上海交通大学-大四-船体结构设计大作业
船舶结构设计任务书

《船舶结构设计》课程设计任务书时间:2011.11.21~2011.12.2(第13~14周)地点:张家港校区 B301班级:08455111/2/3/4课程编号:01Z10055b-0 学时:总计2W 学分:2.0学分指导教师:施利娟一、用途及航区本船为长江内河干货船,航区为A级航区。
二、船型本船为单甲板,双层底全焊接钢质内河干货船;货舱区域设顶边舱和底边舱,货舱区域为纵骨架式结构,首尾部区域为横骨架式结构。
(详细结构见99.8m母型船,设计船按母型船的结构进行设计)。
三、船体主尺度1、110m内河干货船,由1、2班学号为单数的学生进行结构规范设计。
1.主尺度及主要系数总长 Loa= 110m 垂线间长 L = 105m水线长 Lwl= 107.4m 型宽 B = 19.20m= 4.30m型深 D =6.60 m 设计吃水 dj= 0.881结构吃水 d = 5.80m 方形系数 Cb肋骨间距 s =0.60 m 纵骨间距 s'= 0.48m2.母型船(99.8m内河干货船)型线图、总布置图、基本结构图和典型剖面图。
2、105m内河干货船,由1、2班学号为双数数的学生进行结构规范设计。
1.主尺度及主要系数总长 Loa= 105m 垂线间长 L = 100m水线长 Lwl= 102.4m 型宽 B = 17.20m型深 D =6.60 m 设计吃水 d= 4.30mj结构吃水 d = 5.60m 方形系数 C= 0.846b肋骨间距 s =0.60 m 纵骨间距 s'= 0.45m2.母型船(99.8m内河干货船)型线图、总布置图、基本结构图和典型剖面图。
3、100m内河干货船,由3、4班学号为单数的学生进行结构规范设计。
1.主尺度及主要系数总长 Loa= 100m 垂线间长 L = 95m水线长 Lwl= 97.4m 型宽 B = 16.20m= 3.60m型深 D =6.40 m 设计吃水 dj结构吃水 d = 5.40m 方形系数 C= 0.821b肋骨间距 s =0.60 m 纵骨间距 s'= 0.42m2.母型船(99.8m内河干货船)型线图、总布置图、基本结构图和典型剖面图。
船体强度和结构设计

船体强度和结构设计
船体强度和结构设计是船舶设计中最重要的部分之一。
船体强度和结构设计的目的是确保船舶在航行中能够承受各种外部力量和内部压力,保证船舶的安全性和可靠性。
船体强度设计主要包括船体的强度计算和结构设计。
船体的强度计算是指通过计算船体的各个部位的受力情况,确定船体的强度要求。
船体的结构设计是指根据船体的强度要求,设计船体的结构形式和材料,以满足船体的强度要求。
船体强度设计的主要考虑因素包括船舶的航行条件、船舶的载重量、船舶的航速、船舶的航线、船舶的使用寿命等。
在设计船体强度时,需要考虑船舶在不同的航行条件下的受力情况,如波浪、风力、水流等。
同时,还需要考虑船舶的载重量和航速,以确定船体的强度要求。
此外,船舶的航线和使用寿命也是船体强度设计的重要考虑因素。
船体结构设计的主要考虑因素包括船体的结构形式、材料和连接方式。
船体的结构形式包括船体的外形和内部结构,如船体的船首、船尾、船体侧壁、船底等。
船体的材料包括船体的钢材、铝合金、复合材料等。
船体的连接方式包括焊接、螺栓连接等。
船体强度和结构设计的重要性不言而喻。
只有通过科学的设计和计算,才能确保船舶在航行中的安全性和可靠性。
因此,在船舶设计
中,船体强度和结构设计是必不可少的一部分。
上海交通大学管理学院《金融工程学》习题

上海交通大学管理学院《金融工程学》习题一、大作业:本课程共包括3次大作业,旨在培养学生分析实际问题和解决实际问题能力。
要求学生自己实践与尝试,自己去调查、分析和计算,可以进行分组,进行学习小组交流、讨论,形成小组意见,课堂上安排小组代表作简要介绍,任课教师点评和总结。
1、设计“一个”新的金融产品。
2、计算一个具体的投资组合风险(例如VaR)以及解决风险的方法。
3、选择一个具体的金融产品定价(例如权证或者银行的理财产品)。
二、课后习题第1章金融工程概述1、请论述学习金融工程的三个基本目标,并举例说明。
2、根据已有的金融工程几个代表性定义,请阐述你对这几个定义的理解和看法。
3、请论述中国开展金融衍生产品交易的意义及其面临的问题。
第2章无套利定价原理1、假设市场的无风险借贷利率为8%,另外存在两种风险证券A和B,其价格变化情况如图2-11,不考虑交易成本。
图2-11两种风险证券的价格变化情况问题:(1)证券B的合理价格为多少呢?(2)如果B的市场价格为110元,是否存在套利机会?如果有,如何套利?(3)如果存在交易成本,例如,每次卖或买费用均为1元,结论又如何?2、假设无风险借贷半年利率r=4%(单时期),两种资产的两时期价格变动情况如图2-12:图2-12两种资产的两时期价格变动情况问题:(1)利用动态组合复制定价技术给证券B定价;(2)如果证券B的市场价格为100元,是否存在套利机会?如果有,如何构造套利策略?3、试分析金融市场套利与商业贸易中的价差盈利的关系?为何金融市场中套利概念如此重要?第3章金融产品创新原理1、如何设计一个更加合理的全流通方案?2、如何设计一个金融新产品?第4章金融风险管理原理1、金融风险是怎样产生的?如何从理论上解释金融风险?2、怎样理解长期资本管理公司破产是一个由制度性缺陷、市场风险和流动性风险所造成的经典案例?3、在例4-1中,当欧洲国家相关企业提出中国绍兴纺织企业向他们购买纺织设备,将终止使用美元支付的惯例,转为以欧元计价结算时,能否估计出1年之内因汇率波动产生的最大损失,若能是多少?4、在例4-1中,能否找到一种套期保值方法,来减少思考题3估计出1年之内因汇率波动产生的最大损失。
船体主要构件结构图

船体结构图船舶各部位名称如图所示。
船的前端叫船首(stem);后端叫船尾(stern);船首两侧船壳板弯曲处叫首舷(bow);船尾两侧船壳板弯曲处叫尾舷(quarter);船两边叫船舷(ships side);船舷与船底交接的弯曲部叫舭部(bilge)。
连接船首和船尾的直线叫首尾线(fore and aft line center line,centre line)。
首尾线把船体分为左右两半,从船尾向前看,在首尾线右边的叫右舷(starboard side);在首尾线左边的叫左舷(port side)。
与首尾线中点相垂直的方向叫正横(abeam),在左舷的叫左正横;在右舷的叫右正横.船体水平方向布置的钢板称为甲板,船体被甲板分为上下若干层。
最上一层船首尾的统长甲板称上甲板(upper deck).这层甲板如果所有开口都能封密并保证水密,则这层甲板又可称主甲板(main deck),在丈量时又称为量吨甲板。
少数远洋船舶在主甲板上还有一层贯通船首尾的上甲板,由于其开口不能保证水密,所以只能叫遮蔽甲板(shelter deck)。
主甲板把船分为上下两部分,在主甲板以上的部分统称为上层建筑;主甲板以下部分叫主船体.在主甲板以下的各层统长甲板,从上到下依次叫二层甲板、三层甲板等等。
在主甲板以上均为短段甲板,习惯上是按照该层甲板的舱室名称或用途来命名的.如驾驶台甲板(bridge deck)、救生艇甲板(life—boat deck)、等等。
在主船体内,根据需要用横向舱壁分隔成很多大小不同的舱室,这些舱室都按照各自的用途或所在部位而命名,如图1-18所示,从首到尾分别叫首尖舱、锚链舱、货舱、机舱、尾尖舱和压载舱等。
在货舱中两层甲板之间所形成的舱间称甲板间舱(tween deck),也叫二层舱或二层柜.上层建筑分船楼和甲板室两大类型。
所谓船楼是指两侧都延伸至船舷或很接近船舷的上层建筑;甲板室是指两侧不接近舷边的上层建筑。
上海交通大学船舶与海洋工程导论考点整理全

上海交通⼤学船舶与海洋⼯程导论考点整理全第⼀讲:海洋环境1、海洋中的主要研究对象:海底、海⽔的物理特征、海风、海流、海浪、潮汐、内波。
2、海底的三⼤基本地貌单元:⼤陆边缘、⼤洋盆地、⼤洋中脊。
3、两种⼤陆边缘:⼤西洋型⼤陆边缘(被动⼤陆边缘)、太平洋型⼤陆边缘(活动⼤陆边缘)。
4、海⽔的基本物理特性:盐度。
在35‰左右。
5、海风:空⽓的⽔平运动形成风,蒲福风级表0~12⼗三个风级。
6、波浪:有风浪、潮汐、地震波、船波等,通常所说的海浪是指风浪。
风浪是海⾯上分布最⼴、对于船舶航⾏和海洋⼯程实际活动影响最⼤的波浪。
7、海浪主要指表层海⽔受外⼒影响⽽发⽣的起伏现象,是海洋⼯程结构物的主要动⼒因素之⼀,是海洋结构物设计中的⼀个重要⽅⾯;风浪是海⽔受到风⼒的作⽤⽽产⽣的波动,可同时出现许多⾼低长短不同的波,传播⽅向与风向⼀致。
风浪是海上分布最⼴,出现频率最多,对船舶航⾏、海洋⼯程结构物运营和海洋⼯程实际活动影响最⼤的因素之⼀。
8、取决风浪⼤⼩的条件:风速、风时、风区长度。
风速越⼤,风时越久,风区长度越长,风浪越⼤。
9、海浪的分类:表⾯张⼒波、短周期重⼒波、重⼒波、长周期重⼒波、长周期波、潮汐波(潮浪)、潮汐波(潮浪)。
第⼆讲:船舶⼯程(重点)10、世界各国贸易货物运输量的三分之⼆是由商船承运。
11、2010年全球集装箱港⼝吞吐量排名:①上海港:全球货物吞吐量、集装箱吞吐量均排名第⼀②新加坡港③⾹港港④深圳港⑤韩国釜⼭港⑥宁波——⾈⼭港⑦⼴州港⑧青岛港⑨阿联酋迪拜港⑩荷兰⿅特丹港12、世界船舶需求:2001-2015年年均需求量约为4400万-6000万载重吨13、世界造船市场份额:(2005年)中国20%,⽇本29%,韩国33%,其他18%。
全球贸易持续增长;船型结构⾯临重⼤调整;发达国家的船舶⼯业正在外移。
造船产业正在加速向中国转移,我国船舶⼯业正⾯临重⼤历史机遇。
14、我国⾯临的国防安全问题:海洋国⼟资源的争夺⽇趋激烈;海上⽣命线的保护迫在眉睫(我国⽯油进⼝量的80%通过马六甲海峡运输,马六甲海峡是我国海上⽯油⽣命线);台湾海峡安全局势。
船体强度与结构设计课程教学大纲

《船体强度与结构设计》课程教学大纲(适用于船舶制造技术专业)一、课程任务本课程是船舶制造专业的一门主干课,本课程包括“船体强度”和“结构设计”两部分内容,主要讲述船舶总纵强度的计算与校核,船体型材剖面的设计,船体结构的规范设计等内容。
本课程的任务:学生通过本课程的学习,了解船体结构计算的方法,掌握强度计算和校核的基本方法和用规范设计船体结构。
本课程的基本要求:1.基本掌握船体结构中常见的分析与计算方法;2.掌握船体总纵强度的计算和校核方法;3.能根据规范对货船中横剖面结构进行设计二、课题和课时分配表(一)理论教学三、课程内容课题一绪论1.本课程程的任务、内容、要求;2.强度计算的常用方法;3.结构设计的基本原理和常用方法;重点:强度校核常用的许用应力法;结构设计的规范设计课题二船体总纵弯曲剪力和弯矩计算1.船体梁受力与变形;2.重量曲线;3.静水浮力曲线的计算方法过程;4.静水载荷曲线;剪力曲线;弯矩曲线的计算方法和过程,。
4.静置于波浪上的剪力和弯矩计算:坦谷波要素,船舶平衡位置的确定,附加剪力和弯矩计算重点:重量曲线;静水浮力曲线的计算;静水剪力和弯矩的计算课题三船体总纵强度校核1.船体总纵弯曲应力的第一近似计算等值梁的概念,构件计入等值梁的条件,等值梁剖面要素计算弯曲就力计算。
2.总纵弯曲应力的逐次近似计算:折减计算的概念和方法,等值梁折减计算,折减后的弯曲正应力。
3.总合应力与强度校核:强力构件应力合成计算的方法,许用应力的确定方法,强度校核方法。
5.极限弯矩计算:过载能力的概念,极限弯矩的定义和计算方法。
重点:船体总纵弯曲应力的第一近似计算;总纵弯曲应力的逐次近似计算;总合应力与强度校核。
课题四船体型材剖面设计1.型材种类和特点;2.型材剖面要素计算;3.型材剖面要素的力学特性;4.型材剖面的优化设计:优化设计的数学表示方法,求解法,设计步骤和方法。
重点:型材剖面要素计算;型材剖面要素的力学特性;难点:型材剖面要素的力学特性;课题五船体结构规范设计1.船体结构规范通则:我国规范对主尺度和结构名称的规定,我国规范适用范围。
交大船舶原理上 习题集

复习思考题
1.何谓船舶的初稳性(作图说明) 、静稳性和动稳性?在研究船舶稳性时为何将稳性分成 初稳性和大倾角稳性,它们之间有何关系? 2. “等体积倾斜”的原理如何?有什么假定? 3.船舶浮心移动的轨迹——浮心曲面、浮心轨迹和浮心曲线的含义是什么? 4.什么叫稳心、稳心半径?初横稳心半径 BM 素有关? 5.什么是复原力矩?初稳性公式是如何推导的?其适用范围如何?为什么? 6.什么叫横稳性高?为什么说它是衡量船舶初稳性好坏的主要指标?如何应用它判断船 舶的稳定性?为什么船一般总是横向倾覆而不是纵向翻掉? 7.在横剖面图上绘出浮心 B、重心 G 和横稳心 M 的位置,并标出浮心、重心和横稳心的 垂向坐标 ZB、ZG 和 ZM,以及横稳心半径 BM ,说明它们与横稳性高 GM 之间的关系。 8.如已知船的长度 L,平均吃水 d,水线面面积漂心位置 XF 和纵倾值 t,通过作图写出 船舶首倾θ角后的首尾吃水公式。 9. 横倾 1o 力矩 Mt 和纵倾 1cm 力矩 MTC 是如何推导的, 它们各有什么用途?试举例说明。 10.已知船舶的 L、Δ平均吃水 d,XB、XG 和 XF,试根据纵稳性高(或纵稳心半径)列 出船的首尾吃水公式。 11.什么是船舶静水力曲线?它包括哪几种性质的曲线?各自又包括哪些曲线?各曲线走 向如何?静水力曲线有什么用途?能否根据某一吃水查出船舶的有关静水力性能。 12.船上重量移动(包括垂向、横向、纵向移动)对稳性和浮态的影响如何?导出它们的 计算公式? 13.船舶装上或卸下小量重量,对稳性和浮态的影响如何?导出它们的计算公式。 要使船舶在装卸重量后,不产生倾斜,该重量应装卸在什么地方。为什么?若还要船 舶的初稳性高 GM 也不变,那么重量又应该装卸在什么地方?为什么? 14.说明装卸大量重量对船的稳性和浮态的影响。为什么要利用静水力曲线来计算,并叙 述其计算步骤。 15.悬挂重量和滚动重量对初稳性高的影响如何? 16.自由液面对船舶稳性的影响如何?减小自由液面影响的办法有哪些? 17.提高(或改善)船舶初稳性的措施有哪些?最有效的措施是什么?为什么? 18.叙述船舶倾斜试验的目的和基本原理以及试验方法、步骤和注意事项。 “*” :纵稳性用同样原理处理。
船体强度和结构设计

船体强度和结构设计随着现代技术的不断发展,船只的生产和运营已经成为了一个高度专业化、技术含量极高的行业。
在船只的制造和使用过程中,船体的强度和结构设计对于整个船体的安全性和使用寿命有着至关重要的作用。
船体强度的设计是指,在各种环境和使用条件下,船体能够承受的最大力量和刚度。
为了保证船只的强度和安全性,船体的设计需要遵循一定的规范和标准,如国际海事组织(IMO)的规定、船级社的认证要求等。
一般来说,船体强度的设计包括了以下几个步骤:第一步:确定载荷船只的使用环境和任务不同,需要承受的载荷也不一样。
因此在进行船体强度设计前,需要确定船只承受的载荷类型和强度。
例如,对于运输散货的散货船,需要考虑到船体承受的自由液面荷载、海浪力、风力等多种载荷。
第二步:计算刚度和弯曲在船体强度设计中,需要对船体的刚度和弯曲进行计算和分析。
这是因为船只在航行中会受到各种冲击和力量的作用,比如海浪、风力等。
如果船体刚度不够或弯曲过大,就会导致整个船体的变形或损坏,从而影响船只的安全操作。
第三步:确定材料和结构根据船只承受的载荷类型和强度,以及对船体刚度和弯曲的计算,可以确定所需的船体材料和结构。
船体结构的设计通常分为纵向结构和横向结构两个方面。
纵向结构用于支撑船体的长度,包括船首、船尾、船面等。
而横向结构则用于支撑船体的宽度,包括船甲板、船壳等。
第四步:进行强度校核和验证一旦确定了船体的材料和结构,就需要进行强度校核和验证。
这个过程通常涉及到各种力学和材料学知识,包括疲劳寿命、断裂韧性、弯曲应力等。
校核和验证的目的是通过模拟船只在各种载荷情况下的应力和变形情况,来确保船体的强度和结构是安全的。
总之,船体强度和结构设计是保证船只安全和长期使用的重要环节。
只有在严谨的设计和校核过程中,才能保证船体设计符合规范,安全可靠。