九上圆复习-圆的复习第五课时
第二十四章圆 复习课课件(共35张PPT)人教版九年级数学上册

学习目标
知识梳理
典型例题
当堂检测
课堂总结
4.会画三角形的外接圆和内切圆,知道三角形内心和外心的性质,知 道圆内接多边形并会相关计算. 5.知道弧长和扇形面积的计算公式,并能用这些公式进行相关计算.
学习目标
知识梳理
典型例题
当堂检测
课堂总结
1 圆的有关概念及性质 1.定义:平面上到定点的距离等于定长的所有点组成的图形叫做圆. 2.有关概念:
(1)弦、直径(圆中最长的弦)
O.
(2)弧、优弧、劣弧、等弧
(3)弦心距
3.不在同一条直线上的三个点确定一个圆.
学习目标
知识梳理
典型例题
当堂检测
课堂总结
2 圆的对称性 1.圆是轴对称图形,经过圆心的每一条直线都是它的对称轴.圆有无数 条对称轴. 2.圆是中心对称图形,并且绕圆心旋转任何一个角度都能与自身重合, 即圆具有旋转不变性.
解:设直径BC与弦AD交于点E
A
∵∠D=36°,∴∠ABC=36°
∵AD⊥BC,
B
∴在直角三角形ABE中,∠BAD=90°-36°=54°
C E D
学习目标
知识梳理
典型例题
当堂检测
课堂总结
例2.如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC. (1)若∠CBD=39°,求∠BAD的度数;(2)求证明:∠1=∠2.
典型例题
当堂检测
课堂总结
例3.工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直 径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这 个小圆孔的宽口AB的长度为 8 mm.
解析:设圆心为O,连接AO,作出过点O的 弓形高CD,垂足为D,可AO=5mm,OD=3mm 利用勾股定理进行计算,AD=4mm, 所以AB=8mm.
数学人教版九年级上册圆的基本性质复习课

圆的基本性质复习课
引入
师:同学们已经发现,老师在黑板上画了好几个圆,我们今天上课的主角就是这些圆。
圆是一切平面图形中最美的图形,它的美体现在哪些方面呢?让我们一起来感受一下。
今天,老师也带来了一个圆,但圆心找不到了,你能通过折纸的方法帮老师来找到这个圆心吗?
生:对折两次,两条折痕的交点就是圆心。
师:非常好,两条折痕其实是圆的什么?对折后能完全重合,说明圆具有什么性质?
生:折痕是直径。
圆具有轴对称性。
师:刚才这位同学其实就抓住了圆的这个性质,直径所在直线就是圆的对称轴,轻而易举地找到了这个圆心。
这两条直径所夹的弧相等吗?为什么?
生:因为它们所对的圆心角相等。
师:在一个圆中,只要圆心角相等,它们所对的弧一定相等。
这说明圆具有一种旋转不变性。
圆的这两种性质使得圆中五种基本量:圆心角、圆周角、弧、弦、弦心距之间具有特殊的关系。
今天这节课我们来复习圆的基本性质。
—出示课题《圆的基本性质复习》。
新人教版九年级数学上册第二十四章《圆的复习》课件

6、点与圆的位置关系: ①点在圆外;②点在圆上; ③点在圆 内. 判断方法: ①交点个数 ②点与圆心的 距离d和半径r的大小 关系. 7、直线与圆的位置关系: ①相离,②相切, ③相交. 判断方法: ①交点个数 ②圆心与直线的距离d和半径r的 大小关系. 8、两圆的位置关系: ①外离 ②相切 ③相交 ④内切 ⑤ 内含 判断方法: ①交点个数 ②圆心距d与半径r1、r2的大小 关系.
AB AC BC AD 2
2019年2月23日7时9分 欢迎046班的同学们!注意听课, 积极思考呵!
填空、 1、 在同圆或等圆中,如果圆心角相等,那么它所对的 弧____,所对的弦____; 2、在同圆或等圆中,如果弧相等,那么__________相 等,__________相等; 3、在同圆或等圆中,如果弦相等,那么__________相 等,_________相等;
2019年2月23日7时9分
欢迎046班的同学们!注意听课, 积极思考呵!
切线的性质定理
圆的切线垂直于过切点的半径.
∵CD切⊙O于A, OA是⊙O的 半径
●
O D
∴CD⊥OA.
C
A
2019年2月23日7时9分
欢迎046班的同学们!注意听课, 积极思考呵!
切线的性质定理出可理解为
如果一条直线满足以下三个性质中的任意两个,那么
D
A
●
B
O ①∠AOB=∠A′O′B′
可推出
┏ A′ D′ B′ 如由条件: ③AB=A′B′
②AB=A′B′
⌒ ⌒
④ OD=O′D′
2019年2月23日7时9分 欢迎046班的同学们!注意听课, 积极思考呵!
上册《圆》复习-新人教版九级数学全一册课件

上册 《圆》复习-新人教版九级数学全一册 课件
证明:(1)∵BD=BA,
∴∠BDA=∠BAD, ∵∠1=∠BDA,∴∠1=∠BAD.
︵
(2)扇形 AOB 的半径为 3 cm,AB的长为 4 cm, 则扇形面积为 6 cm2 ; (3)已知圆锥的底面圆半径为 3 cm、高为 4 cm, 则圆锥的侧面积是 15π cm2.
精典范例
8.【例 1】如图,BC 是⊙O 的直径,弦 AD⊥BC,垂足为 H,
︵
AD=8,OH=3,P 是AC上一个动点,BP 交 AD 于点 E. (1)求⊙O 的半径; (2)若∠EBA=∠EAB,求线段 BE 的长; (3)若在运动过程中,AQ 平分∠PAD,线 段 BQ 的长度改变吗?若不变,求出其值; 若改变,说明理由.
∵BD=OB=2,∴DE=BE=21Bห้องสมุดไป่ตู้=1, ∴OE= OB2-BE2= 3.
∵OD=OB=2,∠DOC=60°,∠DOF=30°,
∴CD=2 3,DF=23 3, ∴CF=CD-DF=2 3-32 3=34 3.
上册 《圆》复习-新人教版九级数学全一册 课件
12.如图,⊙O 是△ABC 的外接圆,AC 为直径,弦 BD=BA, BE⊥DC 交 DC 的延长线于点 E. (1)求证:∠1=∠BAD; (2)求证:BE 是⊙O 的切线.
A.点 A 在圆上
B.点 A 在圆外
C.点 A 在圆内
D.无法确定
知识点五:切线 (1)切线的性质; (2)切线的判定; (3)切线长定理.
5.如图,点 P 在⊙O 外,PA,PB 分别与⊙O 相切于 A,B 两 点,∠APB=50°,AP=12 cm,OP=13 cm,则: (1)∠AOB= 130 °; (2)∠APO= 25 °; (3)BP= 12 cm; (4)OA= 5 cm.
苏科版数学九上第二章轴对称图形--圆复习

B.130°
C.120°
D.60°
2.5.直线与圆的位置关系
一、直线与圆的位置关系
r
O
┐d
●
相交
r
O
┐d
●
相切
1、直线和圆相交
d < r.
2、直线和圆相切
d = r.
3、直线和圆相离
d > r.
r
O
d
●
┐
相离
2.5 直线与圆的位置关系
二、切线的判定定理
经过半径的外端,并且垂直于这条半径的直线是圆的切线
线平分两条切线的夹角.
A
∵PA,PB切⊙O于A,B
∴PA=PB ∠1=∠2
P
1
2
O
●
B
练习
1、已知:如图1,△ABC中,AC=BC,以BC为直径 的⊙O交
AB于点D,过点D作DE⊥AC于点E,交 BC的延长线于点F.
求证:(1)AD=BD;(2)DF是⊙O的切线.
A
A
D
E
B
O
C
P
F
C
图1
B
图2
2、如图2,PA、PA是圆的切线,A、B为切点,AC为
.
练习
三、选择题:
下列命题正确的是( C )
A、三角形外心到三边距离相等
B、三角形的内心不一定在三角形的内部
C、等边三角形的内心、外心重合
D、三角形一定有一个外切圆
四、一个三角形,它的周长为30cm,它的内切圆半径为2cm,则这个三
30
角形的面积为______.
2.5直线与圆的位置关系
七、圆线与圆的位置关系
⌒ ⌒
九年级数学上册《圆》复习课件

切线判定定理:如 果一条直线符合与 圆心的距离等于半 径,那么这条直线 就是圆的切线。
06
圆的综合问题
圆的综合问题类型
圆的切线问题 弦长问题 扇形面积问题 圆与圆的位置关系问题
解题思路与方法
确定圆心和半径:根据题目条件, 确定圆的圆心和半径是解题的关 键。
运用垂径定理:垂径定理可以帮 助我们解决与弦、直径、弧相关 的问题。
添加标题
添加标题
添加标题
添加标题
利用勾股定理:在解题过程中, 勾股定理是一个常用的工具。
分类讨论:对于一些复杂的题目, 我们需要根据不同的情况进行分 类讨论。
经典例题解析
圆的切线判定与性质 圆与直线的位置关系 圆与圆的位置关系 圆的对称性
易错点与注意事项
圆的综合问题涉及多个知识点,容易混淆概念。 计算圆的周长和面积时,容易忽略π的值。 在解决实际问题时,要仔细审题,理解题意,避免理解错误。 圆的综合问题需要灵活运用所学知识,不能生搬硬套公式。
感谢观看
汇报人:XX
定理的推广:切 线长定理是圆的 基本性质之一, 也是几何学中的 重要定理之一。
切线与半径的关系
切线与半径垂直: 切线与半径在切点 处垂直相交,这是 切线的基本性质。
切线长定理:从圆 心到切线的距离等 于半径,这个定理 对于任何圆都成立。
切线性质定理:切 线上的任意一点到 圆心的距离等于半 径,这个定理说明 了切线与半径的关 系。
圆内接四边形的性质
圆内接四边形的对角互补 圆内接四边形的外角等于它的内角的补角 圆内接四边形的对角线互相平分 圆内接四边形的边长由圆的半径和圆心角确定
04
圆的周长与面积
圆的周长计算
圆的周长公式:C=2πr,其中r为圆的半径 推导过程:通过圆的定义和微积分的知识推导得出 适用范围:适用于所有半径相同的圆 注意事项:计算时π取3.14
【公开课】人教版九年级数学上册圆复习课课件PPT
在Rt△ABC中,由勾股定理得:
AC AB2 BC 2 22 12 3
由(1)知,∠PAC= ∠PCA = ∠P= 60 °
【公开课】人教版九年级数学上册 第24章 圆复习课(课件)(共14张PPT)
PA=AC
3
【公开课】人教版九年级数学上册 第24章 圆复习课(课件)(共14张PPT)
3. 切线长定理
∵PA、PB是⊙O的两条切线
∴PA=PB,∠APO=∠BPO
【公开课】人教版九年级数学上册 第24章 圆复习课(课件)(共14张PPT)
A
O
P
B
【公开课】人教版九年级数学上册 第24章 圆复习课(课件)(共14张PPT)
例2、如图,已知AB为⊙O的直径,PA、PC为⊙O的切线,
A、C为切点, ∠BAC=30°. (1)求∠P的大小 (2)若AB=2,求PA的长(结果保留根号)
【公开课】人教版九年级数学上册 第24章 圆复习课(课件)(共14张PPT)
【公开课】人教版九年级数学上册 第24章 圆复习课(课件)(共14张PPT)
1. 切线的判定定理
2. 切线的性质定理
∵OC是半径,且AB⊥OC
∴AB与⊙O相切于点C
O
∵ AB与⊙O相切于点C,
OC是半径
.┐
A C B ∴ AB⊥OC
第二十四章 圆复习课 (1)
主要知识 圆的基本性质 与圆有关的位置关系 正多边形和圆 有关圆的计算
垂径定理
垂直于弦的直径平分弦, 并且平分弦所的两条弧.
C
A M└ ●O
B
若 ① CD是直径 ② 弦AB⊥CD
可推得
③AM=BM,
④A⌒C=B⌒C,
⑤A⌒D=⌒BD.
人教版九年级上册数学:圆复习教学课件
B
B
B
O
O
C
DC
DC
A
A
O
O
E DC
D
A
注意:定理中的两个条件 (直径,垂直于弦)缺一不 可!
人教版九年级上册数学:圆复习教学 课件
若圆心到弦的距离用d表示, 半径用r表示,弦长用a表示, 这三者之间有怎样的关系?
A
O EB
r2
d
2
a
2
2
变式1:AC、BD有什么关系?
想结换①③一论,③ ④想中情:的况如会5个果 怎条② ④ ⑤将 样① ② ⑤件题 ?适设②③当③⑤和互
①④④ ⑤
② ③ ⑤① ② ③
② ④
①① ④② ⑤④
①
C
③
⑤
A
E
O
D
B
(1)平分弦(不是直径)的直径垂直 于弦,并且平分弦所对的两条弧;
(2)弦的垂直平分线经过圆心,并 且平分弦所对的两条弧;
(3)平分弦所对的一条弧的直径, 垂直平分弦并且平分弦所对的另一条弧。
C O
B A' C'
B'
题设
结论
在
同
()
前 提
圆 或 等
圆
中
( 条 件 )
圆 心 角 相 等
圆心角所对的弧相等, 圆 心角所对的弦相等, 圆心 角所对弦的弦心距相等。
推论 在同圆或等圆中, 如果两个圆心角、两条弧、 两条弦或两条弦的弦心距中有 一组量相等,那么它们所对应 的其余各组量都分别相等。
把顶点在圆心的周角等分成360份时,每一份 的圆心角是1°的角。1°的圆心角所对的弧叫做 1°的弧。
2022年九年级数学上册 第二十四章 圆知识点总结素材 (新版)新人教版
圆一、知识回顾圆的周长: C=2πr 或C=πd 、圆的面积:S=πr ²圆环面积计算方法:S=πR ²-πr ²或S=π(R ²-r ²)(R 是大圆半径,r 是小圆半径)二、知识要点 一、圆的概念集合形式的概念: 1、 圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3、圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆; 固定的端点O 为圆心。
连接圆上任意两点的线段叫做弦,经过圆心的弦叫直径。
圆上任意两点之间的部分叫做圆弧,简称弧。
2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线;3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
二、点与圆的位置关系1、点在圆内 ⇒ d r < ⇒ 点C 在圆内;2、点在圆上 ⇒ d r = ⇒ 点B 在圆上;3、点在圆外 ⇒ d r > ⇒ 点A 在圆外; 三、直线与圆的位置关系1、直线与圆相离 ⇒ d r > ⇒ 无交点;2、直线与圆相切 ⇒ d r = ⇒ 有一个交点;3、直线与圆相交 ⇒ d r < ⇒ 有两个交点;r dd CBAOdrd=rrd四、圆与圆的位置关系外离(图1)⇒ 无交点 ⇒ d R r >+; 外切(图2)⇒ 有一个交点 ⇒ d R r =+; 相交(图3)⇒ 有两个交点 ⇒ R r d R r -<<+; 内切(图4)⇒ 有一个交点 ⇒ d R r =-; 内含(图5)⇒ 无交点 ⇒ d R r <-;rRd图3rR d五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
九年级(上)培优讲义:第5讲 圆的基本性质
第5讲:圆的基本性质一、建构新知1.圆的定义:(1)线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆.(2)圆是到定点的距离等于定长的点的集合.2.圆的性质:(1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心.在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.(2)轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴.(3)垂径定理及推论:①垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.②平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.③弦的垂直平分线过圆心,且平分弦对的两条弧.④平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦.⑤平行弦夹的弧相等.3.两圆的性质:(1)两个圆是一个轴对称图形,对称轴是两圆连心线.(2)相交两圆的连心线垂直平分公共弦,相切两圆的连心线经过切点.4.与圆有关的角:(1)圆心角:顶点在圆心的角叫圆心角.圆心角的性质:圆心角的度数等于它所对的弧的度数.(2)圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角.圆周角的性质:①圆周角等于它所对的弧所对的圆心角的一半.②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等.③90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角.④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.⑤圆内接四边形的对角互补;外角等于它的内对角.二、经典例题例1.如图所示,△ABC的三个顶点的坐标分别为A(-1,3)、B (-2,-2)、C (4,-2),则△ABC外接圆半径的长度为.例2.如图所示,⊙O的直径AB和弦CD相交于点E,已知AE=1cm,EB=5cm,∠DEB=60°,求CD的长.变式:如图,AB 、AC 都是圆O 的弦,OM ⊥AB ,ON ⊥AC , 垂足分别为M 、N ,如果MN =3,那么BC = .例3.如图,在⊙O 中,半径OC 垂直于弦AB ,垂足为点E .(1)若OC =5,AB =8,求tan ∠BAC ;(2)若∠DAC =∠BAC ,且点D 在⊙O 的外部,判断直线AD 与⊙O 的位置关系,并加以证明.例4. 如图,⊙O 是△ABC 的外接圆,FH 是⊙O 的切线,切点为F ,FH ∥BC ,连结AF 交BC 于E ,∠ABC 的平分线BD 交AF 于D ,连结BF .(1)证明:AF 平分∠BAC ; (2)证明:BF =FD .N MO C BA例5. 已知射线OF交⊙O于B,半径OA⊥OB,P是射线OF上的一个动点(不与O、B重合),直线AP交⊙O于D,过D作⊙O的切线交射线OF于E.(1)如图所示是点P在圆内移动时符合已知条件的图形,请你在图中画出点P在圆外移动时符合已知条件的图形.(2)观察图形,点P在移动过程中,△DPE的边、角或形状存在某些规律,请你通过观察、测量、比较写出一条与△DPE的边、角或形状有关的规律.(3)点P在移动过程中,设∠DEP的度数为x,∠OAP的度数为y,求y与x的函数关系式,并写出自变量x的取值范围.例6.如图,AB是⊙O的直径,弦CD⊥AB与点E,点P在⊙O上,∠1=∠C,(1)求证:CB∥PD;(2)若BC=3,sin∠P=35,求⊙O的直径.三、基础演练1.如图所示,AB、AC为⊙O的切线,B和C是切点,延长OB到D,使BD=OB,连接AD.如果∠DAC=78°,那么∠ADO等于().A.70°B.64°C.62°D.51°2.在半径为27m的圆形广场中心点O的上空安装了一个照明光源S,S射向地面的光束呈圆锥形,其轴截面SAB的顶角为120°(如图所示),则光源离地面的垂直高度SO为().A.54m B.m C.m D.m3.设计一个商标图案,如图所示,在矩形ABCD中,AB=2BC,且AB=8cm,以A为圆心、AD的长为半径作半圆,则商标图案(阴影部分)的面积等于().A. (4π+8)cm2B. (4π+16)cm2C. (3π+8)cm2D. (3π+16)cm24.如图,的半径为5,弦的长为8,点在线段(包括端点)上移动,则的取值范围是().A. B. C. D.5.“圆材埋壁”是我国古代著名的数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用数学语言可表示为:如图所示,CD为⊙O的直径,弦AB⊥CD于E,CE=1寸,AB=10寸,则直径CD的长为() A.12.5寸B.13寸C.25寸D.26寸6.在平面直角坐标系中如图所示,两个圆的圆心坐标分别是(3,0)和(0,-4),半径分别是和,则这两个圆的公切线(和两圆都相切的直线)有()A. 1条B. 2条C. 3条D. 4条7.一条弦的两个端点把圆周分成4:5两部分,则该弦所对的圆周角为( ).A .80°B .100°C .80°或100°D .160°或200°8.如图所示,AB 、AC 与⊙O 分别相切于B 、C 两点,∠A =50°,点P 是圆上异于B 、C 的一动点,则∠BPC 的度数是( ).A .65°B .115°C .65°或115°D .130°或50° 9.如下左图,是的内接三角形,,点P 在上移动(点P 不与点A 、C 重合),则的变化范围是_____.10.如图所示,EB 、EC 是⊙O 是两条切线,B 、C 是切点,A 、D 是⊙O 上两点,如果∠E =46°,∠DCF =32°,那么∠A 的度数是____________.11.已知⊙O 1与⊙O 2的半径、分别是方程的两实根,若⊙O 1与⊙O 2的圆心距=5.则⊙O 1与⊙O 2的位置关系是______________ .12.已知圆的直径为13 cm ,圆心到直线的距离为6cm ,那么直线和这个圆的公共点的个数是______.13. 两个圆内切,其中一个圆的半径为5,两圆的圆心距为2,则另一个圆的半径是______. 14. 已知正方形ABCD 外接圆的直径为,截去四个角成一正八边形,则这个正八边形EFGHIJLK 的边长为_______________,面积为_______________. 四、直击中考1.(2013年湖北)如,在Rt ABC 中,90ACB ∠=,3AC =,4BC =,以点C 为圆心,CA 为半径的圆与AB 交于点D ,则AD 的长为( ) A .95 B . 245 C . 185 D . 522.(2013黑龙江)如图,点A ,B ,C ,D 为⊙O 上的四个点,AC 平分∠BAD ,AC 交BD 于点E ,CE =4,CD =6,则AE 的长为( )CADBA .4B .5C .6D .73.(2013江苏)如图,已知AB 是⊙O 的直径,AD 切⊙O 于点A ,点C 是的中点,则下列结论不成立的是( ) A .OC ∥AE B .EC =BCC .∠DAE =∠ABED .AC ⊥OE4.(2013湖北)如图,DC 是⊙O 直径,弦AB ⊥CD 于F ,连接BC ,DB ,则下列结论错误的是( ) A .B . A F =BFC . O F =CFD . ∠DBC =90°5.(2013湖北)如图,M 是CD 的中点,EM ⊥CD ,若CD =4,EM =8,则所在圆的半径为 .6.(2013年广东)如图,在平面直角坐标系中,点O 为坐标原点,点P 在第一象限,P Θ与x 轴交于O ,A 两点,点A 的坐标为(6,0),P Θ的半径为13,则点P 的坐标为____________.7.(2013四川)如图,AB 是⊙O 的直径,弦CD ⊥AB 于点G ,点F 是CD 上一点,且满足=31,连接AF 并延长交⊙O 于点E ,连接AD 、DE ,若CF =2,AF =3.给出下列结论:①△ADF ∽△AED ;②FG =2;③tan ∠E =;④S △DEF =4.其中正确的是(写出所有正确结论的序号).8.(2013浙江)如图,AE 是半圆O 的直径,弦AB =BC =4,弦CD =DE =4,连结OB ,OD ,则图中两个阴影部分的面积和为 . 9. (2013江苏)在平面直角坐标系xOy 中,已知点A (6,0),点B (0,6),动点C 在以半径为3的⊙O 上,连接OC ,过O 点作OD ⊥OC ,OD 与⊙O 相交于点D (其中点C 、O 、D 按逆时针方向排列),连接AB .(1)当OC ∥AB 时,∠BOC 的度数为 ; (2)连接AC ,BC ,当点C 在⊙O 上运动到什么位置时,△ABC的面积最大?并求出△ABC的面积的最大值.(3)连接AD,当OC∥AD时:①求出点C的坐标;②直线BC是否为⊙O的切线?请作出判断,并说明理由.10.(2013四川)在⊙O中,AB为直径,点C为圆上一点,将劣弧沿弦AC翻折交AB于点D,连结CD.(1)如图1,若点D与圆心O重合,AC=2,求⊙O的半径r;(2)如图2,若点D与圆心O不重合,∠BAC=25°,请直接写出∠DCA的度数.五、挑战竞赛1.如图所示,△ABC的三边满足关系BC=12(AB+AC),O,I分别为△ABC的外心和内心,∠BAC的外角平分线交⊙O于点E,AI的延长线交⊙O于点D,DE交BC于点H.求证:(1)AI=BD;(2)OI=12 AE.第22题图②OPCBA六、每周一练1.在△ABC 中,∠C 为锐角,分别以AB ,AC 为直径作半圆,过点B ,A ,C 作,如图所示.若AB =4,AC =2,S 1﹣S 2=,则S 3﹣S 4的值是( ) A .B .C .D .2.如图,在平面直角坐标系中,△ABC 是⊙O 的内接三角形, AB =AC ,点P 是⋂AB 的中点,连接P A ,PB ,PC . 如图②, 若2524sin =∠BPC ,则PAB ∠tan 的值为 . 3. 如图1,正方形ABCD 的边长为2,点M 是BC 的中点,P 是线段MC 上的一个动点(不与M 、C 重合),以AB 为直径作⊙O ,过点P 作⊙O 的切线,交AD 于点F ,切点为E . (1)求证:OF ∥BE ;(2)设BP =x ,AF =y ,求y 关于x 的函数解析式,并写出自变量x 的取值范围; (3)延长DC 、FP 交于点G ,连接OE 并延长交直线DC 与H (图2),问是否存在点P ,使△EFO ∽△EHG (E 、F 、O 与E 、H 、G 为对应点)?如果存在,试求(2)中x 和y 的值;如果不存在,请说明理由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆心角、弦、弧、弦心距、
前四组量中有一组量相等,其余各组量也相等; 注意:圆周角有两种情况 圆周角的推论应用广泛 ⌒ 1. ⊙O中,B为AC的中点,BD为AB的延长线, ∠OAB=50°,求∠CBD的度数。
C O
·
B D
A
2.在⊙O中,半径OA⊥OB,
⌒ ⌒ ⌒ AC=CD=DB,AB交OC于E,交 OD于F.求证:AE=CD=BF
y D C B
·
A x
O
9. AB是△ABC外接圆⊙O的直径,D为⊙O上一点, 且DE⊥CD,交BC于E,求证:EB· CD=DE· AC
A C D O E
·
B
圆心角:顶点在圆心的角。
(如:∠AOB)
A
弦心距:从圆心到弦的距离。
(如:OC)
B
O
C
题设
在 同 圆 前 或 提 等 圆 中 ( 条 件 ) 圆 心 角 相 等
A
C
O
2、已知∠AOB=120°, B 求: ∠ACB
3、已知∠ACD=30°,求: ∠AOB
O A
B
C O D A
4、已知∠AOB=110°,求: O B ∠ACB
B
A
C
• 定理:一条弧所对的圆周角等于它所对 的圆心角的一半。 • 也可以理解为:一条弧所对的圆心角是 它所对的圆周角的二倍;圆周角的度数 等于它所对的弧的度数的一半。
B
C
E
O A D B
A
O
D
C
F
推论2 半圆(或直径)所对的圆周角是90°; 90°的圆周角所对的弦是直径。 推论3 如果三角形一边上的中线等于这条边 的一半,那么这个三角形是直角三角形。
C E D A O B
• 什么时候圆周角是直角? 反过来呢? • 直角三角形斜边中线有什 么性质?反过来呢?
已知:点O是ΔABC的外心, ∠BOC=130°,求∠A的度数。
圆的两条平行弦所夹的弧相等。 如图,CD为⊙O的直径,AB⊥CD,EF⊥CD, 你能得到什么结论? E
A
弧AE=弧BF
C
O
D
B F
7. 在⊙O中,弦AB所对的圆心角∠AOB=100°,则弦 AB所对的圆周角为______________. 8. ⊙C通过原点,并与两坐标轴分别相交于A、D两点, 已知∠OBA=30°,点D的坐标为(0,2),则点A的 坐标为_________,点C的坐标为__________.
推论
• 弧相等,圆周角是否相等?反过来呢? • 什么时候圆周角是直角?反过来呢? • 直角三角形斜边中线有什么性质?反过 来呢?
C
同弧所对的圆 如图,比较∠ ACB、∠ADB、∠AEB 的大小 周角相等
E
D A
E
O B
A
O B
F D
等弧所对的圆周角相等; 如图,如果弧 AB=弧CD,那么∠E 在同圆中,相等的圆周角 和∠ F是什么关系?反过来呢?
D
E
O B
·
C
6.已知,点O是△ ABC的外 心,∠BOC=130°, 则∠A的度数为________ 。 65或115 °
A C B
A O · C B
· O
• 圆是轴对称图形,每一条直径所在的直线 都是对称轴。 • 圆是以圆心为对称中心的中心对称图形。 • 圆还具有旋转不变性,即圆绕圆心旋转任 意一个角度α,都能与原来的图形重合。
A C D B O
·
3. ⊙O1与⊙O2为等圆,M是O1O2 的中点,过M作一直线交⊙O1于A、 B ,交⊙O2于C、D 。 ⌒ ⌒ 求证:AB=CD
B
D O1
·
E
C A M
F
· O
2
A
4. 如图,∠BAC=50°,则 ∠D+∠E=__________ 230° 5.在Rt△ ABC中,AB=6, BC=8,则这个三角形的外 接圆直径是___________ 10或8
•角的顶点在圆周上 •是否顶点在圆周上 的角就是圆周角呢?
A
B
B
C C A O O
A C
O
B A B
圆周角:顶点在圆上,并且两边都和圆相 交的角。 圆心角: 顶点在圆心的角.
一条弧所对的圆周角等于它所对 的圆心角的一半
C
C
C
O B
化 归
A
O A B
化 归
O
A B
分类讨论
完全归纳法
圆周角定理
C
1、已知∠AOB=75°, 求: ∠ACB
所对的弧也相等
E O1 C A D O2
C
如图,⊙O1和⊙O2是等圆, 等圆也成立 如果弧AB=弧CD,那么∠E 和∠F是什么关系?反过来 呢?
F
B
推论1 同弧或等弧所对的圆周角相等; 同圆或等圆中,相等的圆周角所对的弧相等。
思考: 1、“同圆或等圆”的条件能否去掉? 2、判断正误:在同圆或等圆中,如果两个 圆心角、两条弧、两条弦、两条弦心距、两个 圆周角中有一组量相等,那么它们所对应的 其余各组量也相等。
结论
圆心角所对的弧相等, 圆心角所对的弦相等, 圆心角所对弦的弦心距相等。
( )
推论 在同圆或等圆中, 如果两个圆心角、两条弧、 两条弦或两条弦的弦心距中有 一组量相等,那么它们所对应 的其余各组量都分别相等。
角的顶点 在圆心
F D C
O
圆心角:如∠BOA
圆内角:如∠BCA 圆外角:如∠BFA 圆周角:如∠BDA
C
C
A
O A B
O
B