中考数学复习专题汇编---第五单元 第18课时 二次函数的应用

合集下载

中考重点二次函数的性质与应用

中考重点二次函数的性质与应用

中考重点二次函数的性质与应用中考重点:二次函数的性质与应用二次函数是初中数学中的重要内容之一,它在中考中的考查频率较高。

掌握二次函数的性质与应用,能够帮助我们解决与二次函数相关的问题,提高解题能力。

本文将重点讨论二次函数的性质和应用,探索其在数学中的作用。

一、二次函数的定义及一般式表示二次函数是形如y = ax² + bx + c的函数,其中a、b、c为常数且a≠0。

其中,a决定了二次函数的开口方向,b决定了函数的对称轴位置,c表示函数与y轴的交点。

二次函数的一般式表示形式为y = ax² + bx + c,其中a、b、c为实数且a≠0。

一般式可以转化为顶点式表示或者因式分解式表示,从而更方便地研究二次函数的性质。

二、二次函数的性质1. 对称性:二次函数的图像关于对称轴对称。

对称轴的表示为x = -b / (2a),在二次函数图像上即为顶点的横坐标。

2. 开口方向:当a>0时,二次函数开口向上;当a<0时,二次函数开口向下。

3. 极值点与最值:二次函数的极值点即顶点,其横坐标为-x / (2a),纵坐标为f(-x /(2a))。

当a>0时,二次函数的最小值为f(-x / (2a));当a<0时,二次函数的最大值为f(-x / (2a))。

4. 零点:二次函数与x轴的交点称为零点,可以通过求解二次方程ax² + bx + c = 0来确定。

二次函数有两个零点时称为有两个实根,有一个零点时称为有一个实根,没有实根时称为无实根。

三、二次函数的应用1. 求解问题:二次函数常常用于求解与平面图形有关的问题。

例如,已知抛物线y = ax² + bx + c与x轴交于A、B两点,求抛物线经过的最高点的坐标。

通过求解顶点坐标可以得到问题的解。

2. 最值问题:二次函数能够用于解决最值问题。

例如,已知二次函数y = ax² + bx + c,在一定范围内求函数的最值。

中考数学复习 专题18 与二次函数有关代数方面应用试题(A卷,含解析)

中考数学复习 专题18 与二次函数有关代数方面应用试题(A卷,含解析)

专题18 与二次函数有关代数方面应用二、填空题 1. 2. (浙江衢州,15,4分)某农场拟建三间长方形种牛饲养室,饲养室的一面靠墙(墙长50m),中间用两面墙隔开(如图),已知计划中的建筑材料可建墙的长度为48m ,则这三间长方形种牛饲养室的总占地面积的最大值为___m 2.【答案】144.【逐步提示】若设每一间长方形种牛饲养室的长为x m ,那么就可以依据题意用x 表示出每一间长方形种牛饲养室的宽,再利用长方形的面积公式,结合二次函数的性质求解.【解析】设这三间长方形种牛饲养室的总占地面积为y m 2,每一间长方形种牛饲养室的长为x m ,那么三间长方形种牛饲养室的宽的和为(48-4x )m ,则根据题意,得y =(48-4x )·x =-4x 2+48x =-4(x 2-12x )=-4(x 2-12x +36)+144=-4(x -6)2+144,此时,当x =6时,y 有最大值144,而当x =6时,48-4x =24<50,符合题意,故答案为144.【解后反思】本题是二次函数的实际应用,求解时应根据题意,寻求变量之间的等量关系,并结合二次函数的性质解决问题.【关键词】二次函数的应用、最值. 三、解答题1. (山东淄博,21,8分)如图,抛物线y =ax 2+2ax +l 与x 轴仅有一个公共点A ,经过点A 的直线交该抛物线于点B ,交y 轴于点C ,且点C 是线段AB 的中点. (1)求这条抛物线对应的函数解析式; (2)求直线AB 对应的函数解析式.【逐步提示】本题考查求一次函数的解析式,求二次函数的解析式,二次函数与一元二次方程的关系,数形结合思想,解题关键是能用待定系数法求函数解析式,掌握二次函数与一元二次方程的关系.(1)利用△=b 2-4ac =0时,抛物线与x 轴有1个交点得到4a 2-4a =0,然后解关于a 的方程求出a ,即可得到抛物线解析式. (2)利用点C 是线段AB 的中点可判断点A 与点B 的横坐标互为相反数,则可以利用抛物线解析式确定B 点坐标,然后利用待定系数法求直线AB 的解析式.【详细解答】解:(1)∵抛物线y =ax 2+2ax +1与x 轴仅有一个公共点A ,∴△=4a 2-4a =0. 解得a 1=0(舍去),a 2=1.∴抛物线解析式为y =x 2+2x +1.(2)∵y = x 2+2x +1=(x +1)2,∴顶点A 的坐标为(-1,0).∵点C 是线段AB 的中点,即点A 与点B 关于C 点对称,∴B 点的横坐标为1.当x =1时,y =x 2+2x +1=1+2+1=4,则B 的坐标为(1,4). 设直线AB 的解析式为y =kx +b ,把A (-1,0),B (1,4)的坐标代入,得0,4.k b k b -+=⎧⎨+=⎩ 解得2,2.k b =⎧⎨=⎩∴直线AB 的解析式为y =2x +2.【解后反思】对于二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0),△=b 2-4ac 决定抛物线与x 轴的交点个数:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac =0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.【关键词】求一次函数的解析式,求二次函数的解析式,二次函数与一元二次方程的关系,数形结合思想2. (浙江杭州,20,10分)把一个足球垂直于水平地面向上踢,时间为t (秒)时该足球距离地面的高度h (米)适用公式h =20t -5t 2(0≤t ≤4).(1)当t =3时,求足球距离地面的高度;(2)当足球距离地面的高度为10米时,求t 的值;(3)若存在实数t 1和t 2(t 1≠t 2),当t =t 1或t 2时,足球距离地面的高度都为m (米),求m 的取值范围.【逐步提示】本题考查了二次函数的相关知识及一元二次方程的解法,解题的关键是熟练地掌握二次函数的图像与性质.在解题时,首先将t =3代入函数解析式,即可求出足球距离地面的高度;然后将h =10代入函数解析式,得到关于t 的一元二次方程,利用配方法或公式法即可求出t 的值;最后将题中所给的二次函数解析式化为顶点式,得到该抛物线的顶点坐标,根据题意可知m 的取值范围系抛物线位于x 轴(包括x 轴)及顶点之间的点的纵坐标的值(不包括标点的纵坐标).【解析】(1)当t =3时,h =20t -5t 2=20×3-5×32=60-5×9=60-45=15(米), ∴当t =3时,足球距离地面的高度为15米.(2)当h =10时,20t -5t 2=10,t 2-4t +2=0,解得t =2±2,∴当足球距离地面的高度为10米时,t 的值为2±2.(3)∵h =20t -5t 2=-5(t 2-4t )=-5(t 2-4t +4-4)=-5(t -2) 2+20,∴抛物线h =20t -5t 2的顶点坐标为(2,20).∵存在实数t 1和t 2(t 1≠t 2),当t =t 1或t 2时,足球距离地面的高度都为m (米), ∴m 的取值范围是0≤m <20.【解后反思】本题主要考查二次函数的性质与图像及简单应用,前两个问题较为简单,只要能解一元二次方程,都能轻松解答,最后一个问题稍复杂些:需要深层次地思考,应根据抛物线的轴对称性进行理解,转化为求抛物线位于x 轴上至顶点处点的纵坐标的取值范围,这样就不难解答此题.【关键词】二次函数;二次函数的求值;二次函数的应用;一元二次方程的解法(浙江杭州,22,12分)已知函数y 1=ax 2+bx ,y 2=ax +b (ab ≠0),在同一平面直角坐标系中. (1)若函数的y 1图像过点(-1,0),函数的y 2图像过点(1,2),求a ,b 的值; (2)若函数y 2的图像过函数y 1的图像的顶点. ①求证:2a +b =0; ②当1<x <23时,比较y 1与y 2的大小. 【逐步提示】本题考查了一次函数、二次函数的综合应用,解题的关键是利用二次函数图像的顶点坐标代入一次函数解析式,证明2a +b =0,并利用此结论将两个函数解析式用含有a 表示的式子后用差比较法来比较y 1与y 2的大小.(1)利用待定系数法,列出A .b 的二元一次方程组进行解答;(2)用公式法先求出抛物线y 1=ax 2+bx 的顶点坐标,并代入一次函数y 2=ax +b ,化简后即可得到2a +b =0结论;(3)先用a 的代数式表示b ,即b =-2a ,然后利用差比较法,计算出y 1-y 2的值,再根据1<x <23,并对a 按正数、负数分类,得到y 1-y 2的值的大小,从而比较出y 1与y 2的大小.【解析】(1)由题意得⎩⎨⎧=+=-20b a b a ,解得⎩⎨⎧==11b a .(2)①∵抛物线y =ax 2+bx 的顶点(-a b 2,a b 42-)在直线y =ax +b 上,∴a b 42-=a (-ab2)+b ,即a b 42-=2b.∴4ab =-2b 2.∵b ≠0, ∴2a =-b . ∴2a +b =0. ②∵2a +b =0, ∴b =-2a .∴y 1=ax 2-2ax ,y 2=ax -2a .∴y 1-y 2=(ax 2-2ax )-(ax -2a )=ax 2-3ax +2a =a (x 2-3x +2) =a (x -1)(x -2). ∵1<x <23, ∴x -1>0,x -2<0,从而(x -1)(x -2)<0.∴当a >0时,y 1-y 2=a (x -1)(x -2)<0,此时,y 1<y 2; 当a <0时,y 1-y 2=a (x -1)(x -2)>0,此时,y 1>y 2.【解后反思】本题命制由易到难设计了三个问题,属于题组题,首问考查常规的待定系数法,最为简单;二问中的前一问题只要会用二次函数顶点的公式法,就不难解答(此时可以参考卷首是提供的二次函数顶点公式);最后一问用作差法较为简单.二次函数y =ax 2+bx +c =a (x +2b a )2+244ac b a -的顶点坐标为(-2b a ,244ac b a -),对称轴为x =-2ba,这个公式应该熟练地记住,在解题时才能游刃有余.实数比较大小,通常有如下几种情况:(1)如有正数、有负数,则直接根据正负比较;(2)两个负数比较大小,绝对值大的反而小;(3)如需要比较的数比较多时,可以考虑把所有数字在数轴上表示,然后左边的数总比右边的小.(4)差比较法:对于两个实数a ,b ,若a -b >0,则a >b ;若a -b =0,则a =b ;若a -b <0,则a <b .(5)商比较法:对于两个正数a ,b ,若a b >1,则b >a ;若a b =1,则b =a ;若ab<1,则b <a . 【关键词】一次函数;二次函数;待定系数法;二元一次方程组;二次函数的图像与性质;有理数的大小比较;压轴题;分类思想2. (浙江衢州,22,10分)已知二次函数y =x 2+x 的图象,如图所示.(1)根据方程的根与函数图象之间的关系,将方程x 2+x =1的根在图象上近似地表示出来(精点..),并根据图象,写出方程x 2+x =1的根(精确到0.1). (2)在同一直角坐标系中画出一次函数y =12x +32的图象,观察图象写出自变量x 取值在什么范围时,一次函数的值小于..二次函数的值.(3)如图,点P是坐标平面上的点,并在网格的格点上,请选择一种行当的平移方法,使平移后二次函数图象的顶点落在P点上,平移后二次函数的函数解析式,并判断点P是否在函数y=12x+32的图象上,请说明理由.【逐步提示】(1)设y=x2+x=1,此时可作出y=1与y=x2+x的交点即为所示.(2)y=12x+32的图象,进而由图象判断.(3)方法不惟一,只要符合题意即可.【解析】(1)如图,作出y=1的图象,得到作图精点,∴x1≈-1.6,x2≈0.6.(2)画直线y=12x+32,由图象可知x<-1.5或x>1.(3)平移方法不惟一.如,先向上平移54个单位,再向左平移12个单位,平移后的顶点坐标P(-1,1),平移后的表达式y=(x+1)2+1,或y=x2+2x+2.理由:把P点坐标(-1,1)代入y=12x+32,左边=右边,∴点P是否在函数y=12x+32的图象上.【解后反思】依据题意,准确地作出图形是正确求解的前提,发挥数形结合的作用是顺利求解的保证.【关键词】函数图象、二次函数、一次函数、图形的变换.3.(四川省成都市,28,12分)如图,在平面直角坐标系xOy中,抛物线y=a(x+1)2-3与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C(0,83) ,顶点为D,对称轴与x轴交于点H,过点H的直线l交抛物线于P、Q两点,点Q在y轴的右侧.⑴求a的值及点A、B的坐标;⑵当直线l将四边形ABCD分为面积比为3:7的两部分时,求直线l的函数表达式;⑶当点P位于位于第二象限时,设PQ的中点为M,点N在抛物线上,则以DP为对角线的四边形DMPN能否成菱形?若能,求出点N的坐标;若不能,请说明理由.【逐步提示】本题考查了二次函数、一次函数图象与几何图形的综合问题,解题的关键是灵活运用数形结合思想,发现各图象、图形之间的关系..⑴将点C 代入抛物线解析式,求出a 的值,令抛物线解析式中的y =0,即可求出点A 、B 的坐标;⑵求出四边形ABCD 的面积,利用直线l 将四边形ABCD 分为面积比为3:7的两部分,可知直线l 与AD 或BC 相交的三角形面积为四边形ABCD 面积的310,即可求出直线l 与AD 或BC 交点坐标,然后用待定系数法求解;⑶根据PQ 的中点为M ,四边形DMPN 若为菱形,得DN ∥MQ ,根据直线DN 过点D ,求出点N 坐标,再利用直线l 经过点H ,且平行于DN 求出点Q 坐标,根据MN ∥DQ ,利用x M -x N =x Q -x D 列出方程求出k 值.【详细解答】解: ⑴将点C (0,83-)代入y =a (x +1)2-3,得83-=a (0+1)2-3,解得a =13,∴抛物线解析式为y =13(x +1)2-3,令y =0,则0=13(x +1)2-3,解得x 1=-4,x 2=2,∴A (-4,0),B (2,0);⑵∵抛物线解析式为y =13(x +1)2-3,∴顶点D (-1,-3),∴DH =3,OH =1,∵A (-4,0),B (2,0),C (0,83-),∴OA =4,OB =2,OC =83,AH =3,∴S 四边形ABCD =S △ADH +S 梯形DHOC +S △BOC =12AH ·HD +12(OC +HD )·OH +12OB ·OC =12×3×3+12×(83+3 )×1+12×2×83=10,∵直线l 将四边形ABCD 分为面积比为3:7,∴其中一部分面积为四边形ABCD 面积的310. ①当直线l 与AD 交于点M ,过点M 作MN ⊥x 轴于点N ,则S △AMH =310S 四边形ABCD =12AH ·MN =3,∴MN =2,∵MN ∥DH ,∴△AMN ∽△ADH ,AN MNAH DH=, AN =2,∴ON =2,∴N (-2,-2),设直线l 解析式为y =kx +b ,过N (-2,-2),H (-1,0),则220k b k b -=-+⎧⎨=-+⎩,解得22k b =⎧⎨=⎩,∴直线l 解析式为y =2x +2,②当直线l 与BC 交于点M ,过点M 作MN ⊥x 轴于点N ,则S △BMH =310S 四边形ABCD =12BH ·MN =3,∴MN =2,∵MN ∥OC ,∴△BMN ∽△BOC ,BN MN BO OC =,BN =32,∴ON =12,∴N (12,-2),设直线l 解析式为y =kx +b ,过N (12,-2),H (-1,0),则1220k b k b ⎧-=+⎪⎨⎪=-+⎩,解得4343k b ⎧=-⎪⎪⎨⎪=-⎪⎩,∴直线l 解析式为y =-43x -43,∴直线l 解析式为y =2x+2或y =-4x -4;⑶若存在直线l 以DP 为对角线的四边形DMPN 能否成菱形,则有DN ∥PM ,∵PQ 的中点为M ,∴DN ∥MQ ,∴四边形MNDQ 为平行四边形,设直线ND 的解析式为y =kx +b 1,过D (-1,-3),∴-3=-k +b 1,∴b 1=k -3,∴直线ND 的解析式为y =kx +k -3,∴231(1)33y kx k y x =+-⎧⎪⎨=+-⎪⎩,解得x N =3k -1,∴N (3k -1,3k 2-3).设直线PQ 的解析式为y =kx +b 2,过H (-1,0),得y =kx +k ,∴21(1)33y kx ky x =+⎧⎪⎨=+-⎪⎩,则kx +k =13(x +1)2-3,x 1+x 2=3k -2,∴x M =122x x +=322k -,x Q x M -x N =322k --3k -1,∵MN ∥DQ ,∴x M -x N =x Q -x D ,即322k --3k -1=+1,解得k =x N =3k -1=--1,∴y N =kx +k -3=1,∴N (-1,1),M (1,2),P (-1,6),此时,DN ∥PM 且DN =PM ,DN =DM =DMPN为菱形.综上所述,以DP 为对角线的四边形DMPN 能成为菱形,当四边形DMPN 为菱形时,点N 的坐标为(-1,1).【解后反思】本题在解答第⑵问时,由于不会把四边形的面积转化为三角形的面积而求解;第⑶问不会应用菱形的性质及中点得出DN ∥MQ 及MN ∥DQ ,从而无法找出等量关系,不能建立正确等量关系导致无法求解.一般在解决有关平行四边形顶点问题时,通常应用平行四边形对边平行且相等,用平移法可找到相邻顶点之间的联系. 【关键词】 二次函数的表达式;平行四边形的性质;相似三角形的性质;存在探索型问题4(四川乐山,26,13分)在直角坐标系xOy中,A(0,2)、B(-1,0),将△ABO经过旋转、平移变化后得到如图15.1所示的△BCD.(1)求经过A、B、C三点的抛物线的解析式;(2)连结AC,点P是位于线段BC上方的抛物线上一动点,若直线PC将△ABC的面积分成1:3两部分,求此时点P的坐标;(3)现将△ABO、△BCD分别向下、向左以1:2的速度同时平移,求出在此运动过程中△ABO与△BCD重叠部分面积的最大值.【逐步提示】(1)由旋转,平移得到C(1,1),用待定系数法求出抛物线解析式;(2)先判断出△BEF∽△BAO,再分两种情况进行计算,由面积比建立方程求解即可;(3)先由平移得到A1B1的解析式为y=2x+2-t,A1B1与x轴交点坐标为(22t,0).C1B2的解析式为y=12x+t+12,C1B2与y轴交点坐标为(0,t+12),再分两种情况进行计算即可.【详细解答】解:(1)∵A(0,2)、B(-1,0),将△ABO经过旋转、平移变化得到如图所示的△BCD,∴BD=OA=2,CD=OB=1,∠BDC=∠AOB=90°,∴C(1,1).设经过A 、B 、C 三点的抛物线解析式为y=ax 2+bx+c ,则有012a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得:a=-32,b=12,c=2.∴抛物线解析式为y=-32x 2+12x+2; (2)如图所示,设直线PC 与AB 交于点E.∵直线PC 将△ABC 的面积分成1:3两部分, ∴13AE BE =或3AEBE=, 过E 作EF ⊥OB 于点F ,则EF∥OA, ∴△BEF ∽△BAO,∴EF BE BFAO BA BO==, ∴当13AE BE =时,3241EF BF ==, ∴33,24EF BF ==,∴13(,)42E -.设直线PC 解析式为y=mx+n ,则可求得其解析式为y=-25x+75, ∴-32x 2+12x+2=-25x+75,∴x 1=-25,x 2=1(舍去), ∴P 1(-25,3925). 当3AE BE=时,同理可得P 2(-67,2349).(3)设△ABO 平移的距离为t ,△A 1B 1O 1与△B 2C 1D 1重叠部分的面积为S .可由已知求出A 1B 1的解析式为y=2x+2-t ,A 1B 1与x 轴交点坐标为(-22t ,0). C 1B 2的解析式为y=12x+t+12,C 1B 2与y 轴交点坐标为(0,t+12). ①如图所示,当0<t <35时,△A 1B 1O 1与△B 2C 1D 1重叠部分为四边形.设A 1B 1与x 轴交于点M ,C 1B 2与y 轴交于点N ,A 1B 1与C 1B 2交于点Q ,连结OQ.由221122y x t y x t =+-⎧⎪⎨=++⎪⎩,得43353t x t y -⎧=⎪⎪⎨⎪=⎪⎩,∴435(,)33t t Q -. ∴1251134()223223QMO QNO t t t S S S t ∆∆--=+=⨯⨯+⨯+⨯2131124t t =-++. ∴S 的最大值为2552. ②如图所示,当35≤t <45时,△A 1B 1O 1与△B 2C 1D 1重叠部分为直角三角形.设A 1B 1与x 轴交于点H ,A 1B 1与C 1D 1交于点G.则G(1-2t ,4-5t),12451222t t D H t --=+-=,145D G t =-. ∴21111451(45)(54)2224t S D H D G t t -==-=-. ∴当3455t ≤<时,S 的最大值为14.综上所述,在此运动过程中△ABO 与△BCD 重叠部分面积的最大值为2552. 【解后反思】本题是动态型压轴题,综合了二次函数、直角三角形、三角形相似的性质与判定、分类讨论等知识于一体,在探讨动态问题时,首先要对运动过程做一个全面的分析,弄清楚运动过程中的变量和常量,变量反映了运动变化关系,常量则是问题求解的重要依据.其次,要分清运动过程中不同的情况,时刻注意分类讨论,不同的情况下题目是否有不同的表现.解决压轴题,既需要坚实的基础知识作功底,也需要严密的思维分析问题,更需要灵活的方法处理细节,还需要概括的数学思想方法作统领.【关键词】待定系数法求解析式;三角形相似的性质和判定;分类讨论思想5. ( 四川省绵阳市,24,12分)如图,抛物线y =2ax bx c ++(a ≠0)与x 轴交于A ,B 两点,与y 轴交于C (0,3),且此抛物线的顶点坐标为M (-1,4). (1)求此抛物线的解析式;(2)设点D 为已知抛物线对称轴上的任意—点,当△ACD 与△ACB 面积相等时,求点D 的坐标;(3)点P 在线段AM 上,当PC 与y 轴垂直时,过点P 作x 轴的垂线,垂足为E ,将△PCE 沿直线CE 翻折,使点P 的对应点P ′与P ,E ,C 处在同一平面内,请求出点P ′坐标,并判断点P ′是否在该抛物线上.【逐步提示】本题是一道综合题,考查的知识较多,解答时要充分利用数形结合思想,注重“数”与“形”的转化进行求解.在进行点的坐标与线段长度转化时,要防止符号出错.(1)已知顶点M (-1,4),利用顶点式求函数解析式.(2)利用(1)中求得的解析式求出△ABC 的面积,求出直线AC 的函数解析式y =3x +及点F 的坐标(-1,2).设点D (-1,D y ),利用割补法得到△ACD 的面积(用含D y 的式子表示),最后根据△ACD 与△ACB 面积相等列方程求出D y ,得到点D 的坐标.(3)记EP ′交y 轴于点N ,可得△NCE 是等腰三角形.再求出点P 的坐标,得到PC ,PE 长.设NC =NE =m ,在Rt △OEN 中利用勾股定理可求得m 的值,从而知道NC ,NE ,NP ′的长.过点P ′作P ′H ⊥y 轴于点H ,在Rt △CNP ′中利用面积法求得斜边上的高P ′H 的长,得到点P ′的横坐标.在Rt △CHP ′利用勾股定理求出CH 长,进而求出OH 长,得到点P ′的纵坐标,最后将点P ′的坐标代入抛物线解析式,不成立,点P ′不在抛物线上. 【详细解答】解:设抛物线的解析式为y =2()a x h k ++. ∵顶点为M (-1,4), ∴y =214()a x ++. ∵抛物线经过点C (0,3), ∴3=2014()a ++. 解得a =-1.∴抛物线的解析式为y =214()x -++,即y =223x x --+. (2)令y =223x x --+=0,解得x =-3或x =1. ∴A (-3,0),B (1,0).∴OA =OC =3,△AOC 为等腰直角三角形. 设AC 交对称轴x =-1于F (-1,F y ). 易得F y =2,故点F (-1,2). 设点D 坐标为(-1,D y ).则S△ADC=12DF·AO=12×2Dy-×3.又S△ABC=12AB·OC=12×4×3=6,由12×2Dy-×3=6得:2Dy-=4,故Dy=-2或Dy=6.∴点D坐标为(-1,-2)或(-1,6).(3)如图,点P′为点P关于直线CE的对称点,过点P′作P′H⊥y轴于H,设P′E交y轴于点N.在△EON和△CP′N中,90CNP ENOCP N EONP C PC OE'∠=∠⎧⎪'∠=∠=︒⎨⎪'==⎩,∴△CP′N≌△EON.设NC=m,则NE=m.易得直线AM的解析式为y=26x+.当y=3时,x=32-.∴点P(32-,3).∴P′C=PC=32,P′N=3m-.在Rt△P′NC中,由勾股定理,得223()(3)2m+-=2m.解得m=158.∵S△P′NC=12CN·P′H=12P′N·P′C,∴P′H=910.在Rt△CHP′中,CH65.∴OH=3-65=95.∴P′的坐标是(910,95).将点P ′(910,95)的坐标代入抛物线解析式,不成立. ∴点P ′不在该抛物线上.【解后反思】(1)求二次函数的解析式,要选择恰当的解析式求解.已知抛物线的顶点坐标,一般选用顶点式;已知抛物线与x轴的两个交点横坐标,一般选用交点式;已知任意三点坐标,一般选用一般式.(2)遇到三角形的面积要联想到下面的方法:①直接运用三角形的面积公式;②如图,对于△ABC ,过三角形的一个顶点作铅垂线,交对边或对边的延长线于D ,记AD 的长为h ,作出另外两个顶点的水平距离l (如图),则△ABC 的面积为12hl .(3)直角坐标系中如果有直角,要联想含直角的相似三角形基本图形,主要有以下几种:【关键词】二次函数;待定系数法;二次函数的表达式;面积法;数形结合思想;化归思想.CD AB hl。

九年级数学辅导: 二次函数的应用

九年级数学辅导: 二次函数的应用

二次函数的应用【知识要点】二次函数应用⎧⎪⎨⎪⎩刹车距离何时获得最大利润最大面积是多少能运用二次函数的图像和性质解决一些贴近生活的实际问题.在解决实际问题时,首先要认真阅读题目,审清题意,建立数学模型,转化为数学问题进行求解,最后得到实际问题的解.在一些涉及到变量的最大值或最小值的应用问题中,可以考虑利用二次函数最值方面的性质去解决。

步骤:第一步设自变量;第二步建立函数的解析式;第三步确定自变量的取值范围;第四步根据顶点坐标公式或配方法求出最大值或最小值(注意:在自变量的取值范围内)。

【经典例题】例1.(2006年旅顺口区)如图,已知边长为4的正方形截去一个角后成为五边形ABCDE,其中AF=2,BF=1.试在AB上求一点P,使矩形PNDM有最大面积.例2.某产品每件成本10元,试销阶段每件产品的销售价x(元)•与产品的日销售量y(件)之间的关系如下表:x(元)15 20 30 …y(件)25 20 10 …若日销售量y是销售价x(1)求出日销售量y(件)与销售价x(元)的函数关系式;(2)要使每日的销售利润最大,每件产品的销售价应定为多少元?•此时每日销售利润是多少元?例3.一个球从地面上竖直向上弹起时的速度为10m/s,经过t(s)时求的高度为h(m)。

已知物体竖直上抛运动中,h=v0t-12gt2 (v0表示物体运动上弹开始时的速度,g表示重力系数,取g=10m/s2)。

问(1)球从弹起至回到地面需多少时间?(2)经多少时间球的高度达到3.75m?例4.B船位于A船正东26km处,现在A、B两船同时出发,A船以每小时12km 的速度朝正北方向行驶,B船以每小时5km的速度向正西方向行驶,何时两船相距最近?最近距离是多少?例5.某跳水运动员进行10米跳台跳水训练时,身体(看成一点)在空中的运动路线是如图所示坐标系下经过原点O 的一条抛物线(图中标出的数据为已知条件)。

在跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面1023米,入水处距池边的距离为4米,同时,运动员在距水面高度为5米以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误。

中考重点二次函数的应用

中考重点二次函数的应用

中考重点二次函数的应用二次函数的应用在中考中是一个重点考察的内容。

二次函数是一种常见的数学模型,它可以描述抛物线的形状和变化规律。

掌握二次函数的应用,不仅可以帮助我们解决实际问题,还可以提高我们的数学思维和问题解决能力。

1. 图像的性质和变化规律:二次函数的标准形式为:$y=ax^2+bx+c$,其中$a$、$b$、$c$为实数且$a \neq 0$。

当$a>0$时,抛物线开口朝上;当$a<0$时,抛物线开口朝下。

抛物线的顶点坐标为$(-\frac{b}{2a},-\frac{\Delta}{4a})$,其中$\Delta=b^2-4ac$为判别式,用来确定抛物线与$x$轴的交点个数和位置。

当$\Delta>0$时,抛物线与$x$轴有两个交点;当$\Delta=0$时,抛物线与$x$轴有一个交点;当$\Delta<0$时,抛物线与$x$轴没有交点。

根据顶点坐标和开口方向,可以确定抛物线的图像。

2. 求解问题:二次函数的应用主要涉及到求解实际问题。

比如下面的例题:例题1:一辆汽车以每小时80千米的速度行驶,从起点开始,经过2小时后到达目的地,求汽车在2小时内行驶的距离。

解析:设汽车行驶的距离为$y$千米,行驶的时间为$x$小时。

根据已知条件,可以建立二次函数模型:$y=80x$。

代入$x=2$,可以得到汽车在2小时内行驶的距离为$y=80\times2=160$千米。

例题2:甲、乙两地的距离为100千米,两辆汽车同时从两地出发,甲地汽车的速度为每小时60千米,乙地汽车的速度为每小时80千米,问多长时间后两辆汽车相遇?解析:设两辆汽车相遇的时间为$x$小时,则甲地汽车行驶的距离为$60x$千米,乙地汽车行驶的距离为$80x$千米。

根据已知条件,可以建立二次函数模型:$60x+80x=100$。

化简得到$140x=100$。

解方程可得$x=\frac{10}{14}=\frac{5}{7}$小时,即两辆汽车在$\frac{5}{7}$小时后相遇。

中考数学总复习《第十八讲 二次函数的应用》课件 新人教版

中考数学总复习《第十八讲 二次函数的应用》课件 新人教版

解 (1)设 AD,GH 交于点 M, ∵四边形 EFGH 为矩形,∴GH∥BC, 又∵AD⊥BC,∴AM⊥GH. ∴△AHG∽△ABC,∴GBCH=AAMD ,即2x4=A1M6 .
∴AM=23x,∵四边形 EDMH 为矩形,
∴HE=MD=AD-AM=16-23x(0<x<24). (2)∵四边形 EFGH 为矩形, ∴y=GH·HE=x16-23x,
抛物线型问题
解决此类问题的关键是建立恰当的_平__面__直__角__坐__标__系_, 应用数形结合的思想,实现图形上的点与坐标之间的 转化.
名师助学 1.解决抛物线型问题时应根据题目中的条件建立
恰当的坐标系; 2.解方程组的思想是消元,包含代入消元法和加
减消元法.
对 接中 考
对接点一:应用二次函数性质,解决实际 问题中的最值问题
(1)请分别求出上述的正比例函数表达式与二次函数 的表达式. (2)如果企业同时对A、B两种产品共投资10万元,请 你设计一个能获得最大利润的投资方案,并求出按 此方案能获得的最大利润是多少.
解 (1)当 x=5 时,yA=2,2=5k,k=0.4, ∴yA=0.4x. 当 x=2 时,yB=2.4;当 x=4 时,yB=3.2. ∴32..24==146a+ a+24b, b,解得ab= =-1.60,.2, ∴yB=-0.2x2+1.6x.
即 y=-23x2+16x=-23(x-12)2+96.
∵a=-23<0,∴抛物线开口向下,有最大值. ∴当 x=12 cm 时,y 的值最大,最大值为 96 cm2.
【预测2】 某企业信息部进行市场调研发现: 信息一:如果单独投资A种产品,则所获利润yA(万元)与 投资金额x(万元)之间存在正比例函数关系:yA=kx,并 且当投资5万元时,可获得利润2万元; 信息二:如果单独投资B种产品,则所获利润yB(万元)与 投资金额x(万元)之间存在二次函数关系:yB=ax2+ bx,并且当投资2万元时,可获利润2.4万元;当投资4万 元时,可获利润3.2万元.

(中考数学复习)第18讲-二次函数综合应用-课件-解析

(中考数学复习)第18讲-二次函数综合应用-课件-解析
图18-7 (1)当h=2.6时,求y与x的关系式(不要求写出自变量x的取值 范围);
基础知识 · 自主学习 题组分类 · 深度剖 课堂回顾 · 巩固提升
浙派名师中考 (2)当h=2.6时,球能否越过球网?球会不会出界?请说明理 由; (3)若球一定能越过球网,又不出边界,求h的取值范围. 解:(1)把x=0,y=2,及h=2.6代入到y=a(x-6)2+h中,
B.4 s
C.3 s
D.2 s
B
基础知识 · 自主学习 题组分类 · 深度剖 课堂回顾 · 巩固提升
浙派名师中考 B
图18-1
基础知识 · 自主学习 题组分类 · 深度剖 课堂回顾 · 巩固提升
浙派名师中考

4.(2013·宁波)如图18-2所示,二次函数y=ax2+bx+c的图象
开口向上,对称轴为直线x=1,图象经过(3,0),下列结论
中,正确的一项是
( D )
图18-2 A.abc<0 B.2a+b<0 C.a-b-c<0 D.4ac-b2<0
基础知识 · 自主学习 题组分类 · 深度剖
课堂回顾 · 巩固提升
浙派名师中考
5.某公园草坪的防护栏是由100段形状相同的抛物线组成 的.为了牢固起见,每段护栏需要间距0.4 m加设一根不锈 钢的支柱,防护栏的最高点距底部0.5 m(如图18-3所示), 则这条防护栏需要不锈钢支柱的总长度至少为 ( C )
函数图象得
∴函数关系式为y=-x+180.
基础知识 · 自主学习 题组分类 · 深度剖
课堂回顾 · 巩固提升
浙派名师中考
(2)写出每天的利润W与销售单价x之间的函数关系式;若你是 商场负责人,会将售价定为多少,来保证每天获得的利润最 大,最大利润是多少? 解: W=(x-100)y=(x-100)(-x+180) =-x2+280x-18 000 =-(x-140) 2+1 600, 当售价定为140元,W最大=1 600. ∴售价定为140元/件时,每天最大利润W=1 600元.

2019年秋九年级数学复习课件:第五单元 第18课时 二次函数的应用

3mndc3根据抛物线的对称性可知抛物线f2的顶点在nd的垂直平分线上又xnmxd8线抛物线f2为的对称轴为xm8212m4线抛物线f2的顶点坐标为????????????12m4k线抛物线f2为的表达式为y14????????????x12m42k把把c83代入得14????????????812m42k3得解得k116m823k是关于m的二次函数又m8在对称轴的左侧k随随m的增大而增大当当k2时116m8232思维升华利用二次函数解决抛物线型问题一般是先根据实际问题的特点建立直角坐标系设出合适的二次函数的表达式把实际问题的已知条件转化为点的坐标代入表达式求解最后要把求出的结果转化为实际问题的答案
解得 m1=4,m2=12(不符合题意,舍去), 当 k=2.5 时,-116(m-8)2+3=2.5,
解得 m1=8-2 2,m2=8+2 2(不符合题意,舍去),
∴m 的取值范围是 4≤m≤8-2 2.
– 思维升华 利用二次函数解决抛物线型问题,一般是先根据 实际问题的特点建立直角坐标系,设出合适的二次函数的表 达式,把实际问题的已知条件转化为点的坐标,代入表达式 求解,最后要把求出的结果转化为实际问题的答案.
• 2.[2017·临沂]足球运动员将足球沿与地面成 一定角度的方向踢出,足球飞行的路线是一 条抛物线,不考虑空气阻力,足球距离地面 的高度h(单位:m)与足球被踢出后经过的时 间tt(单位0 :1s)之2间的3关系4如下5表:6 7 …
h 0 8 14 18 20 20 18 4 …
下列结论:①足球距离地面的最大高度为 20 m;②足球飞行路
– 综上所述,正确结论的个数是2.
• 3.竖直上抛的小球离地高度是它运动时间的 二次函数,小军相隔1 s依次竖直向上抛出两

2021年中考数学 专题汇编:二次函数的实际应用(含答案)

2021中考数学专题汇编:二次函数的实际应用一、选择题(本大题共10道小题)1. 某商品进货单价为90元/个,按100元/个出售时,能售出500个,如果这种商品每个每涨价1元,那么其销售量就减少10个,为了获得最大利润,其单价应定为()A.130元/个B.120元/个C.110元/个D.100元/个2. 某企业生产季节性产品,当产品无利润时,企业自动停产,经过调研,它一年中每月获得的利润y(万元)和月份n之间满足函数关系式y=-n2+12n-11,则企业停产的月份为()A.1月和11月B.1月、11月和12月C.1月D.1月至11月3. 北中环桥是省城太原的一座跨汾河大桥,它由五个高度不同,跨径也不同的抛物线型钢拱通过吊杆,拉索与主梁相连.最高的钢拱如图所示,此钢拱(近似看成二次函数的图象——抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A,B两点,拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为x轴建立平面直角坐标系,则此抛物线型钢拱的函数表达式为()A.y=x2B.y=-x2C.y=x2D.y=-x24. 如图,利用一个直角墙角修建一个梯形储料场ABCD,其中∠C=120°.若新建墙BC与CD总长为12 m,则该梯形储料场ABCD的最大面积是()A.18 m2B.18m2C.24m2D.m25. 从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位: s)之间的函数关系如图所示.下列结论:①小球在空中经过的路程是40 m;②小球抛出3秒后,速度越来越快;③小球抛出3秒时速度为0;④小球的高度h=30 m时,t=1.5 s.其中正确的是()A.①④B.①②C.②③④D.②③6. 某公园草坪的防护栏是由100段形状相同的抛物线组成的.为了牢固起见,每段防护栏需要间距0.4 m加设一根不锈钢的支柱,防护栏的最高点距底部0.5 m(如图),则这条防护栏需要不锈钢支柱的总长度至少为()A.50 m B.100 mC.160 m D.200 m7. 如图,将一个小球从斜坡的点O处抛出,小球的抛出路线可以用二次函数y=4x-x2刻画,斜坡可以用一次函数y=x刻画,下列结论错误的是()A .当小球抛出高度达到7.5 m 时,小球距O 点水平距离为3 mB .小球距O 点水平距离超过4 m 时呈下降趋势C .小球落地点距O 点水平距离为7 mD .斜坡的坡度为1∶28. 中环桥是省城太原的一座跨汾河大桥(如图①),它由五个高度不同,跨径也不同的抛物线形钢拱通过吊杆,拉索与主梁相连.最高的钢拱如图②所示,此钢拱(近似看成二次函数的图象——抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A ,B 两点,拱高为78米(即最高点O 到AB 的距离为78米),跨径为90米(即AB =90米),以最高点O 为坐标原点,以平行于AB 的直线为x 轴建立平面直角坐标系.则此抛物线形钢拱的函数解析式为( )A .y =26675x 2 B .y =-26675x 2 C .y =131350x 2D .y =-131350x 29. 如图,将一个小球从斜坡上的点O 处抛出,小球的抛出路线可以用二次函数y=4x -12x 2刻画,斜坡可以用一次函数y =12x 刻画,下列结论错误的是( )A .当小球抛出高度达到7.5 m 时,小球距点O 的水平距离为3 mB .小球距点O 的水平距离超过4 m 后呈下降趋势C .小球落地点距点O 的水平距离为7 mD .小球距点O 的水平距离为2.5 m 和5.5 m 时的高度相同10. 在羽毛球比赛中,羽毛球的运动路线可以看作是抛物线y =-14x 2+bx +c 的一部分(如图),其中出球点B 离地面点O 的距离是1 m ,球落地点A 到点O 的距离是4 m ,那么这条抛物线的解析式是( )A .y =-14x 2+34x +1B .y =-14x 2+34x -1C .y =-14x 2-34x +1D .y =-14x 2-34x -1二、填空题(本大题共8道小题)11. 某商店从厂家以每件21元的价格购进一批商品,该商品可以自行定价,若每件商品的售价为a 元,则可卖出(350-10a )件.但物价部门限定每件商品加价不能超过进价的40%,若商店想获得最大利润,则每件商品的价格应定为________元.12. 如图,一块矩形土地ABCD 由篱笆围着,并且由一条与CD 边平行的篱笆EF分开.已知篱笆的总长为900 m(篱笆的厚度忽略不计),当AB= m 时,矩形土地ABCD 的面积最大.13. 某种商品每件的进价为20元,经调查表明:在某段时间内若以每件x 元(20≤x ≤30,且x 为整数)出售,则可卖出(30-x )件.若要使销售利润最大,则每件的售价应为________元.14. 某服装店购进单价为15元的童装若干件,销售一段时间后发现:当销售价为25元时平均每天能售出8件,而当销售价每降低2元时,平均每天能多售出4件,当每件的定价为 元时,该服装店平均每天的销售利润最大.15. 飞机着落后滑行的距离s(单位:米)关于滑行时间t(单位:秒)的函数解析式是s=60t-32t2,则飞机着落后滑行的最长时间为________秒.16. 某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1 m宽的门.已知计划中的材料可建墙体总长为27 m,则能建成的饲养室总占地面积最大为________m2.17. 如图所示是一座抛物线形拱桥,当水面宽为12 m时,桥拱顶部离水面4 m,以水平方向为x轴,建立平面直角坐标系.若选取点A为坐标原点时的抛物线解析式为y=-19(x-6)2+4,则选取点B为坐标原点时的抛物线解析式为________________.18. 如图是某地一座抛物线形拱桥,桥拱在竖直平面内与水平桥面相交于A,B 两点,桥拱最高点C到AB的距离为9 m,AB=36 m,D,E为桥拱底部的两点,且DE∥AB,点E到直线AB的距离为7 m,则DE的长为________m.三、解答题(本大题共4道小题)19. 某商店销售一种商品,经市场调查发现,该商品的周销售量y(件)是售价x(元/件)的一次函数,其售价、周销售量、周销售利润w(元)的三组对应值如下表:售价x(元/件) 50 60 80周销售量y(件) 100 80 40周销售利润w(元)1000 1600 1600注:周销售利润=周销售量×(售价-进价)(1)①求y关于x的函数解析式(不要求写出自变量的取值范围);②该商品进价是元/件;当售价是元/件时,周销售利润最大,最大利润是元;(2)由于某种原因,该商品进价提高了m元/件(m>0),物价部门规定该商品售价不得超过65元/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是1400元,求m的值.20. 把一个足球垂直于水平地面向上踢,时间为t(秒)时该足球距离地面的高度h(米),适用公式h=20t-5t2(0≤t≤4).(1)当t=3时,求足球距离地面的高度;(2)当足球距离地面的高度为10米时,求t的值;(3)若存在实数t1和t2(t1≠t2),当t=t1或t2时,足球距离地面的高度都为m(米),求m的取值范围.21. 旅游公司在景区内配置了50辆观光车供游客租赁使用,假定每辆观光车一天内最多只能出租一次,且每辆车的日租金x(元)是5的倍数.发现每天的运营规律如下:当x不超过100元时,观光车能全部租出;当x超过100元时,每辆车的日租金每增加5元,租出去的观光车就会减少1辆.已知所有观光车每天的管理费是1100元.(1)优惠活动期间,为使观光车全部租出且每天的净收入为正,则每辆车的日租金至少应为多少元?(注:净收入=租车收入-管理费)(2)当每辆车的日租金为多少元时,每天的净收入最多?22. (2019•辽阳)我市某化工材料经销商购进一种化工材料若干千克,成本为每千克30元,物价部门规定其销售单价不低于成本价且不高于成本价的2倍,经试销发现,日销售量y(千克)与销售单价x(元)符合一次函数关系,如图所示.(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)若在销售过程中每天还要支付其他费用450元,当销售单价为多少时,该公司日获利最大?最大获利是多少元?2021中考数学专题汇编:二次函数的实际应用-答案一、选择题(本大题共10道小题)1. 【答案】B[解析] 设利润为y元,涨价x元,则有y=(100+x-90)(500-10x)=-10(x-20)2+9000,故每个商品涨价20元,即单价为120元/个时,获得最大利润.2. 【答案】B[解析] 由题意知,利润y和月份n之间的函数关系式为y=-n2+12n-11,∴y=-(n-6)2+25,当n=1时,y=0;当n=11时,y=0;当n=12时,y<0.故停产的月份是1月、11月和12月.故选B.3. 【答案】B[解析]设二次函数的表达式为y=ax2,由题可知,点A的坐标为(-45,-78),代入表达式可得:-78=a×(-45)2,解得a=-,∴二次函数的表达式为y=-x2,故选B.4. 【答案】C[解析]如图,过点C作CE⊥AB于E,设CD=x,则四边形ADCE为矩形,CD=AE=x,∠DCE=∠CEB=90°,∠BCE=∠BCD-∠DCE=30°,BC=12-x.在Rt△CBE中,∵∠CEB=90°,∴BE=BC=6-x,∴AD=CE=BE=6x,AB=AE+BE=x+6-x=x+6,∴梯形ABCD的面积=(CD+AB)·CE=x+x+6·6x=-x2+3x+18=-(x-4)2+24,=24,即CD长为4 m时,使梯形储料场ABCD的面积最大,∴当x=4时,S最大最大面积为24m2,故选C.5. 【答案】D[解析]①由图象知小球在空中达到的最大高度是40 m,故①错误;②小球抛出3秒后,速度越来越快,故②正确;③小球抛出3秒时达到最高点即速度为0,故③正确;④设函数解析式为:h=a(t-3)2+40,把O(0,0)代入得0=a(0-3)2+40,解得a=-,∴函数解析式为h=-(t-3)2+40.把h=30代入解析式得,30=-(t-3)2+40,解得t=4.5或t=1.5,∴小球的高度h=30 m时,t=1.5 s或4.5 s,故④错误,故选D.6. 【答案】C[解析] 以2 m长线段所在直线为x轴,以其垂直平分线为y轴建立平面直角坐标系,求出抛物线的解析式,再求出不锈钢支柱的长度.7. 【答案】A[解析]根据函数图象可知,当小球抛出的高度为7.5 m时,二次函数y=4x-x2的函数值为7.5,即4x-x2=7.5,解得x1=3,x2=5,故当抛出的高度为7.5 m时,小球距离O点的水平距离为3 m或5 m,A结论错误;由y=4x-x2,得y=-(x-4)2+8,则抛物线的对称轴为直线x=4,当x>4时,y随x值的增大而减小,B结论正确;联立方程y=4x-x2与y=x,解得或则抛物线与直线的交点坐标为(0,0)或7,,C结论正确;由点7,知坡度为∶7=1∶2也可以根据y=x中系数的意义判断坡度为1∶2,D结论正确.故选A.8. 【答案】B[解析] 设二次函数的解析式为y =ax 2.由题可知,点A 的坐标为(-45,-78),代入解析式可得-78=a(-45)2,解得a =-26675,∴二次函数解析式为y =-26675x 2.故选B.9. 【答案】A[解析] 令y =7.5,得4x -12x 2=7.5.解得x 1=3,x 2=5.可见选项A错误.由y =4x -12x 2得y =-12(x -4)2+8,∴对称轴为直线x =4,当x >4时,y 随x 的增大而减小,选项B 正确.联立y =4x -12x 2与y =12x ,解得⎩⎨⎧x =0,y =0或⎩⎪⎨⎪⎧x =7,y =72.∴抛物线与直线的交点坐标为(0,0),⎝ ⎛⎭⎪⎫7,72,可见选项C 正确.由对称性可知选项D 正确.综上所述,只有选项A 中的结论是错误的,故选A.10. 【答案】A [解析] A ,B 两点的坐标分别为(4,0),(0,1),把(4,0),(0,1)分别代入y =-14x 2+bx +c ,求出b ,c 的值即可.二、填空题(本大题共8道小题)11. 【答案】28 [解析] 设商店所获利润为y 元.根据题意,得 y =(a -21)(350-10a)=-10a 2+560a -7350=-10(a -28)2+490, 即当a =28时,可获得最大利润.又21×(1+40%)=21×1.4=29.4,而28<29.4,所以a =28符合要求. 故商店应把每件商品的价格定为28元,此时可获得最大利润.12. 【答案】150 [解析]设AB=x m ,矩形土地ABCD 的面积为y m 2,由题意,得y=x ·=-(x -150)2+33750,∵-<0,∴该函数图象开口向下,当x=150时,该函数有最大值.即AB=150 m 时,矩形土地ABCD 的面积最大.13. 【答案】25[解析] 设利润为w 元,则w =(x -20)(30-x)=-(x -25)2+25.∵20≤x≤30,∴当x =25时,二次函数有最大值25.14. 【答案】22[解析]设每件的定价为x 元,每天的销售利润为y 元.根据题意,得y=(x -15)[8+2(25-x )]=-2x 2+88x -870. ∴y=-2x 2+88x -870=-2(x -22)2+98. ∵a=-2<0, ∴抛物线开口向下,∴当x=22时,y 最大值=98.故答案为22.15. 【答案】20 [解析] 滑行的最长时间实际上是求顶点的横坐标.∵s =60t -32t2=-32(t -20)2+600,∴当t =20时,s 的最大值为600.16. 【答案】75[解析] 设与墙垂直的一边的长为x m ,则与墙平行的一边的长为27-(3x -1)+2=(30-3x)m.因此饲养室总占地面积S =x(30-3x)=-3x 2+30x ,∴当x =-302×(-3)=5时,S 最大,S最大值=-3×52+30×5=75.故能建成的饲养室总占地面积最大为75 m 2.17. 【答案】y =-19(x +6)2+418. 【答案】48[解析] 建立如图所示的平面直角坐标系,设AB 与y 轴交于点H.∵AB=36 m,∴AH=BH=18 m.由题可知:OH=7 m,CH=9 m,∴OC=9+7=16(m).设该抛物线的解析式为y=ax2+k.∵抛物线的顶点为C(0,16),∴抛物线的解析式为y=ax2+16.把(18,7)代入解析式,得7=18×18a+16,∴7=324a+16,∴a=-1 36,∴y=-136x2+16.当y=0时,0=-136x2+16,∴-136x2=-16,解得x=±24,∴E(24,0),D(-24,0),∴OE=OD=24 m,∴DE=OD+OE=24+24=48(m).三、解答题(本大题共4道小题)19. 【答案】解:(1)①设y与x的函数关系式为y=kx+b,依题意,有解得∴y与x的函数关系式是y=-2x+200..②设进价为t元/件,由题意,1000=100×(50-t),解得t=40,∴进价为40元/件; 周销售利润w=(x-40)y=(x-40)(-2x+200)=-2(x-70)2+1800,故当售价是70元/件时,周销售利润最大,最大利润是1800元.故答案为40,70,1800.(2)依题意有,w=(-2x+200)(x-40-m)=-2x2+(2m+280)x-8000-200m=-2x-2+m2-60m+1800.∵m>0,∴对称轴x=>70,∵-2<0,∴抛物线开口向下,∵x ≤65,∴w 随x 的增大而增大,∴当x=65时,w 有最大值(-2×65+200)(65-40-m ),∴(-2×65+200)(65-40-m )=1400,∴m=5.20. 【答案】解:(1)当t =3时,h =20t -5t 2=20×3-5×9=15(米),∴此时足球距离地面的高度为15米.(2分)(2)∵h =10,∴20t -5t 2=10,即t 2-4t +2=0,解得t 1=2+2,t 2=2-2,∴经过2+2或2- 2 秒时,足球距离地面的高度为10米.(4分)(3)∵m≥0,由题意得t 1和t 2是方程20t -5t 2=m 的两个不相等的实数根, ∴b 2-4ac =(-20)2-20m >0,∴m <20,∴m 的取值范围是0≤m <20.(8分)21. 【答案】解:(1)由题意知,若观光车能全部租出,则0<x ≤100,由50x -1100>0,(2分)解得x>22,(3分)又∵x 是5的倍数,∴每辆车的日租金至少应为25元.(5分)(2)设每天的净收入为y 元,当0<x ≤100时,y 1=50x -1100,(6分)∵y 1随x 的增大而增大,∴当x =100时,y 1的最大值为50×100-1100=3900;(8分)当x>100时,y 2=(50-x -1005)x -1100=-15x 2+70x -1100=-15(x -175)2+5025.(9分)∴当x =175时,y 2的最大值是5025,∵5025>3900,∴当每辆车的日租金为175元时,每天的净收入最多是5025元.(10分)22. 【答案】(1)设一次函数关系式为(0)y kx b k =+≠,由图象可得,当30x =时,140y =;50x =时,100y =,∴1403010050k b k b =+⎧⎨=+⎩,解得2200k b =-⎧⎨=⎩, ∴y 与x 之间的关系式为2200(3060)y x x =-+≤≤.(2)设该公司日获利为W 元,由题意得2(30)(2200)4502(65)2000W x x x =--+-=--+,∵20a =-<,∴抛物线开口向下,∵对称轴65x =,∴当65x <时,W 随着x 的增大而增大,∵3060x ≤≤,∴60x =时,W 有最大值,22(6065)200015=90W -⨯-+=最大值.即,销售单价为每千克60元时,日获利最大,最大获利为1950元.。

2025年中考数学复习专题+ 二次函数的实际应用课件


本题主要考查商品利润的计算方法,把实际问题转化为二次
函数,列出二次函数解析式,根据题意分情况建立二次函数模型并利用
最值问题是解决问题的关键.
1.(2024·贵州第24题12分)某超市购入一批进价为10元/盒的糖果进行销售,
经市场调查发现:销售单价不低于进价时,日销售量y (单位:盒)与销售单
价x(单位:元)是一次函数关系,下表是y与x的几组对应值.
∴当x=25时,w有最大值为450,
∴糖果销售单价定为25元时,所获日销售利润最大,最大利润是450元.
(3)设日销售利润为w元,根据题意,得
w=(x-10-m)·y=(x-10-m)(-2x+80)
=-2x2+(100+2m)x-800-80m,
100+2 50+
∴当x=-

2× −2
2
w有最大值为-2
问题:
Ⅰ)修建一个“”型栅栏,如图②,点P2,P3在抛物线AED上.设点P1的横坐标
为m(0<m≤6),求栅栏总长l与m之间的函数解析式和l的最大值;
Ⅱ)现修建一个总长为18 m的栅栏,有如图③所示的“
”型和“
”型两种
设计方案,请从中选择一种,求出该方案下矩形P1P2P3P4面积的最大值,及
取最大值时点P1的横坐标的取值范围(点P1在点P4右侧).
【分层分析】用含x的代数式表示矩形的长、宽,根据矩形的面积公式列
方程求解即可.
解:Ⅰ)由题知EF=14-2x-(x-1)=(15-3x)m.
∵AB=3,∴EF≤3,即15-3x≤3,解得x≥4.
Ⅱ)根据题意,得x(15-3x)=12,
解得x1=4,x2=1(不符合题意,舍去).
答:此时DF的长为4 m.

人教版九年级中考数学总复习课件第18课时 二次函数的应用(共20张PPT)


0.5m
C
∵a 2 0
1m
∴ y 有最小值
O
2m
2.5m
x
∴当 x 0 时, y最小值 =0.5 答:绳子的最低点距地面的距离为 0.5 米.
考点 2:利用二次函数解决实际问题
解决 方法 或步 骤
①分析问题建立模型; ②设自变量建立函数解析式; ③确定自变量的取值范围; ④应用配方法得到顶点式,在自变量的取值范围 内求出最大值或最小值.
润为 y 元,依题意,得
y (50 1 x)(180 x 20) 10

1 x2 34 x 8000 10

a
1 10
0
∴ y 有最大值
∴当
x
b 2a
170
时,y
有最大值
这时房价为 180 170 350 元
答:每个房价的房价定为 350 元时,宾馆每天利润最大.
5.[2017 济宁中考]某商店经销一种双肩包,已知 这种双肩包的成本价为每个 30 元.市场调查发 现,这种双肩包每天的销售量 y(单位:个)与销 售单价 x(单位:元)有如下关系: y x 60
3
2
即水柱的最大高度为 8 米. 3
O
3x
3.[变式如图,小明的父亲在相距 2 米的两棵树间
拴了一根绳子,给他做了一个简易的秋千,拴绳
子的地方 A 、 B 距地面都是 2.5 米,绳子自然下
垂呈抛物线状,身高 1 米的小明距较近的那棵树
0.5 米时,头部刚好接触到绳子 C 处,求绳子的最
低点距地面的距离为多少米?
You have to believe in yourself. That's the secret of success. 人必须相信自己,这是成功的秘诀。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第18课时 二次函数的应用(60分)一、选择题(每题6分,共12分)1.图18-1②是图①中拱形大桥的示意图,桥拱与桥面的交点为O ,B ,以点O 为原点,水平直线OB 为x 轴,建立平面直角坐标系,桥的拱形可以近似看成抛物线y =-(x -80)2+16,桥拱与桥墩AC 的交点C 恰好在水面,且1400有AC ⊥x 轴,若OA =10 m ,则桥面离水面的高度AC 为( B )图18-1A .16 m B. m 940174C .16 m D. m 740154【解析】 ∵AC ⊥x 轴,OA =10 m ,∴点C 的横坐标为-10.当x =-10时,y =-(x -80)2+16=-×(-10-80)2+16=-,∴点C 的坐标为14001400174,∴桥面离水面的高度AC 为 m.(-10,-174)1742.[2017·临沂]足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线,不考虑空气阻力,足球距离地面的高度h (单位:m)与足球被踢出后经过的时间t (单位:s)之间的关系如下表:t01234567…h 0814182020184…下列结论:①足球距离地面的最大高度为20 m ;②足球飞行路线的对称轴是直线t =;③足球被踢出9 s 时落地;④足球被踢出1.5 s 时,距离地面的92高度是11 m .其中正确结论的个数是 ( B )A .1B .2C .3D .4【解析】 利用待定系数法可求出二次函数表达式;将函数表达式配方成顶点式可得对称轴和足球距离地面的最大高度;求出h =0时t 的值,即可得足球的落地时间;求出t =1.5 s 时h 的值,即可对④作出判断.由表格可知抛物线过点(0,0),(1,8),(2,14),设该抛物线的表达式为h =at 2+bt ,将点(1,8),(2,14)分别代入,得解得∴h {a +b =8,4a +2b =14,){a =-1,b =9.)=-t 2+9t =-+,则足球距离地面的最大高度为 m ,对称轴(t -92)2 814814是直线t =,①错误、②正确;∵h =-t 2+9t =0,∴当h =0时,t =0或929,③正确;当t =1.5 s 时,h =-t 2+9t =11.25,④错误.综上所述,正确结论的个数是2.二、填空题(每题6分,共18分)3.[2016·台州]竖直上抛的小球离地高度是它运动时间的二次函数,小军相隔1 s 依次竖直向上抛出两个小球,假设两个小球离手时离地高度相同,在各自抛出后1.1 s 时到达相同的最大离地高度,第一个小球抛出后t (s)时在空中与第2个小球的离地高度相同,则t =__1.6__s.【解析】 设各自抛出后1.1 s 时到达相同的最大离地高度为h ,则小球的高度y =a (t -1.1)2+h ,由题意,得a (t -1.1)2+h =a (t -1-1.1)2+h ,解得t =1.6.故第一个小球抛出后1.6 s 时在空中与第二个小球的离地高度相同.4.如图18-2,在△ABC 中,∠B =90°,AB =12mm ,BC =24 mm ,动点P 从点A 开始沿边AB 向点B 以2 mm/s 的速度移动(不与点B 重合),动点Q从点B 开始沿边BC 向点C 以4 mm/s 的速度移动(不与点C 重合).如果P ,Q 分别从A ,B 同时出发,那么经过__3__s ,四边形APQC 的面积最小.【解析】 设经过t s ,四边形面积最小,S 四边形APQC =×12×24-(12-1212图18-22t )×4t =4t 2-24t +144(0<t <6),∴当t =-=-=3时,S 四边形b 2a -242×4APQC 最小.5.[2017·温州]小明家的洗手盆上装有一种抬启式水龙头(如图18-3①),完全开启后,水流路线呈抛物线,把手端点A ,出水口B 和落水点C 恰好在同一直线上,点A 至出水管BD 的距离为12 cm ,洗手盆及水龙头的相关数据如图②所示,现用高10.2 cm 的圆柱型水杯去接水,若水流所在抛物线经过点D 和杯子上底面中心E ,则点E 到洗手盆内侧的距离EH 为__24-82__.图18-3【解析】 建立如答图所示的直角坐标系,过A 作AG ⊥OC 于G ,交BD 于Q ,过M 作MP ⊥AG 于P ,由题可得AQ =12,PQ =MD =6,故AP =6,AG =36,∴在Rt △APM中,MP =8,DQ =8=OG ,∴BQ =12-8=4.由BQ ∥CG 可得△ABQ ∽△ACG ,∴=,即=,解得CG =12,BQ CG AQ AG 4CG 1236则OC =12+8=20,∴C (20,0).又∵水流所在抛物线经过点D (0,24),∴可设抛物线表达式为y =ax 2+bx+24,把C (20,0),B (12,24)代入,可得解得{24=144a +12b +24,0=400a +20b +24,)∴抛物线为y =-x 2+x +24,令y =10.2,解得x 1=6+8{a =-320,b =95,)32095,x 2=6-8(舍去),∴点E 的横坐标为6+8,又∵ON =30,∴EH222=30-(6+8)=24-8.22第5题答图三、解答题(共30分)6.(15分)[2016·郴州]某商店原来平均每天可销售某种水果200 kg ,每千克可盈利6元,为减少库存,经市场调查,如果这种水果每千克降价1元,则每天可多售出20 kg.(1)设每千克水果降价x 元,平均每天盈利y 元,试写出y 关于x 的函数表达式;(2)若要平均每天盈利960元,则每千克应降价多少元?解:(1)根据题意,得y =(200+20x )(6-x )=-20x 2-80x +1 200.(2)令y =960,则960=-20x 2-80x +1 200,即x 2+4x -12=0,解得x =2或-6(舍去).答:若要平均每天盈利960元,则每千克应降价2元.7.(15分)[2016·南京]如图18-4是抛物线形拱桥,P 处有一照明灯,水面OA 宽4 m ,从O ,A 两处观测P 处,仰角分别为α,β,且tan α=,tan 12β=,以O 为原点,OA 所在直线为x 轴建立直角坐标系.32 图18-4 第7题答图(1)求点P 的坐标;(2)水面上升1 m 后,水面宽多少( 取1.41,结果精确到0.1 m)?2解:(1)如答图,过点P 作PH ⊥OA 于点H ,设PH =3x ,在Rt △OHP 中,∵tan α==,∴OH =6x .PH OH 12在Rt △AHP 中,∵tan β==,∴AH =2x ,PH AH 32∴OA =OH +AH =8x =4,∴x =,∴OH =3,PH =,1232∴点P 的坐标为;(3,32)(2)如答图,若水面上升1 m 后到达BC 位置,过点O (0,0),A (4,0)的抛物线的表达式可设为y =ax (x -4),∵点P 在抛物线y =ax (x -4)上,(3,32)∴代入得3a (3-4)=,解得a =-,3212∴抛物线的表达式为y =-x (x -4).12当y =1时,-x (x -4)=1,12解得x 1=2+,x 2=2-,22∴BC =(2+)-(2-)=2≈2.8(m).222答:水面上升1 m 后,水面宽约为2.8 m.(25分)8.(10分)[2017·德州]随着新农村的建设和旧城的改造,我们的家园越来越美丽.小明家附近的广场中央新修了个圆形喷水池(如图18-5),在水池中心竖直安装了一根高为2 m 的喷水管,它喷出的抛物线形水柱在与池中心的水平距离为1 m 处达到最高,水柱落地处离池中心3 m.图18-5(1)请你建立适当的平面直角坐标系,求出水柱抛物线的函数表达式;(2)水柱的最大高度是多少?【解析】 (1)由于题目所给数据均与水池中心相关,故可选取水池中心为原点,原点与水柱落地点所在直线为x 轴,水管所在直线为y 轴,建立平面直角坐标系,再利用顶点式求解函数关系式;(2)抛物线的顶点纵坐标即为水柱的最大高度.解:(1)如答图,以水管与地面交点为原点,第8题答图原点与水柱落地点所在直线为x 轴,水管所在直线为y 轴,建立平面直角坐标系.由题意可设抛物线的函数表达式为y =a (x -1)2+h (0≤x ≤3).抛物线过点(3,0)和(0,2),代入抛物线表达式,可得解得{4a +h =0,a +h =2,){a =-23,h =83.)∴抛物线表达式为y =-(x -1)2+(0≤x ≤3),2383化为一般式为y =-x 2+x +2(0≤x ≤3);2343(2)由(1)知抛物线表达式为y =-(x -1)2+,2383当x =1时,y =.83答:水柱的最大高度为 m.839.(15分)[2017·成都]随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的A ,B ,C ,D 中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫距离为x (单位:km),乘坐地铁的时间y 1(单位:min)是关于x 的一次函数,其关系如下表:地铁站A B C D Ex (km)y 1(min)(1)求y 1关于x 的函数表达式;(2)李华骑单车的时间y 2(单位:min)也受x 的影响,其关系可以用y 2=x 212-11x +78来描述,请问:李华应选择在哪一站出地铁,才能使他从文化宫回到家里所需的时间最短?并求出最短时间.解:(1)设乘坐地铁的时间y 1关于x 的一次函数是y 1=kx +b ,把x =8,y 1=18;x =10,y 1=22代入,得解得{18=8k +b ,22=10k +b ,){k =2,b =2,)∴y 1关于x 的函数表达式是y 1=2x +2;(2)设回家所需的时间为y ,则y =y 1+y 2,即y =2x +2+x 2-11x +78=x 2-9x +80=(x -9)2+,∴当x =9时,121212792y 最小=(min).792答:李华选择从B 地铁口出站,骑单车回家的时间最短,最短时间为 792min.(15分)10.(15分)[2017·嘉兴]如图18-6,某日的钱塘江观潮信息如下表:2017年×月×日,天气:阴;能见度:1.8 km.11:40时,甲地“交叉潮”形成,潮水匀速奔向乙地;12:10时,潮头到达乙地,形成“一线潮”,开始均匀加速,继续向西;12:35时,潮头到达丙地,遇到堤坝阻挡后回头,形成“回头潮”.图18-6按上述信息,小红将“交叉潮”形成后潮头与乙地之间的距离s (km)与时间t (min)的函数关系用图③表示,其中:“11:40时甲地‘交叉潮’的潮头离乙地12 km”记为点A (0,12),点B 坐标为(m ,0),曲线BC 可用二次函数s =t 2+bt +c (b ,c 是常数)刻画.1125(1)求m 的值,并求出潮头从甲地到乙地的速度;(2)11:59时,小红骑单车从乙地出发,沿江边公路以0.48 km/min 的速度往甲地方向去看潮,问她几分钟后与潮头相遇?(3)相遇后,小红立即调转车头,沿江边公路按潮头速度与潮头并行,但潮头过乙地后均匀加速,而单车最高速度为0.48 km/min ,小红逐渐落后,问小红与潮头相遇到落后潮头 1.8 km 共需多长时间?(潮水加速阶段速度v =v 0+2125(t -30),v 0是加速前的速度)解:(1)由题意可知:m =30,∴B (30,0),∴潮头从甲地到乙地的速度为=0.4(km/min);1230(2)∵潮头的速度为0.4 km/min ,∴到11:59时,潮头已前进19×0.4=7.6(km),设小红出发x min 与潮头相遇,∴0.4x +0.48x =12-7.6,解得x =5,∴小红5 min 与潮头相遇;(3)把B (30,0),C (55,15)代入s =t 2+bt +c ,1125解得b =-,c =-,∴s =t 2-t -.2252451125225245∵v 0=0.4,∴v =(t -30)+,212525当潮头的速度达到单车最高速度0.48 km/min ,0.48=(t -30)+,212525解得t =35.此时,s =t 2-t -=.1125225245115∴从t =35 min(12:15时)开始,潮头快于小红速度奔向丙地,小红逐渐落后,但小红仍以0.48 km/min 的速度匀速追赶潮头.设她离乙地的距离为s 1,则s 1与时间t 的函数关系式为s 1=0.48t +h (t ≥35),当t =35时,s 1=s =,代入可得h =-,115735∴s 1=t -.1225735最后潮头与小红相距1.8 km 时,即s -s 1=1.8,t 2-t --t +=1.8,11252252451225735解得t =50或20(不符合题意,舍去),∵小红与潮头相遇后,按潮头速度与潮头并行到达乙地用时6 min ,∴共需要时间为6+50-30=26(min).答:小红与潮头相遇到潮头离她1.8 km外共需要26 min.。

相关文档
最新文档