,代数式有( )个 (1)a+b=b+a;(2)1;(3)2x-1 ;(4)23x x+;(5) s = πr 2;(6) -6kA .2B .3C .4D .54.a 的5倍与b 的和的平方用代数式表示为( )A .(5a +b )2B .5a +b 2C .5a 2+b 2D .5(a +b )25.下列各式中,不是整式的是( ). A .3aB .2x = 1C .0D .xy6.23-x yz 的系数和次数分别是( ) A .系数是0,次数是5 B .系数是1,次数是6 C .系数是-1,次数是5D .系数是-1,次数是67.考试院决定将单价为a 元的统考试卷降价20%出售,降价后的销售价为( ) A .20%aB .20%a -C .(120%)a -D .(120%)a +8.有理数a ,b 在数轴上对应点的位置如图所示,则a a b b a -+--化简后的结果是( )A .aB .bC .2a +bD .2b −a9.……依次观察左边三个图形,并判断照此规律从左到右第2019个图形是 ( )A .B .C .D .10.把四张形状大小完全相同的小长方形卡片(如图①)不重叠的放在一个底面为长方形(长为a 厘米,宽为b 厘米)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是( )A .4a 厘米B .4b 厘米C .2(a+b )厘米D .4(a-b )厘米11.使方程3x + 5y - 2 + 3kx + 4k = 0不含 x 的项,则 k 的值为( ) A .k =-1B .k =-2C .k=3D .k = 112.如图,每个图形都是由同样大小的正方形按照一定的规律组成,其中第①个图形面积为2,第②个图形的面积为6,第③个图形的面积为12,…,那么第⑥个图形面积为( )A.20B.30C.42D.56二、填空题13.计算()()3242x y x y --+-的结果是__________. 14.多项式2239x xy π++中,次数最高的项的系数是_______. 15.请将 4 y 2-25xy 3- 5 y 按字母 y 的降幂排列____________ 16.已知212a a -+=,那么21a a -+的值是______________.三、解答题17.把下列代数式的代号填入相应的集合括号里.(A )22a b ab + (B )2315x x -+ (C )2a b + (D )23xy -人教版数学七年级(上)第二章单元质量检测试卷、答案一、选择题(共10小题;共30分)1. 多项式的项数和次数分别为A. ,B. ,C. ,D. ,2. 下列计算正确的是A. B.C. D.3. 的结果是A. B. C. D.4. 若单项式的次数是,则的值是A. B. C. D.5. 今年学校运动会参加的人数是人,比去年增加,那么去年运动会参加的人数为人.A. B. C. D.6. 下列说法正确的是A. 与不是同类项B. 不是整式C. 单项式的系数是D. 是二次三项式7. 设某数为,那么代数式表示A. 某数的倍的平方减去除以B. 某数的倍减的一半C. 某数与的差的倍除以D. 某数平方的倍与的差的一半8. 用字母表示 与 的和除 与 的差为 A.B.C.D.9. 观察下列数表: 第一行 第二行 第三行 第四行根据数表所反映的规律,第 行第 列交叉点上的数应为 A.B.C.D.10. 下面每个表格中的四个数都是按相同规律填写的:根据此规律确定人教版初中数学七年级上册第2章《整式加减》单元测试卷(含答案)一、选择题(每小题3分,共24分)1.单项式32yx -的系数是( )A.0B.-1C.31 D.31- 2.小明说2a 2b 与5-2ab 是同类项;小颖说2a 2b 与ab 2c 是同类项;小华说2a 2b 与-ba 2是同类项,他们三人说法正确的是( )A 小明 B.小颖 C.小华 D.三人都正确 3.多项式-x 2-3x-2的各项分别是( )A.-x 2,3x ,2B.-x 2,-3x ,-2C.x 2,3x ,2D.x 2,-3x ,-24.若单项式5x a-2y 3与-32x 4y b的和仍是单项式,则a ,b 的值分别为( )A.4,3B.4,-3C.6,3D.6,-35.下面四道去括号的题目是从小马虎的作业本上摘录下来的,其中正确的是( ) A.2(x-y )=2x-y B.-(m-n )=-m+n C.2(a+61)=2a+121D.-(3x 2+2y )=-3x 2+2y 6.化简(x-3y )-(-3x-2y )的结果是( ) A.4x-5y B.4x-y C.-2x-5y D.-2x-y 7.化简x-[y-2x-(x-y )]等于( ) A.-2x B.2x C.4x-2y D.2x-2y8.如果m-n=51,那么-3(n-m )的结果是( ) A.53 B.35 C.53 D.151二、填空题(每小题3分,共24分)9.代数式2x 2y-3x+xy-1-x 3y 2是_______次________项式,次数最高的项是_______. 10.单项式-3m 与3m 的和是________,差是________.11.今年来,国家加大房价调控力度.受此影响,某地房价第二、第三季度不断下跌,第二季度下降a 元/m 2,第三季度又下降了第二季度所降房价的2倍,则该地两季度房价共下降________元/m 2.12.把(a-b )当作一个整体,多项式5(a-b )+7(a-b )-3(a-b )合并同类项的结果是________.13.若x-y=3,则5-x+y=________. 14.如果单项式-21x 2y 3与0.35x m y n 是同类项,则(m-n )2019=_______. 15.一个多项式与3x 2-2+x 的和是x 2-2x ,则这个多项式是_______.16.长方形的一边长为a-3b ,一邻边比这边长2a+b ,则这个长方形的周长为________. 三、解答题(共52分) 17.(8分)已知多项式-73x m+1y 3+x 3y 2+xy 2-5x 5-9是六次五项式,单项式32a 2nb 3-mc 的次数与多项式的次数相同,求n 的值.18.(12分)先化简,再求值:(1)2+(-6x+1)-2(3-4x ),其中x=-21; (2)(2a 3-3a 2b-2ab 2)-(a 3-2ab 2+b 3-a )+(3a 2b-a 3-b 3-b ),其中a=2019,b=-2.19.(10分)贝贝和晶晶两人共同化简:2(m 2n+mn )-3(m 2n-mn )-4m 2n ,他们的化简过程分别如下:贝贝:2(m 2n+mn )-3(m 2n-mn )-4m 2n=2m 2n+2mn-3m 2n-3mn-4m 2n=-5m 2n-mn. 晶晶:2(m 2n+mn )-3(m 2n-mn )-4m 2n=2m 2n+mn-3m 2n-mn-4m 2n=-5m 2n. 如果你和他们是同一个学习小组,你会支持谁?为什么?若你认为他们的计算都不正确,请把你认为正确的化简写下来.20.(10分)有一道题:“先化简,再求值:15a 2-(6a 2+5a )-(4a 2+a-3)+(-5a 2+6a+2019)-3,其中a=2020.”乐乐做题时,把“a=2020”错写成“a=-2020”.但他的计算结果却是正确的,你知道这是为什么吗?21.(12分)某单位要印刷“市民文明出行,遵守交通安全”的宣传材料,甲印刷厂提出:每份材料收1元印刷费,另收150元的制版费;乙印刷厂提出:每份材料收2.5元印刷费,不收制版费设在同一家印刷厂一次印制数量为x 份(x 为正整数)创新提高(满分50分,时间30分钟) 一、选择题(每小题4分,共12分)1.若m 2+mn=2,nm+n 2=-1,则m 2+2mn+n 2的值为( ) A.0 B.-1 C.1 D.无法确定2.若A=2x 2+xy+3y 2,B=x 2-xy+2y 2,则当x=2,y=1时,A-B 的值为( ) A.0 B.1 C.6 D.93.若(ax 2-2xy+y 2)-(-ax 2+bxy+2y 2)=6x 2-9xy+cy 2成立,则a 、b 、c 的值分别是( ) A.a=3,b=-7,c=-1 B.a=-3,b=7,c=-1 C.a=3,b=7,c=-1 D.a=-3,b=-7,c=1 二、填空题(每小题5分,共15分)4.若多项式3x 3-2x 2+3x-1与多项式x 2-2mx 3+2x+3的和是关于x 的二次三项式,则m=________.5.请你写出一个以32为系数,包含z y x 、、的五次单项式_________. 6.若多项式2x 2+3x+1的值为0,则多项式4x 2+6x+2021的值为_________. 三、解答题(共23分)7.(11分)由于看错了运算符号,“小马虎”把一个整式减去多项式2ab-3bc+4,误认为加上这个多项式,结果得出答案是2bc-1-2ab ,问原题的正确答案是多少?8.(12分)已知m 是绝对值最小的有理数,且-2a m+2b y 与3a x b 2是同类项,试求2x 3-3xy+6y 2-3mx 3+mxy-9my 2的值.参考答案 基础训练一、1.D 2.C 3.B 4.C 5.B 6.B 7.C 8.C 二、9.五,五,-x 3y 2 10.0,-6m 11.3a 12.9(a-b ) 13.2 14.-1 15.-2x 2-3x+2 16.8a-10b 三、17.解:由多项式是六次五项式可知m+1+3=6,所以m=2.又单项式与单项式的次数相同,所以2n+3-m+1=6,即2n+3-2+1=6,所以n=2. 18.解:(1)原式=2-6x+1-6+8x=2x-3.当x=-21时,原式=2×(-21)-3=-4. (2)原式=2a 3-3a 2b-2ab 2-a 3+2ab 2+b 3+a+3a 2b-a 3-b 3-b=a-b. 当a=2019,b=-2时,原式=2019-(-2)=2021. 19.贝贝、晶晶的计算都不正确.正确答案如下:2(m 2n+mn )-3(m 2n-mn )-4m 2n=2m 2n+2mn-3m 2n+3mn-4m 2n=-5m 2n+5mn. 20.解:原式=15a 2-6a 2-5a-4a 2-a+3)-5a 2+6a+2019-3=2019.由于计算后的结果中不含字母a ,可知此代数式的值与字母a 的取值无关.所以乐乐将a=2020错写成a=-2020,计算的结果不变. 21. 解:(1)甲每份材料收1元印刷费,另收150元的制版费; 故答案为160,170,150+x ;乙每份材料收2.5元印刷费,故答案为25,50,2.5x;(2)对甲来说,印刷大于800份时人教版七年级上册数学单元练习题:第二章整式的加减一、选择题1.单项式的系数是()A. B. π C. 2 D.2.下列各组式子中,是同类项的是()A. 3x2y与-3xy2B. 3xy与-2yxC. 2x与2x2D. 5xy与5yz3.在式子a2+2,,ab2,,﹣8x,0中,整式有()A. 6个B. 5个C. 4个D. 3个4.下列各式计算结果正确的是()A. a+a=a2B. (a﹣1)2=a2﹣1C. a•a=a2D. (3a)3=9a25.多项式﹣x2+2x+3中的二次项系数是()A. ﹣1B. 1C. 2D. 36.下列说法错误的是()A. 2x2﹣3xy﹣1是二次三项式B. ﹣x+1不是单项式C. 的系数是D. ﹣22xab2的次数是67.计算2a3+3a3结果正确的是()A. 5a6B. 5a3C. 6a6D. 6a38.一个多项式加上3x2y-3xy2得x3-3x2y,则这个多项式是()A. x3+3xy2B. x3-3xy2C. x3-6x2y+3xy2D. x3-6x2y-3x2y9.6张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2方式不重叠地放在矩形ABCD 内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足()A. a=2bB. a=3bC. a=4bD. a=b10.已知a﹣b=﹣3,c+d=2,则(b+c)﹣(a﹣d)的值为()A. ﹣1B. ﹣5C. 5D. 111.如图是用大小相等的小正方形拼成的一组图案,观察并探索:第100个图案中有小正方形的个数是()A. 393B. 397C. 401D. 405二、填空题12.单项式﹣x3y的系数是________.13.多项式是a -2a -1 是________次________项式.14.下面是按一定规律排列的一列数:,- ,,- …那么第8个数是________.15.观察下列数:,,,,…按规律写出第6个数是________,第10个数是________,第n个数是________.16.观察下列各式:x+1,x2+4,x3+9,x4+16,x5+25,…按此规律写出第n个式子是________17.下列图形:它们是按一定规律排列的,依照此规律,第n个图形共有________个★.三、解答题18.化简:(1)2x-5y-3x+y(2)19.先化简,再求值.,其中.20.两位数相乘:19×11=209,18×12=216,25×25=625,34×36=1224,47×43=2021,…(1)认真观察,分析上述各式中两因数的个位数、十位数分别有什么联系,找出因数与积之间的规律,并用字母表示出来.(2)验证你得到的规律.21.观察下列算式:①1×3﹣22=﹣1②2×4﹣32=﹣1③3×5﹣42=﹣1(1)请你安照以上规律写出第四个算式:________;(2)这个规律用含n(n为正整数,n≥1)的等式表达为:________;(3)你认为(2)中所写的等式一定成立吗?说明理由.参考答案一、选择题1.D2. B3.B4.C5. A6. D7. B8. C9.A 10.C 11. B二、填空题12. 13.三;三14. 15.;;16.x n+n217.(1+3n)三、解答题18.(1)解:2x-5y-3x+y=(2-3)x+(-5+1)y=-x-4y(2)解:=2a+4b-3a+9b=(2-3)a+(4+9)b=-a+13b19.解:原式=3x²-2xy- [x²-8x+8xy],=3x²-2xy- x²+4x-4xy,= x²-6xy+4x,当时,原式= ×(-2)2-6×(-2)×1+4×(-2),=10+12-8,=14.20.(1)解:上述等式的规律是:两因数的十位数相等,个位数相加等于10,而积后两位是两因数个位数相乘、前两位是十位数乘以(十位数+1);如果用m表示十位数,n表示个位数的话,则第一个因数为10m+n,第二个因数为10m+(10﹣n),积为100m(m+1)+n(10﹣n);等式表示出来为:(10m+n)[10m+(10﹣n)]=100m(m+1)+n(10﹣n)(2)解:∵左边=(10m+n)(10m﹣n+10),=(10m+n)[10(m+1)﹣n],=100m(m+1)﹣10mn+10n(m+1)﹣n2,=100m(m+1)﹣10mn+10mn+10n﹣n2,=100m(m+1)+n(10﹣n)=右边,∴(10m+n)[10m+(10﹣n)]=100m(m+1)+n(10﹣n)成立21.(1)④4×6﹣52=﹣1(2)(2n﹣1)(2n+1)﹣(2n)2=﹣1(3)解:左边=(2n﹣1)(2n+1)﹣(2n)2=4n2﹣1﹣4n2=﹣1所以(2)中所写的等式一定成立人教版数学七年级上册第2章整式的加减单元检测卷(含答案解析)一.填空题(共6小题,满分24分,每小题4分)1.(4分)将多项式x2y﹣2x3+7﹣5xy按字母x降幂排列为.2.(4分)“x2的3倍与y的倒数的和”,用代数式表示为.3.(4分)如图是一个数值转换机的示意图.当输入x=3时,则输出的结果为.4.(4分)如果x2﹣3xy=6,3xy+y2=10,则x2+y2=.5.(4分)当a=3.6,b=6.4时,求多项式a2+ab﹣b2+a﹣a2﹣ab+b+b2=.6.(4分)当3x+3﹣x=2时,代数式32x+3﹣2x的值是.二.选择题(共10小题,满分30分,每小题3分)7.(3分)下列各式:﹣mn,m,8,,x2+2x+6,,,y3﹣5y+中,整式有()A.3个B.4个C.6个D.7个8.(3分)下列说法错误的是()A.x是单项式B.3x4是四次单项式C.的系数是D.x3﹣xy2+2y3是三次多项式9.(3分)三个连续整数的积是0,则这三个整数的和是()A.﹣3B.0C.3D.﹣3或0或3 10.(3分)下列各式合并同类项后,结果正确的是()A.3a+2b=5ab B.3x3y2﹣2x2y=xyC.3x2+2x3=5x5D.4x2y﹣7yx2=﹣3x2y11.(3分)下列说法中,错误的是()A.x2是二次单项式B.x3﹣2xy2+y3是三次三项式C.0是单项式D.﹣的系数是﹣112.(3分)若﹣3x2m y3与2x4y n的和是一个单项式,则|m﹣n|的值是()A.0B.1C.7D.﹣113.(3分)若A=3m2﹣5m+2,B=3m2﹣5m﹣2,则A与B的大小关系是()A.A=B B.A>B C.A<B D.无法确定14.(3分)将2(x+y)+3(x+y)﹣4(x+y)合并同类项,得()A.x+y B.﹣x+y C.﹣x﹣y D.x﹣y15.(3分)原产n吨,增产30%之后的产量应为()A.n70% 吨B.n130% 吨C.n+30% 吨D.n30% 吨16.(3分)一家三口准备外出旅游,甲乙两家的旅行社的报价相同,为了竞争,甲旅行社说:“父亲买全票,其它人可享受6折优惠”.乙旅行社说:“家庭旅行可按团体票计价,按原价的优惠”,由此可以判断()A.甲比乙优惠B.乙比甲优惠C.甲乙收费相同D.以上都有可能三.解答题(共9小题,满分66分)17.(12分)合并同类项:(1)15x+4x﹣10x(2)﹣p2﹣p2﹣p2(3)3x2y﹣3xy2+2yx2﹣y2x(4)18.(6分)先化简,再求值:(1)2x2﹣5x+x2+4x,其中x=﹣3.(2),其中x=6,y=﹣1.19.(6分)已知3x|2a﹣1|y与﹣2xy|b|是同类项,并且a与b互为负倒数,求ab﹣3(﹣b)﹣+6的值.20.(6分)李可同学欲将一个多项式加上2xy﹣3yz+4时,由于错把“加上”当作“减去”使得计算结果为﹣6xy+8yz﹣9,请你求出正确的答案.21.(6分)设a、b、c为非零有理数,|a|+a=0,|ab|=ab,|c|﹣c=0.化简:|b|﹣|a+b|﹣|c ﹣b|+|a﹣c|.22.(6分)已知a=﹣1,b=﹣2,求代数式{a2b﹣[3a2b﹣(4ab2+a2b)]}+3a2b的值.23.(7分)已知,如图,某长方形广场的四角都有一块边长为x米的正方形草地,若长方形的长为a米,宽为b米.(1)请用代数式表示阴影部分的面积;(2)若长方形广场的长为200米,宽为150米,正方形的边长为10米,求阴影部分的面积.24.(8分)已知A=x2﹣2xy,B=y2+3xy.(1)求2A﹣3B?(2)若A﹣B+C=0,试求C?(3)若x=﹣2,y=﹣3时,求2A﹣B+C的值?25.(9分)某影剧院观众席近似于扇面形状,第一排有m个座位,后边的每一排比前一排多两个座位.(1)写出第n排的座位数;(2)当m=20时,①求第25排的座位数;②如果这个剧院共25排,那么最多可以容纳多少观众?人教版数学七年级(上册)第2章整式的加减单元检测卷参考答案一.填空题(共6小题,满分24分,每小题4分)1.(4分)将多项式x2y﹣2x3+7﹣5xy按字母x降幂排列为﹣2x3+x2y﹣5xy+7.【分析】根据多项式的项的概念和降幂排列的概念解答即可.【解答】解:多项式x2y﹣2x3+7﹣5xy按字母x降幂排列为﹣2x3+x2y﹣5xy+7,故答案为:﹣2x3+x2y﹣5xy+7.2.(4分)“x2的3倍与y的倒数的和”,用代数式表示为3x2+.【分析】首先表示出x2的3倍、y的倒数,然后求其和即可.【解答】解:依题意得3x2+.故答案是:3x2+.3.(4分)如图是一个数值转换机的示意图.当输入x=3时,则输出的结果为26.【分析】把x的值代入运算程序进行计算即可得解.【解答】解:x=3时,32×3﹣2=27﹣1=26.故答案为:26.4.(4分)如果x2﹣3xy=6,3xy+y2=10,则x2+y2=16.【分析】已知等式相加即可求出原式的值.【解答】解:∵x2﹣3xy=6,3xy+y2=10,∴x2+y2=x2﹣3xy+3xy+y2=10+6=16,故答案为:165.(4分)当a=3.6,b=6.4时,求多项式a2+ab﹣b2+a﹣a2﹣ab+b+b2=10.【分析】所求式子合并同类项得到最简结果,将a与b的值代入计算即可求出值.【解答】解:a2+ab﹣b2+a﹣a2﹣ab+b+b2=a+b,当a=3.6,b=6.4时,原式=3.6+6.4=10.故答案为:106.(4分)当3x+3﹣x=2时,代数式32x+3﹣2x的值是2.【分析】把3x+3﹣x=2两边平方即可求解.【解答】解:把3x+3﹣x=2两边平方得:32x+3﹣2x+2•3x+3﹣x=4,即32x+3﹣2x=2.故答案是2.二.选择题(共10小题,满分30分,每小题3分)7.(3分)下列各式:﹣mn,m,8,,x2+2x+6,,,y3﹣5y+中,整式有()A.3个B.4个C.6个D.7个【分析】根据整式的定义,结合题意即可得出答案.【解答】解:在﹣mn,m,8,,x2+2x+6,,,y3﹣5y+中,整式有﹣mn,m,8,x2+2x+6,,,一共6个.故选:C.8.(3分)下列说法错误的是()A.x是单项式B.3x4是四次单项式C.的系数是D.x3﹣xy2+2y3是三次多项式【分析】根据多项式的有关概念,以及单项式的系数的定义即可作出判断.【解答】解:A、x是单项式,正确;B、3x4是四次单项式,正确;C、的系数是,错误;D、x3﹣xy2+2y3是三次多项式,正确;故选:C.9.(3分)三个连续整数的积是0,则这三个整数的和是()A.﹣3B.0C.3D.﹣3或0或3【分析】设最小的整数为n﹣1,根据连续的整数只是相差1,知另外的两个整数分别是n,n+1.由等量关系这三个连续整数的积是0,列出方程.然后根据三个因式的积是0,则每一个因式都可能是0,分情况讨论.【解答】解:设最小的整数为n﹣1,根据题意得(n﹣1)•n•(n+1)=0,解得n﹣1=0或n=0或n+1=0,当n﹣1=0时,n=1,这三个数分别是0,1,2,这三个数的和是3;当n=0时,这三个数分别是﹣1,0,1,这三个数的和是0;当n+1=0时,n=﹣1,这三个数是﹣2,﹣1,0,这三个数的和是﹣3.故选:D.10.(3分)下列各式合并同类项后,结果正确的是()A.3a+2b=5ab B.3x3y2﹣2x2y=xyC.3x2+2x3=5x5D.4x2y﹣7yx2=﹣3x2y【分析】直接利用合并同类项法则计算得出答案.【解答】解:A、3a+2b,无法合并,故此选项错误;B、3x3y2﹣2x2y,无法合并,故此选项错误;C、3x2+2x3,无法合并,故此选项错误;D、4x2y﹣7yx2=﹣3x2y,正确.故选:D.11.(3分)下列说法中,错误的是()A.x2是二次单项式B.x3﹣2xy2+y3是三次三项式C.0是单项式D.﹣的系数是﹣1【分析】根据单项式、多项式的定义即可判断;【解答】解:A、x2是二次单项式;正确,本选项不符合题意.B、x3﹣2xy2+y3是三次三项式;正确,本选项不符合题意.C、0是单项式;正确,本选项不符合题意.D、﹣的系数是﹣1;错误,系数应该是﹣,本选项符合题意.故选:D.12.(3分)若﹣3x2m y3与2x4y n的和是一个单项式,则|m﹣n|的值是()A.0B.1C.7D.﹣1【分析】根据单项式的和是单项式,可得同类项,根据同类项,可得m、n的值,根据差的绝对值是大数减小数,可得答案.【解答】解:由题意,得2m=4,n=3.解得m=2,n=3.|m﹣n|=|2﹣3|=1,故选:B.13.(3分)若A=3m2﹣5m+2,B=3m2﹣5m﹣2,则A与B的大小关系是()A.A=B B.A>B C.A<B D.无法确定【分析】利用作差法即可判断两个多项式的大小关系.【解答】解:A﹣B=(3m2﹣5m+2)﹣(3m2﹣5m﹣2)=3m2﹣5m+2﹣3m2+5m+2=4>0,∴A﹣B>0,∴A>B,故选:B.14.(3分)将2(x+y)+3(x+y)﹣4(x+y)合并同类项,得()A.x+y B.﹣x+y C.﹣x﹣y D.x﹣y【分析】先根据同类项的概念进行判断是否是同类项,然后根据合并同类项的法则,即系数相加作为系数,字母和字母的指数不变计算进行判断.【解答】解:原式=(2+3﹣4)(x+y)=x+y,故选:A.15.(3分)原产n吨,增产30%之后的产量应为()A.n70% 吨B.n130% 吨C.n+30% 吨D.n30% 吨【分析】原产量n吨,增产30%之后的产量为n×(1+30%),再进行化简即可.【解答】解:由题意得,增产30%之后的产量为n×(1+30%)=n130%吨.故选:B.16.(3分)一家三口准备外出旅游,甲乙两家的旅行社的报价相同,为了竞争,甲旅行社说:“父亲买全票,其它人可享受6折优惠”.乙旅行社说:“家庭旅行可按团体票计价,按原价的优惠”,由此可以判断()A.甲比乙优惠B.乙比甲优惠C.甲乙收费相同D.以上都有可能【分析】可以设每人的原票价为a元,然后按照旅行社的要求代入数据进行计算即可.【解答】解:设每人的原票价为a元,如果选择甲,则所需要费用为a+0.6a×2=2.2a(元),如果选择乙,则所需费用为:×3×a=2.4a(元),∵2.2a<2.4a,∴甲比乙优惠,故选:A.三.解答题(共9小题,满分66分)17.(12分)合并同类项:(1)15x+4x﹣10x(2)﹣p2﹣p2﹣p2(3)3x2y﹣3xy2+2yx2﹣y2x(4)【分析】合并同类项就是系数和系数相加作为系数,字母和字母的指数不变.【解答】解:(1)15x+4x﹣10x=(15+4﹣10)x=9x(2)﹣p2﹣p2﹣p2=﹣3p2(3)3x2y﹣3xy2+2yx2﹣y2x=5x2y﹣4xy2(4)=a2b=a2b.18.(6分)先化简,再求值:(1)2x2﹣5x+x2+4x,其中x=﹣3.(2),其中x=6,y=﹣1.【分析】按要求先化简再求值.注意去括号法则:++得+,﹣﹣得+,﹣+得﹣,+﹣得﹣;合并同类项法则:把同类项的系数相加减,字母和字母指数的部分不变.【解答】解:(1)原式=3x2﹣x,当x=﹣3时,原式=30;(2)原式==﹣,当x=6,y=﹣1时,原式=﹣2.19.(6分)已知3x|2a﹣1|y与﹣2xy|b|是同类项,并且a与b互为负倒数,求ab﹣3(﹣b)﹣+6的值.【分析】此题要抓住同类项的定义“所含字母相同,相同字母的指数相同”去列方程:|2a ﹣1|=1,|b|=1,解方程即可求得a,b的值;同时注意a与b互为负倒数这一条件;再将代数式ab﹣3(﹣b)﹣+6化简,将a,b的值代入即可.【解答】解:由题意可知|2a﹣1|=1,|b|=1,解得a=1或0,b=1或﹣1.又因为a与b互为负倒数,所以a=1,b=﹣1.原式=ab﹣a+3b﹣a+6=ab﹣2a+3b+6,当a=1,b=﹣1时,原式=1×(﹣1)﹣2×1+3×(﹣1)+6=0.20.(6分)李可同学欲将一个多项式加上2xy﹣3yz+4时,由于错把“加上”当作“减去”使得计算结果为﹣6xy+8yz﹣9,请你求出正确的答案.【分析】用这个多项式加上﹣6xy+8yz﹣9,求出这个多项式的式子,然后用这个多项式再减去﹣6xy+8yz﹣9,求出结果即可.【解答】解:﹣6xy+8yz﹣9+2(2xy﹣3yz+4)=﹣6xy+8yz﹣9+4xy﹣6yz+8=﹣2xy+2yz﹣1.21.(6分)设a、b、c为非零有理数,|a|+a=0,|ab|=ab,|c|﹣c=0.化简:|b|﹣|a+b|﹣|c ﹣b|+|a﹣c|.【分析】根据|a|+a=0,|ab|=ab,|c|﹣c=0知a<0,b<0,c>0,继而知a+b<0,c﹣b >0,a﹣c<0,根据绝对值性质去绝对值符号后合并即可得.【解答】解:∵|a|+a=0,|c|﹣c=0,即|a|=﹣a,|c|=c,∴a<0,c>0,∵|ab|=ab,∴ab>0,∴b<0,则原式=﹣b+a+b﹣c+b﹣a+c=b.22.(6分)已知a=﹣1,b=﹣2,求代数式{a2b﹣[3a2b﹣(4ab2+a2b)]}+3a2b的值.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=a2b﹣3a2b+4ab2+a2b+3a2b=a2b+4ab2,当a=﹣1,b=﹣2时,原式=﹣3﹣16=﹣19.23.(7分)已知,如图,某长方形广场的四角都有一块边长为x米的正方形草地,若长方形的长为a米,宽为b米.(1)请用代数式表示阴影部分的面积;(2)若长方形广场的长为200米,宽为150米,正方形的边长为10米,求阴影部分的面积.【分析】根据题意可知,阴影部分面积是长方形面积减去四个正方形的面积.【解答】解:(1)由图可知:ab﹣4x2.(2)阴影部分的面积为:200×150﹣4×102=29 600(m2).24.(8分)已知A=x2﹣2xy,B=y2+3xy.(1)求2A﹣3B?(2)若A﹣B+C=0,试求C?(3)若x=﹣2,y=﹣3时,求2A﹣B+C的值?【分析】(1)直接把A=x2﹣2xy,B=y2+3xy代入进行计算即可;(2)根据题意得出C的表达式,再去括号,合并同类项即可;(3)把A、B、C的表达式代入,合并同类项后,把x=﹣2,y=﹣3代入进行计算即可.【解答】解:(1)∵A=x2﹣2xy,B=y2+3xy,∴2A﹣3B=2(x2﹣2xy)﹣3(y2+3xy)=2x2﹣4xy﹣3y2﹣9xy=2x2﹣13xy﹣3y2;(2)∵A﹣B+C=0,∴C=B﹣A=(y2+3xy)﹣(x2﹣2xy)=y2+3xy﹣x2+2xy=y2+5xy﹣x2;(3)∵A=x2﹣2xy,B=y2+3xy,C=y2+5xy﹣x2,∴2A﹣B+C=2(x2﹣2xy)﹣(y2+3xy)+(y2+5xy﹣x2)=2x2﹣4xy﹣y2﹣3xy+y2+5xy﹣x2=x2﹣2xy,当x=﹣2,y=﹣3,原式=4﹣2×6=﹣8.25.(9分)某影剧院观众席近似于扇面形状,第一排有m个座位,后边的每一排比前一排多两个座位.(1)写出第n排的座位数;(2)当m=20时,①求第25排的座位数;②如果这个剧院共25排,那么最多可以容纳多少观众?【分析】(1)根据后一排比前一排多2个座位,第n 排比第一排多2(n ﹣1)个座位;(2)①把n =25,m =20代入进行计算即可得解;②利用求和公式列式计算即可得解.【解答】(1)m +2(n ﹣1).(2)①当m =20,n =25时,m +2(n ﹣1)=20+2×(25﹣1)=68(个);②m +m +2+m +2×2+…+m +2×(25﹣1)=25m +600.当m =20时,25m +600=25×20+600=1 100(人).解:(1)第一排有m 个座位,后边的每一排比前一排多两个座位,第n 排有m +2(n ﹣1)=2n +m ﹣2(个);(2)当m =20时,25排:2×25+20﹣2=68(个);(3)25排最多可以容纳:(20+68)×25÷2=88×25÷2=1100(位)答:如果这个剧院共25排,那么最多可以容纳1100位观众.人教版数学七年级上册第二章整式的加减单元测试题一、填空题(每题3分,共36分)1、单项式23x -减去单项式y x x y x 2222,5,4--的和,列算式为 , 化简后的结果是 。
2019年人教版七年级上册数学《第2章整式的加减》单元测试卷(解析版)

2019年人教版七年级上册数学《第2章整式的加减》单元测试卷一.选择题(共10小题)1.下列各式符合代数式书写规范的是()A.a8B.C.m﹣1元D.1x2.七年级1班有女生m人,女生占全班人数的40%,则全班人数是()A.B.40%m C.D.(1﹣40%)m3.当x=2时,ax+3的值是5;当x=﹣2时,代数式ax﹣3的值是()A.﹣5B.1C.﹣1D.24.若﹣3x m y2与2x3y2是同类项,则m等于()A.1B.2C.3D.45.如果单项式x a+b y3与5x2y b的和仍是单项式,则|a﹣b|的值为()A.4B.3C.2D.16.下列说法正确的是()A.单项式是整式,整式也是单项式B.25与x5是同类项C.单项式的系数是,次数是4D.是一次二项式7.下列关于单项式的说法中,正确的是()A.系数是2,次数是2B.系数是﹣2,次数是3C.系数是,次数是2D.系数是,次数是38.下列各式中,是二次三项式的是()A.B.32+3+1C.32+a+ab D.x2+y2+x﹣y9.一个多项式A与多项式B=2x2﹣3xy﹣y2的差是多项式C=x2+xy+y2,则A等于()A.x2﹣4xy﹣2y2B.﹣x2+4xy+2y2C.3x2﹣2xy﹣2y2*D.3x2﹣2xy10.x2+ax﹣2y+7﹣(bx2﹣2x+9y﹣1)的值与x的取值无关,则﹣a+b的值为()A.3B.1C.﹣2D.2二.填空题(共5小题)11.对单项式“0.8a”可以解释为:一件商品原价为a元,若按原价的8折出售,这件商品现在的售价是0.8a元,请你对“0.8a”再赋予一个含义:.12.一艘轮船在静水中的速度是50千米/时,水流速度是a千米/时,则该轮船在逆水中航行3小时的路程为千米.13.若a与b互为相反数,c与d互为倒数,则(a+b)3﹣4(cd)5=.14.和统称为整式.15.单项式﹣的次数是.三.解答题(共4小题)16.请将下列代数式进行分类(至少三种以上),a,3x,,,,a2+x,4x2ay,x+8.17.方方和圆圆的房间窗帘的装饰物如图所示,它们分别由两个四分之一圆和四个半圆组成(半径都分别相同),它们的窗户能射进阳光的面积分别是多少(窗框面积不计)谁的窗户射进阳光的面积大?18.已知a,b为常数,且三个单项式4xy2,axy b,﹣5xy相加得到的和仍然是单项式.那么a和b 的值可能是多少?说明你的理由.19.已知多项式(m﹣3)x|m|﹣2y3+x2y﹣2xy2是关于的xy四次三项式.(1)求m的值;(2)当x=,y=﹣1时,求此多项式的值.2019年人教版七年级上册数学《第2章整式的加减》单元测试卷参考答案与试题解析一.选择题(共10小题)1.下列各式符合代数式书写规范的是()A.a8B.C.m﹣1元D.1x【分析】本题根据书写规则,数字应在字母前面,分数不能为假分数,不能出现除号,对各项的代数式进行判定,即可求出答案.【解答】解:A、数字应写在前面正确书写形式为8a,故本选项错误;B、书写形式正确,故本选项正确;C、正确书写形式为(m﹣1)元,故本选项错误;D、正确书写形式为x,故本选项错误,故选:B.【点评】本题考查了代数式:用运算符号(指加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子叫做代数式.数的一切运算规律也适用于代数式.单独的一个数或者一个字母也是代数式,注意代数式的书写格式是解答此题的关键.2.七年级1班有女生m人,女生占全班人数的40%,则全班人数是()A.B.40%m C.D.(1﹣40%)m【分析】根据全班人数=女生人数÷女生所占百分比即可列式求解.【解答】解:∵七年级1班有女生m人,女生占全班人数的40%,∴全班人数是.故选:A.【点评】本题考查了列代数式,列代数式时,要注意语句中的关键字,根据题意找出数据之间的联系,并准确的用代数式表示出来.3.当x=2时,ax+3的值是5;当x=﹣2时,代数式ax﹣3的值是()A.﹣5B.1C.﹣1D.2【分析】由当x=2时,代数式ax+3的值为5就可得到一个关于a的方程,求出a的值,再把a 的值及x=﹣2代入代数式就可求出代数式的值.【解答】解:根据题意得2a+3=5,解得:a=1,把a=1以及x=﹣2代入,得:ax﹣3=﹣2﹣3=﹣5.故选:A.【点评】此题的关键是据已知条件求出a的值,再根据已知条件求代数式的值.4.若﹣3x m y2与2x3y2是同类项,则m等于()A.1B.2C.3D.4【分析】根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,可得:m=3.注意同类项与字母的顺序无关,与系数无关.【解答】解:因为﹣3x m y2与2x3y2是同类项,所以m=3.故选:C.【点评】本题考查同类项的定义,同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,还有注意同类项定义中隐含的两个“无关”:①与字母的顺序无关;②与系数无关.5.如果单项式x a+b y3与5x2y b的和仍是单项式,则|a﹣b|的值为()A.4B.3C.2D.1【分析】由题意可知x a+b y3与5x2y b是同类项,然后分别求出a与b的值,最后代入求值即可.【解答】解:由题意可知:a+b=2,3=b,∴a=﹣1,b=3,∴原式=|﹣1﹣3|=4,故选:A.【点评】本题考查了合并同类项法则和同类项定义的应用,关键是能根据题意得出方程a+b=2,3=b.6.下列说法正确的是()A.单项式是整式,整式也是单项式B.25与x5是同类项C.单项式的系数是,次数是4D.是一次二项式【分析】根据整式、同类项、单项式和多项式的概念,紧扣概念逐一作出判断.【解答】解;A、整式包括单项式和多项式,所以单项式是整式,但整式不一定是单项式,故本选项错误;B、25与x5指数相同,但底数不同,故本选项错误;C、单项式的系数是,次数是4,正确;D、中的不是整式,故本选项错误.故选:C.【点评】主要考查了整式的有关概念.要正确掌握整式、同类项、单项式和多项式的概念.7.下列关于单项式的说法中,正确的是()A.系数是2,次数是2B.系数是﹣2,次数是3C.系数是,次数是2D.系数是,次数是3【分析】直接利用单项式次数与系数确定方法分析得出答案.【解答】解:单项式的系数是,次数是3.故选:D.【点评】此题主要考查了单项式,正确把握单项式的次数与系数确定方法是解题关键.8.下列各式中,是二次三项式的是()A.B.32+3+1C.32+a+ab D.x2+y2+x﹣y【分析】由于多项式次数是多项式中次数最高的项的次数,项数是多项式中所有单项式的个数,由此可确定所有答案的项数和次数,然后即可作出选择.【解答】解:A、a2+﹣3是分式,故选项错误;B、32+3+1是常数项,可以合并,故选项错误;C、32+a+ab是二次三项式,故选项正确;D、x2+y2+x﹣y是二次四项式,故选项错误.故选:C.【点评】此题主要考查了如何确定多项式的项数和次数,难点是通过计算确定多项式的次数.9.一个多项式A与多项式B=2x2﹣3xy﹣y2的差是多项式C=x2+xy+y2,则A等于()A.x2﹣4xy﹣2y2B.﹣x2+4xy+2y2C.3x2﹣2xy﹣2y2*D.3x2﹣2xy【分析】首先表示出A=B+C,然后去括号合并同类项.【解答】解:A=B+C=(2x2﹣3xy﹣y2)+(x2+xy+y2)=2x2﹣3xy﹣y2+x2+xy+y2=3x2﹣2xy.故选:D.【点评】整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.去括号法则:﹣﹣得+,﹣+得﹣,++得+,+﹣得﹣.合并同类项时把系数相加减,字母与字母的指数不变.10.x2+ax﹣2y+7﹣(bx2﹣2x+9y﹣1)的值与x的取值无关,则﹣a+b的值为()A.3B.1C.﹣2D.2【分析】原式去括号合并得到最简结果,根据结果与x的值无关,即可确定出a与b的值,进而求出﹣a+b的值.【解答】解:原式=x2+ax﹣2y+7﹣bx2+2x﹣9y+1=(1﹣b)x2+(a+2)x﹣11y+8,由结果与x的取值无关,得到1﹣b=0,a+2=0,解得:a=﹣2,b=1,则﹣a+b=2+1=3.故选:A.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.二.填空题(共5小题)11.对单项式“0.8a”可以解释为:一件商品原价为a元,若按原价的8折出售,这件商品现在的售价是0.8a元,请你对“0.8a”再赋予一个含义:练习本每本0.8元,小明买了a本,共付款0.8a元(答案不唯一).【分析】根据生活实际作答即可.【解答】解:答案不唯一,例如:练习本每本0.8元,小明买了a本,共付款0.8a元.【点评】本题考查了代数式的意义,此类问题应结合实际,根据代数式的特点解答.12.一艘轮船在静水中的速度是50千米/时,水流速度是a千米/时,则该轮船在逆水中航行3小时的路程为3(50﹣a)千米.【分析】根据题意先得轮船在逆水中航行的速度为“静水中的速度﹣水流速度”,再得3小时航行的路程.【解答】解:由题意得,该轮船在逆水中航行3小时的路程为3(50﹣a)千米.【点评】本题考查了代数式的列法,正确理解题意是解决这类题的关键.13.若a与b互为相反数,c与d互为倒数,则(a+b)3﹣4(cd)5=﹣4.【分析】根据a与b互为相反数,c与d互为倒数,可以得到:a+b=0,cd=1.代入求值即可求解.【解答】解:∵a与b互为相反数,c与d互为倒数,∴a+b=0,cd=1.∴(a+b)3﹣4(cd)5=0﹣4×1=﹣4.故答案是:﹣4.【点评】本题考查了相反数,倒数的定义,正确理解定义是关键.14.单项式和多项式统称为整式.【分析】根据整式的定义进行解答.【解答】解:整式包括单项式和多项式.故答案为:单项式和多项式.【点评】本题重点考查整式的定义:整式是有理式的一部分,在有理式中可以包含加,减,乘,除四种运算,但在整式中除数不能含有字母.单项式和多项式统称为整式.15.单项式﹣的次数是3.【分析】根据单项式的次数的定义直接求解.【解答】解:单项式﹣的次数为3.故答案为3.【点评】本题考查了单项式:由数与字母的积或字母与字母的积所组成的代数式叫做单项式(单独的一个数字或字母也是单项式).单项式中的数字因数叫做这个单项式的系数.所有字母的指数之和叫做这个单项式的次数.三.解答题(共4小题)16.请将下列代数式进行分类(至少三种以上),a,3x,,,,a2+x,4x2ay,x+8.【分析】根据代数式的分类解答:.【解答】解:本题答案不唯一.单项式:,a,3x,4x2ay;多项式:,a2+x,x+8;整式:,a,3x,4x2ay,,a2+x,x+8;分式:.【点评】本题考查了代数式的定义及其分类.由数和表示数的字母经有限次加、减、乘、除、乘方和开方等代数运算所得的式子,或含有字母的数学表达式称为代数式.注意,分式和无理式都不属于整式.17.方方和圆圆的房间窗帘的装饰物如图所示,它们分别由两个四分之一圆和四个半圆组成(半径都分别相同),它们的窗户能射进阳光的面积分别是多少(窗框面积不计)谁的窗户射进阳光的面积大?【分析】第一个窗户射进的阳光的面积=长方形面积﹣半径为的一个半圆的面积;第二个窗户射进的阳光的面积=长方形面积﹣半径为的2个圆的面积.【解答】解:第一个窗户射进的阳光的面积为ab﹣×π()2=ab﹣第二个窗户射进的阳光的面积为ab﹣2×π()2=ab﹣∵>∴第一个窗户射进的阳光的面积<第二个窗户射进的阳光的面积.【点评】解决问题的关键是读懂题意,找到所求的量的等量关系.要能根据图形得到窗户射进的阳光的面积的计算公式.18.已知a,b为常数,且三个单项式4xy2,axy b,﹣5xy相加得到的和仍然是单项式.那么a和b 的值可能是多少?说明你的理由.【分析】因为4xy2,axy b,﹣5xy相加得到的和仍然是单项式,它们y的指数不尽相同,所以这几个单项式中有两个为同类项.那么可分情况讨论:(1)若axy b与﹣5xy为同类项,则b=1,这两个式子相加后再加一个式子仍是单项式,说明这两个式子相加得0;(2)若4xy2与axy b为同类项,则b=2,这两个式子相加后再加一个式子仍是单项式,说明这两个式子相加得0.【解答】解:(1)若axy b与﹣5xy为同类项,∴b=1,∵和为单项式,∴;(2)若4xy2与axy b为同类项,∴b=2,∵axy b+4xy2=0,∴a=﹣4,∴.【点评】本题考查的知识点是:三个单项式相加得到的和仍然是单项式,它们y的指数不尽相同,这几个单项式中有两个为同类项,并且相加得0.19.已知多项式(m﹣3)x|m|﹣2y3+x2y﹣2xy2是关于的xy四次三项式.(1)求m的值;(2)当x=,y=﹣1时,求此多项式的值.【分析】(1)直接利用多项式的次数的确定方法得出m的值;(2)将x,y的值代入求出答案.【解答】解:(1)∵多项式(m﹣3)x|m|﹣2y3+x2y﹣2xy2是关于的xy四次三项式,∴|m|﹣2+3=4,m﹣3≠0,解得:m=﹣3,(2)当x=,y=﹣1时,此多项式的值为:﹣6××(﹣1)3+()2×(﹣1)﹣2××(﹣1)2=9﹣﹣3=.【点评】此题主要考查了多项式以及绝对值,正确得出m的值是解题关键.。