习题课:轻绳和轻杆模型
力学基本模型_轻绳、轻杆和轻弹簧综合练习题

年级高一学科物理编稿教师晓春课程标题力学根本模型——轻绳、轻杆和轻弹簧一校黄楠二校林卉审核薛海燕一、考点突破绳、杆和弹簧是力学局部常见的三种模型,从它们自身特点来讲,其力学特点都非常明显,所以这三种模型的相关试题备受历次考试的关注,特别是弹簧模型的相关试题,更是每年高考必考的。
以轻质弹簧为载体,设置复杂的物理情景,考察力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒等,此类命题几乎每年的高考试卷均有所见,应引起足够重视。
高考考纲中,对轻质弹簧的力学特性的要求为B级,而对其能量特征的要求为A级。
本讲将重点针对弹簧模型进展研究。
二、重难点提示1. 掌握三种模型的特点和区别。
2. 掌握三种模型力的特点,做好这几种模型所对应情景的过程分析。
3. 归纳常见题型的解题方法和步骤。
在中学物理中,经常会遇到绳、杆、弹簧三种典型的模型,现将它们的特点归类,供同学们学习时参考。
1. 轻绳〔或细绳〕中学物理中的绳〔或线〕,是理想化的模型,具有以下几个特征:①轻:即绳〔或线〕的质量或重力可以视为等于零。
由此特点可知,同一根绳〔或线〕的两端及其中间各点的力大小相等;②软:即绳〔或线〕只能受拉力,不能承受压力。
由此特点可知,绳〔或线〕与其他物体相互间的作用力的方向总是沿着绳子;③不可伸长:即无论绳〔或线〕所受拉力多大,绳〔或线〕的长度不变。
由此特点可知:绳〔或线〕中的力可以突变。
2. 轻杆轻杆也是一种理想化的模型,具有以下几个特征:①轻:即轻杆的质量和重力可以视为等于零。
由此特点可知,同一轻杆的两端及其中间各点的力大小相等;②硬:轻杆既能承受拉力也能承受压力,但其受力的方向不一定沿着杆的方向;③轻杆不能伸长或压缩。
3. 轻弹簧中学物理中的轻弹簧,也是理想化的模型,具有以下几个特征:①轻:即轻弹簧的质量和重力可以视为等于零。
由此特点可知,同一轻弹簧的两端及其中间各点的力大小相等;②轻弹簧既能承受拉力也能承受压力,其受力方向与弹簧的形变方向相反;③轻弹簧的弹力是一种由形变而决定大小和方向的力。
专题03 轻绳、轻杆、轻弹簧、接触面模型(1)-高考物理模型系列之对象模型(原卷版)

一模型界定本模型主要讨论绳和杆的弹力以及接触面间作用力的特点、形成的挂件模型、出现的临界与极值问题,以及它们的力的作用的瞬时性即暂态过程的问题等。
二模型破解 1."轻质"的含义 (i)质量为零(ii)任何状态下所受合力为零例1.如图所示,倾角为α的等腰三角形斜面固定在水平面上,一足够长的轻质绸带跨过斜面的顶端铺放在斜面的两侧,绸带与斜面间无摩擦。
现将质量分别为M 、m(M>m)的小物块同时轻放在斜面两侧的绸带上。
两物块与绸带间的动摩擦因数相等,且最大静摩擦力与滑动摩擦力大小相等。
在α角取不同值的情况下,下列说法正确的有A .两物块所受摩擦力的大小总是相等B .两物块不可能同时相对绸带静止C .M 不可能相对绸带发生滑动D .m 不可能相对斜面向上滑动 模型演练1.某缓冲装置的理想模型如图所示,劲度系数足够大的轻质弹簧与轻杆相连,轻杆可在固定的槽内移动,与槽间的滑动摩擦力恒为f . 轻杆向右移动不超过l 时,装置可安全工作. 一质量为m 的小车若以速度v 0 撞击弹簧,将导致轻杆向右移动4l. 轻杆与槽间的最大静摩擦力等于滑动摩擦力,且不计小车与地面的摩擦.(1)若弹簧的劲度系数为k,求轻杆开始移动时,弹簧的压缩量x;(2)求为使装置安全工作,允许该小车撞击的最大速度v m ; (3)讨论在装置安全工作时,该小车弹回速度v ’和撞击速度v 的关系.練1图2.弹力(I)弹力的方向(i)绳的弹力①绷直的轻绳,其弹力方向沿着绳,与物体的运动状态无关②绳只能对物体施加拉力,不能对物体施加推力③质量不能忽略的绳,绳中某处的张力沿该点绳的切线方向(ii)杆的弹力①轻杆的弹力不一定沿着杆,具体方向与物体的运动状态、杆与物体的连接方式有关②杆既可以对物体产生拉力,也可以对物体产生推力③满足下列条件时杆的弹力一定沿着杆:A.轻杆B.轻杆的一端由转轴或绞链固定C.除转轴或绞链对杆的作用力外,其它作用力作用于杆上同一点.(iii)弹簧的弹力①弹簧弹力的方向沿弹簧的中轴线方向,与运动状态无关②弹簧的弹力可以是拉力也可以是推力(iv)接触面的弹力①接触面的弹力一定垂直于接触面,与物体的运动状态无关②接触面只能对物体产生推力,不能对物体产生拉力③接触面间还可以存在摩擦力(II).弹力的大小①无论轻绳、轻杆还是接触面间的弹力,它们的大小具有一点相同的特征,即弹力的大小与系统所处于的运动状态有关,通常需要从平衡条件或牛顿运动定律来求解.②绕过光滑物体的同一条轻绳上各点的张力仍是相大小等的,如光滑滑轮、光滑挂钩等两侧的轻绳;系于一点的两段绳上张力大小不一定相等.③弹簧的弹力大小与运动状态无关,取决于弹簧劲度系统与形变量,遵从胡克定律.例2.重G的均匀绳两端悬于水平天花板上的A、B两点.静止时绳两端的切线方向与天花板成α角.求绳的A端所受拉力F1和绳中点C处的张力F2.例 3.如图所示,车厢里悬挂着两个质量不同的小球,上面的球比下面的球质量大,当车厢向右作匀加速运动(空气阻力不计)时,下列各图中正确的是例 4.如图所示,固定在小车上的斜杆与竖直杆的夹角为θ,在斜杆的下端固定有质量为m 的小球,下列关于杆对球的作用力F 的判断中,正确的是 ( )A 、小车静止时,cos F mg θ=,方向沿杆向上B 、小车静止时,cos F mg θ=,方向垂直杆向上C 、小车向右以加速度a 运动时,一定有/cos F mg θ=D 、小车向左以加速度a 运动时,22g a m F +=,方向斜向左上方,与竖直方向的夹角为arctan(/)a g α=例5.如图所示,轻杆OA 的A 端用铰链铰于车壁上,O 端焊接一质量为m 的铁球,OB 为细绳,系统静止,OA 水平,今使其与车一起向右加速运动,则例2 题图例3题图A .杆对球的作用力必水平向右B .杆对球的作用力必水平向左C .线OB 受拉力的大小随加速度a 的增大而增大D .线OB 受拉力大小保持mg /cos 不变例6.如图所示,质量为m 的物体用细绳OC 悬挂在支架上的O 点,轻杆OB 可绕B 点转动,求细绳OA 中张力F 的大小和轻杆OB 受力N 的大小.例7.如图所示,水平横杆一端A 插在墙壁内,另一端装有小滑轮B ,一轻绳一端C 固定于墙壁上,另一端跨过滑轮悬挂一质量m=10 kg 的重物,∠CBA=30°,则滑轮受到绳子的作用力为()A.50 NC.100 NN例8.如图所示,长方体物块C 置于水平地面上,物块A 、B 用不可伸长的轻质细绳通过滑轮连接(不计滑轮与绳之间的摩擦),A 物块与C 物块光滑接触,整个系统中的A 、B 、C 三物块在水平恒定推力F 作用下从静止开始以相同的加速度一起向左运动.下列说法正确的是例5题图例6题图例7题图(A )B 与C 之间的接触面可能是光滑的(B )若推力F 增大,则绳子对B 的拉力必定增大 (C )若推力F 增大,则定滑轮所受压力必定增大 (D )若推力F 增大,则C 物块对A 物块的弹力必定增大例9. 如右图,木箱内有一竖直放置的弹簧,弹簧上方有一物块;木箱静止时弹簧处于压缩状态且物块压在箱顶上。
绳模型和杆模型

(二)轻杆模型 A)特点: 小球在竖直平面内做圆周运动时,物体能被支持 B)临界条件 (1)能否到达最高点的临界条件: V=0
(2)拉力还是支持力的临界条件: C)讨论: F
1)当 V> rg 时,杆对小 球施加拉力,且速度越大, 拉力越大(此时杆子相当于 绳子) 2)当 0<V< rg 时,杆对球施加支 持力,速度越大,支持里越小
表演“水流星” ,需要保证杯 子在圆周运动最高点的线速度不 得小于 gr v gr 即:
V rg
K
E G
例1.如图所示,质量为m的小球置于正方
体的光滑盒子中,盒子的边长略大于球的直径。 某同学拿着该盒子在竖直平面内做半径为R的 匀速圆周运动,已知重力加速度为g,问: 图5-7-6
要使盒子在最高点时盒子与小球之间恰好无作用力,
则该盒子做匀速圆周运动的周期为多少?
[思路点拨] 解答本题时应注意: 1小球在最高点的合力等于向心力。 2通过最高点的临界
[解析 ] 设此时盒子的运动周期为 T 0,因为在最高点时
盒子与小球之间恰好无作用力,因此小球仅受重力作用。 根据牛顿第二定律得
4 2 mg m 2 r T0
,
得
T0 2
r g
1)质量为m的小球在竖直平面内的圆轨道的内则运动, 经过最高点而不脱离轨道的临界速度为V,当小球以2V 的速度经过最高点时,对轨道的压力是多大? 解析: v m 由临界速度得:mg= r , 当小球的速度为2v时,
(2)当V2=4m/s时,杆受到的力大小,是拉力还 是压力?
A
B
3)如图:在A与B点,杆对球 的力是( AD ) A)A处可能为拉力,B处为拉力 B)A处可能为拉力,B处为压力 C)A处可能为支持力,B处为压力 D)A处可能为支持力,B处为拉力
向心力习题课_绳杆模型

应用:可用于分析天体运动、机械装置中的圆周 运动等问题。
在接下来的课程中,我们将利用绳杆模型来解析 各种与向心力相关的问题,并通过实例来提高解 题能力。希望大家能够通过本课程,更深入地理 解和掌握向心力的概念及应用。
02
绳杆模型的理论基础
圆周运动与向心力
拓展资源
推荐学生阅读相关物理教材或专业文 献,如《基础物理学》中的圆周运动 章节。
实践项目
鼓励学生设计并制作自己的绳杆模型 ,通过实际操作感受向心力的变化。
参加学术竞赛
推荐学生参加物理学术竞赛,通过与 同龄人交流,进一步提升自己的物理 水平。
THANKS
感谢观看
安全注意事项
在实验过程中,确保实验人员的 安全。例如,避免砝码从高处落 下砸伤人员,注意防止绳子断裂
等安全隐患。
实验数据与结果分析
01
数据记录
详细记录实验过程中的各项数据,如砝码的质量、位置,轻杆的初始角
度,绳子的长度等。这些数据对于后续的结果分析至关重要。
02
数据处理
对实验数据进行整理、计算和分析,如计算轻杆的旋转速度,绘制轻杆
学生易错点讨论
忽视绳杆模型的特点
绳杆模型中,绳只能提供拉力,而杆可以提供拉力或支持力。学 生在解题时容易忽视这一点,导致受力分析错误。
向心力来源不清
在向心力问题中,向心力的来源可能有多种,如重力、弹力、摩擦 力等。学生容易混淆这些力的来源,导致解题思路混乱。
不会运用牛顿第二定律
在向心力问题中,牛顿第二定律的应用至关重要。学生应明确在圆 周运动的各点,如何运用牛顿第二定律建立方程求解。
03
绳杆模型的实践应用
(完整版)轻绳、轻杆和轻弹簧模型

浅析轻绳、轻杆和轻弹簧模型的应用山西泽州县第一中学成文荣李智涛 048000轻绳、轻杆和轻弹簧,是力学中三个重要的理想模型,在高中物理解题中有着重要的地位,为了帮助学生正确地分析和解决与轻绳、轻杆和轻弹簧有关的问题,笔者对三个模型的相同点和不同点进行了总结,并想通过一定的实例,对学生学习和应用给与启迪思考。
一、三个模型的相同点1、“轻”- 不计质量,不受重力。
2、在任何情况下,沿绳、杆和弹簧伸缩方向的张力、弹力处处相等.二、三个模型的不同点1、形变特点轻绳—可以任意弯曲,但不能伸长,即伸长形变不计。
轻杆—不能任意弯曲,不能伸长和缩短,即伸缩形变不计。
轻弹簧—可以伸长,也可以缩短,且伸缩形变不能忽略不计。
2、施力和受力特点轻绳 - 只能产生和承受沿绳方向的拉力.轻杆 - 不仅能产生和承受沿杆方向的拉力和压力,还能产生和承受不沿杆方向的拉力和压力。
轻弹簧—可以产生和承受沿弹簧伸缩方向的拉力和压力。
3、力的变化特点轻绳—张力的产生、变化、或消失不需要时间,具有突变性和瞬时性。
轻杆 - 拉力和压力的产生、变化或消失不需要时间,具有突变性和瞬时性.轻弹簧—弹力的产生、变化或消失需要时间,即只能渐变,不具有瞬时性,且在形变保持瞬间,弹力保持不变。
(注意 :当弹簧的自由端无重物时,形变消失不需要时间)4、连接体的运动特点轻绳 - 轻绳平动时,两端的连接体沿绳方向的速度(或速度分量)总是相等,且等于省上各点的平动速度;轻绳转动并拉直时,连接体具有相同的角速度,而线速度与转动半径成正比。
轻杆—轻杆平动时,连接体具有相同的平动的速度;轻杆转动时,连接体具有相同的角速度,而线速度与转动半径成正比.轻弹簧—在弹簧发生形变的过程中,两端连接体的速率不一定相等;在弹簧形变最大,即弹性势能最大时,两端连接体的速率相等;在弹簧转动时,连接体的转动半径随弹力变化,速度方向不一定垂直于弹力。
5、作功和能量转化特点轻绳 - 在连接体作匀速率和变速率圆周运动的过程中,绳的拉力都不作功;在绳突然拉直的瞬间,有机械能转化为绳的内能,即机械能不守恒.轻杆—在连接体作匀速率和变速率圆周运动的过程中,轻杆的法向力对物体不作功,而切向力既可以对物体作正功,也可以对物体作负功,但系统机械能守恒。
物理建模轻杆轻绳轻弹簧模型

物理建模 1.轻杆、轻绳、轻弹簧模型模型阐述轻杆、轻绳、轻弹簧都是忽略质量的理想模型,与这三个模型相关的问题在高中物理中有相当重要的地位,且涉及的情景综合性较强,物理过程复杂,能很好地考查学生的综合分析能力,是高考的常考问题.为结点)图2-1-8【典例2】 一轻弹簧两端分别连接物体a 、b ,在水平力作用下共同向右做匀加速运动,如图2-1-9所示,在水平面上时,力为F 1,弹簧长为L 1,在斜面上时,力为F 2,弹簧长为L 2,已知a 、b 两物体与接触面间的动摩擦因数相同,则轻弹簧的原长为( ).图2-1-9A.L 1+L 22B.F 1L 1-F 2L 2F 2-F 1C.F 2L 1-F 1L 2F 2-F 1 D.F 2L 1+F 1L 2F 2+F 1即学即练 (2013·石家庄质检,18)如图2-1-10所示,一个“Y”形弹弓顶部跨度为L ,两根相同的橡皮条自由长度均为L ,在两橡皮条的末端用一块软羊皮(长度不计)做成裹片.若橡皮条的弹力与形变量的关系满足胡克定律,且劲度系数为k ,发射弹丸时每根橡皮条的最大长度为2L (弹性限度内),则发射过程中裹片对弹丸的最大作用力为( ).图2-1-10A .kLB .2kL C.32kL D.152kL 附:对应高考题组(PPT 课件文本,见教师用书)1.(2010·新课标全国卷,15)一根轻质弹簧一端固定,用大小为F 1的力压弹簧的另一端,平衡时长度为l 1;改用大小为F 2的力拉弹簧,平衡时长度为l 2.弹簧的拉伸或压缩均在弹性限度内,该弹簧的劲度系数为( ).A.F 2-F 1l 2-l 1 B.F 2+F 1l 2+l 1C.F 2+F 1l 2-l 1 D.F 2-F 1l 2+l 12.(2011·山东卷,19)如图所示,将两相同的木块a 、b 置于粗糙的水平地面上,中间用一轻弹簧连接,两侧用细绳系于墙壁.开始时a 、b 均静止,弹簧处于伸长状态,两细绳均有拉力,a 所受摩擦力F f a ≠0,b 所受摩擦力F f b =0.现将右侧细绳剪断,则剪断瞬间( ).A .F f a 大小不变B .F f a 方向改变C .F f b 仍然为零D .F f b 方向向右3.(2012·山东基本能力,85)力是物体间的相互作用,下列有关力的图示及表述正确的是( ).物理建模 1.轻杆、轻绳、轻弹簧模型模型阐述轻杆、轻绳、轻弹簧都是忽略质量的理想模型,与这三个模型相关的问题在高中物理中有相当重要的地位,且涉及的情景综合性较强,物理过程复杂,能很好地考查学生的综合分析能力,是高考的常考问题.为结点)图2-1-8解析 甲为自由杆,受力一定沿杆方向,如下图甲所示的F N1.乙为固定杆,受力由O 点所处状态决定,此时受力平衡,由平衡条件知杆的支持力F N2的方向与mg 和F 1的合力方向相反,如下图乙所示.答案 如解析图所示【典例2】 一轻弹簧两端分别连接物体a 、b ,在水平力作用下共同向右做匀加速运动,如图2-1-9所示,在水平面上时,力为F 1,弹簧长为L 1,在斜面上时,力为F 2,弹簧长为L 2,已知a 、b 两物体与接触面间的动摩擦因数相同,则轻弹簧的原长为( ).图2-1-9A.L 1+L 22B.F 1L 1-F 2L 2F 2-F 1C.F 2L 1-F 1L 2F 2-F 1 D.F 2L 1+F 1L 2F 2+F 1解析 设物体a 、b 的质量分别为m 1、m 2,与接触面间的动摩擦因数为μ,弹簧原长为L 0,在水平面上时,以整体为研究对象有F 1-μ(m 1+m 2)g =(m 1+m 2)a ,①隔离a 物体有k (L 1-L 0)-μm 1g =m 1a ,② 联立解得k (L 1-L 0)=m 1m 1+m 2F 1,③ 同理可得k (L 2-L 0)=m 1m 1+m 2F 2,④ 联立③④可得轻弹簧的原长为L 0=F 2L 1-F 1L 2F 2-F 1,C 对.答案 C反思总结 如何理解理想化模型——“轻弹簧”与“橡皮筋” (1)弹簧与橡皮筋产生的弹力遵循胡克定律F =kx ,x 是指形变量.(2)“轻”即指弹簧(或橡皮筋)的重力不计,所以同一弹簧的两端及中间各点的弹力大小相等. (3)弹簧既能受拉力,也能受压力(沿弹簧轴线),分析弹簧问题时一定要特别注意这一点,而橡皮筋只能受拉力作用.(4)弹簧和橡皮筋中的弹力均不能突变,但当将弹簧(或橡皮筋)剪断时,其弹力立即消失.即学即练 (2013·石家庄质检,18)如图2-1-10所示,一个“Y”形弹弓顶部跨度为L ,两根相同的橡皮条自由长度均为L ,在两橡皮条的末端用一块软羊皮(长度不计)做成裹片.若橡皮条的弹力与形变量的关系满足胡克定律,且劲度系数为k ,发射弹丸时每根橡皮条的最大长度为2L (弹性限度内),则发射过程中裹片对弹丸的最大作用力为( ).图2-1-10A .kLB .2kL C.32kL D.152kL 解析 对裹片受力分析,由相似三角形可得:kL2L=F2?2L ?2-⎝⎛⎭⎫L 22得:F =152kL 则裹片对弹丸的最大作用力为F 丸=F =152kL ,故选项D 正确. 答案 D附:对应高考题组(PPT 课件文本,见教师用书)1.(2010·新课标全国卷,15)一根轻质弹簧一端固定,用大小为F 1的力压弹簧的另一端,平衡时长度为l 1;改用大小为F 2的力拉弹簧,平衡时长度为l 2.弹簧的拉伸或压缩均在弹性限度内,该弹簧的劲度系数为( ).A.F 2-F 1l 2-l 1B.F 2+F 1l 2+l 1 C.F 2+F 1l 2-l 1 D.F 2-F 1l 2+l 1解析 设弹簧原长为l ,由题意知,F 1=k (l -l 1),F 2=k (l 2-l ),两式联立,得k =F 2+F 1l 2-l 1,选项C 正确. 答案 C2.(2011·山东卷,19)如图所示,将两相同的木块a 、b 置于粗糙的水平地面上,中间用一轻弹簧连接,两侧用细绳系于墙壁.开始时a、b均静止,弹簧处于伸长状态,两细绳均有拉力,a所受摩擦力F f a≠0,b所受摩擦力F f b=0.现将右侧细绳剪断,则剪断瞬间( ).A.F f a大小不变B.F f a方向改变C.F f b仍然为零D.F f b方向向右解析剪断右侧绳的瞬间,右侧细绳上拉力突变为零,而弹簧对两木块的拉力没有发生突变,与原来一样,所以b对地面有向左的运动趋势,受到静摩擦力F f b方向向右,C错误,D正确.剪断右侧绳的瞬间,木块a受到的各力都没有发生变化,A正确,B错误.答案AD3.(2012·山东基本能力,85)力是物体间的相互作用,下列有关力的图示及表述正确的是( ).解析由于在不同纬度处重力加速度g不同,旅客所受重力不同,故对飞机的压力不同,A错误.充足气的篮球平衡时,篮球壳对内部气体有压力作用,即内外气体对篮球壳压力的差值等于篮球壳对内部气体的压力,故B正确.书对桌子的压力作用在桌子上,箭尾应位于桌面上,故C错误.平地上匀速行驶的汽车,其主动轮受到地面的摩擦力是其前进的动力,地面对其从动轮的摩擦力是阻力,汽车受到的动力与阻力平衡时才能匀速前进,故D正确.答案BD。
轻绳与轻杆模型问题
m1gsin 1=8m02gcos (α-90°)
2 即:m1cos =m2sin α m1cos =2m2sin cos
得: =2sin 2 故选B。
2
22
m1
m2
2
【典例2】如图所示,水平轻杆的一端固定在墙上,轻绳与竖直方向的夹角为37°,小球 的重力为12 N,轻绳的拉力为10 N,水平轻弹簧的拉力为9 N,求轻杆对小球的作用力。
【点睛】本题中的杆为轻质固定杆,它的弹力方向不一定沿杆的方向,可以根据平衡方 程来进行求解。
【解析】以小球为研究对象,受力如图所示,小球受四 个力的作用:重力、轻绳的拉力、轻弹簧的拉力、轻杆 的作用力,其中轻杆的作用力的方向和大小不能确定, 重力与弹簧拉力的合力大小为F= =15 N, 设F与竖直方向夹角为α,sin α= ,则α=37°,
1 2sin
3.如图所示,轻绳AD跨过固定在水平横梁BC右端的定滑轮挂住一个质量为10 kg的物 体,∠ACB=30°,g取 10 m/s2,求: (1)轻绳AC段的张力FAC的大小。 (2)横梁BC对C端的支持力的大小及方向。
【解析】物体M处于平衡状态,根据平衡条件可判断,与物体相连的轻绳拉力大小等于 物体的重力,取C点为研究对象,进行受力分析,如图所示。
G2 F12 F1 3 F5
即方向与竖直方向成37°角斜向下,这个力与轻绳的拉力恰好在同一条直线上。根据物 体平衡的条件可知,轻杆对小球的作用力大小为5 N,方向与竖直方向成37°角斜向右上 方。
答案:5 N,方向与竖直方向成37°角斜向右上方
【强化训练】 1.如图,弹性杆AB的下端固定,上端固定一个质量为m的小球,用水平向右的力F缓慢拉球, 使杆发生弯曲。逐步增加水平力F的大小,则弹性杆AB对球的作用力的方向
向心力习题课_绳杆模型 (1)
轻杆对小球既能产生拉 力,又能产生支持力
竖直平面内的圆周运动
1.轻绳模型 : 能过最高点的临界条件:
小球在最高点时绳子的拉力刚好 等于0,小球的重力充当圆周运 动所需的向心力。
mg m
2
R
v临界 Rg
归纳:
(1)小球能到达最高点的临界条件:绳子(或轨道) 对小球刚好没有力的作用:
mg m
专题:竖直平面内圆周 运动的临界问题
对于物体在竖直面内做的圆周运动 是一种典型的变速曲线运动,在生活 当中经常见到。该类运动有临界问题 ,题中经常出现“最大”“最 小”“刚好”等词语。常见的有两种 模型——轻绳模型和轻杆模型。分析比 较如下:
轻绳模型
轻杆模型
常见 类型
特点
在最高点时,没有物体支 撑,只能产生拉力
rg 时, F =0;
N
rg , F 为拉力,有FN >0, F 随v的增大而增
N N
例2、长度为L=0.5m的轻质细杆OA,A端有一质量 为m=3.0kg的小球,如图5所示,小球以O点为圆心 在竖直平面内做圆周运动,通过最高点时小球的速 率是2.0m/s,g取10m/s2,则此时细杆OA受到 ( B ) A、6.0N的拉力 C、24N的拉力 B、6.0N的压力 D、24N的压力
m g FN 2
先求出杆的弹力为0的速率v0 解:
mg=mv02/l v02=gl=5 v =2.25 m/s
0
2 m v2 l
FN1 m A mg O
(1) v1=1m/s< v0 球应受到内壁向上的支持 力N1,受力如图示:
mg FN 1
(2) v2=4m/s > v0 球应受到外壁向下的支持力N2 如图所示:
圆周运动绳杆模型(最新整理)
圆周运动中的临界问题一.两种模型:(1)轻绳模型:一轻绳系一小球在竖直平面内做圆周运动.小球能到达最高点(刚好做圆周运动)的条件是小球的重力恰好提供向心力,即mg =m ,这时的速度是做圆周运动的最小速rv 2度v min = . (绳只能提供拉力不能提供支持力).类此模型:竖直平面内的内轨道(2)轻杆模型:一轻杆系一小球在竖直平面内做圆周运动,小球能到达最高点(刚好做圆周运动)的条件是在最高点的速度 . (杆既可以提供拉力,也可提供支持力或侧向力.)①当v =0 时,杆对小球的支持力 小球的重力;②当0<v <时,杆对小球的支持力 于小球的重力;gr ③当v =时,杆对小球的支持力 于零;gr ④当v > 时,杆对小球提供 力.gr类此模型:竖直平面内的管轨道.1、圆周运动中绳模型的应用【例题1】长L =0.5m 的细绳拴着小水桶绕固定轴在竖直平面内转动,筒中有质量m =0.5Kg 的水,问:(1)在最高点时,水不流出的最小速度是多少?(2)在最高点时,若速度v =3m/s ,水对筒底的压力多大?【训练1】游乐园里过山车原理的示意图如图所示。
设过山车的总质量为m ,由静止从高为h 的斜轨顶端A 点开始下滑,到半径为r 的圆形轨道最高点B 时恰好对轨道无压力。
求在圆形轨道最高点B 时的速度大小。
【训练2】.杂技演员在做水流星表演时,用绳系着装有水的水桶,在竖直平面内做圆周运动,若水的质量m =0.5 kg ,绳长l=60cm ,求:(1)最高点水不流出的最小速率。
(2)水在最高点速率v =3 m /s 时,水对桶底的压力.2、圆周运动中的杆模型的应用【例题2】一根长l =0.625 m 的细杆,一端拴一质量m=0.4 kg 的小球,使其在竖直平面内绕绳的另一端做圆周运动,求:(1)小球通过最高点时的最小速度;(2)若小球以速度v 1=3.0m /s 通过圆周最高点时,杆对小球的作用力拉力多大?方向如何?【训练3】如图所示,长为L 的轻杆一端有一个质量为m 的小球,另一端有光滑的固定轴O ,现给球一初速度,使球和杆一起绕O 轴在竖直平面内转动,不计空气阻力,则( )A.小球到达最高点的速度必须大于gLB .小球到达最高点的速度可能为0C.小球到达最高点受杆的作用力一定为拉力D.小球到达最高点受杆的作用力一定为支持力【训练4】如图所示,在竖直平面内有一内径为d 的光滑圆管弯曲而成的环形轨道,环形轨道半径R 远远大于d ,有一质量为m 的小球,直径略小于d ,可在圆管中做圆周运动。
竖直平面内圆周运动的“轻绳、轻杆”模型
限时训练
1.(2014·安徽无为开城中学月考) 如图所示,一个小球在竖直环内至少能 做(n+1)次完整的圆周运动,当它第(n-1)次经过环的最低点时的速度大小为 7 m /s,第 n次经过环的最低点时速度大小为 5 m /s,则小球第(n+1)次经过环
B 法不正确的是( )
A.乘客受到的向心力大小约为 200 N B .乘客受到来自车厢的力大小约为 200 N C .乘客受到来自车厢的力大小约为 539 N D .弯道半径设计特别大可以使乘客在转弯时更舒适
作业布置
• 完成优化设计课时规范练12
2、模型条件
(1)物体在竖直平面内做变速圆周运动。 (2)“轻绳模型”在轨道最高点无支撑,“轻杆模型” 在轨道最高点有支撑。
引导探究一:
3.模型特点
该类问题常有临界问题,并伴有“最大”“最小”“刚好”等词语,现对两模型
常见 类型
过最高 点的临 界条件
均是没有支撑的小球
D 的最低点时速度 v的大小一定满足( )
A.等于 3 m /s B .小于 1 m /s C .等于 1 m /s D .大于 1 m /s
3. 一根长为 L 的轻杆下端固定一个质量为 m 的小球,上端连在光滑水平轴
上,轻杆可绕水平轴在竖直平面内运动(不计空气阻力)。当小球在最低点
B 时给它一个水平初速度 v0,小球刚好能做完整的圆周运动。若小球在最低
B
A.小球通过最高点时的最小速度 vm in= g(R + r) B .小球通过最高点时的最小速度 vm in=0 C .小球在水平线 ab以下的管道中运动时,内侧管壁对小球一定有作用 力 D .小球在水平线 ab以上的管道中运动时,外侧管壁对小球一定有作用 力
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课
归
纳
总
结
物体经过最高点的最大速度 vmax= gR,此时物体恰好离开桥面,做平抛运动.
杆(双轨,有支撑):对物体既可以有拉力,也可以有支持力,如图所示. ①过最高点的临界条件:v=0.
轻绳和轻杆模型
②在最高点,如果小球的重力恰好提供其做圆周运动的向心力,即 mg=mv2,v= gR, R
杆或轨道内壁对小球没有力的作用.
压力均为零 C.“水流星”通过最高点时,处于完全失重状态,不受力
的作用 D.“水流星”通过最高点时,绳子的拉力大小为5 N
训练巩固
2、(多选)如图所示,质量可以不计的细杆的一端固定着一个质量为 m的小球,另一端能绕光滑的水平轴O转动。让小球在竖直平面内绕轴O 做半径为l 的圆周运动,小球通过最高点时的线速度大小为v。下列说法 中正确的是( BCD )
当 0<v< gR时,小球受到重力和杆(或内 轨道)对球的支持力.
当 v> gR时,小球受到重力和杆向下的拉力(或外轨道对球向下的压力).
轻绳和轻杆模型
轻绳和轻杆模型
1、(多选)如图所示,细杆的一端与一小球相连,可绕过 O 点的水平轴自由转 动.现给小球一初速度,使它做圆周运动,图中 a、b 分别表示小球运动轨道的最 低点和最高点.则杆对球的作用力可能是( )
得 F+mg=mv2,解得 F=3mg L
由牛顿第三定律得绳受到的拉力 F′=F=3mg
轻绳和轻杆模型
(3)在轻杆的支持作用下,小球刚好到达最高点时的速度为零.
最高点的速度为1 2
gL时,小球所受杆的弹力和重力的合力等于向心力,设弹力向下,则
F
N+m
g=m
v2 L
解得 FN=-34mg,负号表示方向向上.
2
轻绳和轻杆模型
【答案】 (1) gL (2)3mg (3)0 (4)3mg 方向向上 4
【解析】
(1)小球刚好到达最高点的临界条件是绳的拉力为 0,只有重力提供向心力,在最高点由
牛顿第二定律得
mg=mv02,解得 L
v0=
gL
(2)小球在最高点受重力和绳的拉力作用,其合力提供向心力,由牛顿第二定律,
轻绳和轻杆模型
竖直平面内的圆周运动 竖直平面内的圆周运动有两种类型:绳和单轨类(如图甲)、杆和双轨类(如图乙).根据向 心力公式,分析圆周运动最高点小球的受力与速度:
轻绳和轻杆模型
这种情 况下有 F+mg=mv2≥mg R
所以小球通过最高点的条件是 v≥ gR ,通过最高点的最小速度 vmin= gR.
A、v不能小于 gl
B、v= gl 时,小球与细杆之间无弹力作用
C、v大于 gl 时,小球与细杆之间的弹力随v增大而增大
D、v小于 gl 时,小球与细杆之间的弹力随v减小运动中的绳模型与杆模型(物理模型) (1)竖直平面内圆周运动两种模型: 绳(环)约束模型:在最高点不会产生向上的支持力,即无支撑情况 杆(管道)约束模型:在最高点可产生向上的支持力,即有支撑情况.
轻绳和轻杆模型
模型特点:
绳(单轨,无支撑,水流星模型):绳只能给物体施加拉力,而不能有支持力(如图所示). ①当 v> gR 时,绳对球产生拉力,轨道对球产生压力
②当 v< gR 时,球不能通过最高点(实际上球没有到最高点就脱离了轨道.)[来源
轻绳和轻杆模型
模型特点:
只能给物体支持力,而不能有拉力这种情况下有:mg-F=mv2≤mg, 所以 v≤ gR, R
训练巩固
1、杂技演员表演“水流星”,在长为L=1.6 m的细绳的一端,系一个与水 的总质量为m=0.5 kg的盛水容器,以绳的另一端为圆心,在竖直平面内做
圆周运动,如图所示。若“水流星”通过最高点时的速率为4 m/s,则下列
说法正确的是(取g=10 m/s2)( AB )
A.“水流星”通过最高点时,没有水从容器中流出 B.“水流星”通过最高点时,绳的拉力及容器底部受到的
轻绳和轻杆模型
2、长为 L 的轻绳,其一端固定于 O 点,另一端连有质量为 m 的小球,它绕 O 点在竖直平面内做圆周运动.求:
(1)小球刚好到达最高点时的速度; (2)小球到达最高点速度为 2 gL时绳受到的拉力. (3)若把上面的轻绳换为轻杆,其他条件不变.求小球刚好到达最高点时的速 度?小球到达最高点速度为1 gL时,轻杆对球的作用力?
A.a 处为拉力,b 处为拉力 B.a 处为拉力,b 处为支持力 C.a 处为支持力,b 处为拉力 D.a 处为支持力,b 处为支持力 答案 AB
解析 小球在 a 处一定为拉力,在 b 处,当 v> gL时,杆提供拉力,当 v< gL时,杆提
供支持力,当 v= gL时,杆对小球作用力刚好为 0.
点评 轻杆的作用力可以提供支持力,也可以提供拉力,要判断是拉力还是支持力,我们要从 小球所需要的向心力入手研究,根据需要的向心力的大小和方向确定杆子的作用力.