2016-2017学年贵州省黔南州独山二中九年级(上)期中数学试卷

合集下载

数学试卷期中九年级贵州【含答案】

数学试卷期中九年级贵州【含答案】

数学试卷期中九年级贵州【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若函数f(x) = x² 4x + 3,则f(2)的值为:A. 0B. 1C. -1D. 32. 下列函数中,奇函数是:A. f(x) = x³B. f(x) = x²C. f(x) = |x|D. f(x) = x² + 13. 若直线y = 2x + 3与x轴相交于点A,与y轴相交于点B,则△OAB的面积是:A. 3B. 4.5C. 6D. 94. 已知等差数列{an}的前n项和为Sn = 2n² + 3n,则a1 + a3 =:A. 8B. 10C. 12D. 145. 若复数z满足|z 1| = |z + 1|,则z在复平面内对应的点位于:A. 实轴上B. 虚轴上C. 第一象限D. 第二象限二、判断题(每题1分,共5分)1. 若a, b是实数,且a < b,则a² < b²。

()2. 任何两个奇函数的乘积一定是偶函数。

()3. 二次函数的图像一定是抛物线。

()4. 等差数列的前n项和一定是n的二次多项式。

()5. 若两个复数满足|z1| = |z2|,则它们的模相等。

()三、填空题(每题1分,共5分)1. 若函数f(x) = x² 2x + 1,则f(1) = _______。

2. 等差数列{an}中,若a1 = 3,d = 2,则a5 = _______。

3. 若复数z = 3 + 4i,则|z| = _______。

4. 二次函数f(x) = ax² + bx + c的顶点坐标是_______。

5. 若直线y = kx + b与y轴相交于点(0, 2),则b = _______。

四、简答题(每题2分,共10分)1. 简述等差数列和等比数列的定义。

2. 什么是函数的极值点?如何求一个函数的极值?3. 什么是复数的共轭?如何求一个复数的共轭?4. 什么是二次函数的顶点式?如何将一般式转换为顶点式?5. 什么是直线的斜率?如何求一条直线的斜率?五、应用题(每题2分,共10分)1. 已知函数f(x) = x² 4x + 3,求f(x)的最小值。

2016-2017学年上学期九年级期中考试数学参考答案

2016-2017学年上学期九年级期中考试数学参考答案

∴易求得 A(k-2,k2-2k),B(k+2,k2+2k)……..……9 分 直线 x=1 上有一点 P,可设 P(1,m) ∵△PAB 是一个以 AB 为斜边的等腰直角三角形 ∴AM=PN,PM=BN
图2 y
x=1
∴k2-2k-m=k+2-1,1-(k-2)=k2+2k-m……..……11 分
∴ k 1 , m 17 ……..……12 分
3
9
B
O
A
M
PN
图3
x x
3
三角形,且∠AEC=90°.
………………………………4 分
所以 CD= DE2 CE2 62 52 61 .所以 BC 的长是 2 61 .………………6 分
设点 A 到 BC 的距离为 h,由面积公式得
1 2
BC
h
SABC
,
1 2
2
61h 1 125 2
解得 h= 30 61 . 61
………………8 分
在△DCE 和△DAF 中,∵CD=AD,∠C=∠DAF,CE=AF ∴△DCE≌△DAF(SAS)……7 分 ∴DE=DF.……8 分 19、解:(1)∵原方程有两个不相等的实数根,
∴ (2k 1)2 4(k 2 1) 4k 3 0 ,……3 分
解得: k 3 . 4
……………………4 分
1
20、(1)如下图:
………………………………2 分 [来源:学*科*网Z*X*X*K]
(2)①2(2.1 到 1.7 之间都正确)
………………………………5 分
②该函数有最大值 4(其他正确性质都可以,比如从增减性的角度). ……8 分
20.(1)作出△CDE;

贵州省黔南布依族苗族自治州九年级上学期数学期中考试试卷

贵州省黔南布依族苗族自治州九年级上学期数学期中考试试卷

贵州省黔南布依族苗族自治州九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共10分)1. (1分) (2019九上·萧山开学考) 下列方程中属于一元二次方程的是()A .B .C .D .2. (1分) (2018八下·太原期中) 山西剪纸是最古老的汉族民间艺术之一.剪纸作为一种镂空艺术,在视觉上给人以透空的感觉和艺术享受.下列四幅剪纸图案中,是中心对称图形的是()A .B .C .D .3. (1分)方程x2+4x-6=0经过配方后,其结果正确的是()A . (x+2)2=2B . (x+2)2=10C . (x-2)2=-2D . (x-2)2=104. (1分)已知△ABC∽△A′B′C′且,则为()A . 1:2B . 2:1C . 1:4D . 4:15. (1分)(2019·花都模拟) 一个不透明的盒子里装有除颜色外其他都相同的红球6个和白球若干个,每次随机摸出一个球,记下颜色后放回,摇匀后再摸,通过多次试验发现摸到红球的频率稳定在0.3 左右,则盒子中白球可能有()A . 12个B . 14个C . 18个D . 20个6. (1分)下列轴对称图形中,只用一把无刻度的直尺不能画出对称轴的是()A . 菱形B . 三角形C . 等腰梯形D . 正五边形7. (1分) (2019八上·温州开学考) 关于x的一元二次方程x2+4x+k=0有两个相等的实数根,则k的值为()A . k=-4B . k=4C . k=D . k=8. (1分)某旅游景点三月份共接待游客25万人次,五月份共接待游客64万人次,设每月的平均增长率为x,则可列方程为().A . 25(1+x)2=64B . 25(1-x)2=64C . 64(1+x)2=25D . 64(1-x)2=259. (1分)下列条件中可以判定△ABC∽△A′B′C′的是()A .B . ,∠B=∠B′C . ,∠A=∠A′D .10. (1分)(2017·慈溪模拟) 如图,对正方形纸片ABCD进行如下操作:(i)过点D任作一条直线与BC边相交于点E1(如图①),记∠CDE1=α1;(ii)作∠ADE1的平分线交AB边于点E2(如图②),记∠ADE2=α2;(iii)作∠CDE2的平分线交BC边于点E3(如图③),记∠CDE3=α3;按此作法从操作(2)起重复以上步骤,得到α1 ,α2 ,…,αn ,…,现有如下结论:①当α1=10°时,α2=40°;②2α4+α3=90°;③当α5=30°时,△CDE9≌△ADE10;④当α1=45°时,BE2= .其中正确的个数为()A . 1B . 2C . 3D . 4二、填空题 (共6题;共6分)11. (1分)一元二次方程x2=3的根是________ .12. (1分)如果(x2+y2)(x2+y2﹣2)=3,则x2+y2的值是________.13. (1分) (2019九上·海陵期末) 如图,直线l1∥l2∥l3 ,一等腰直角三角形ABC的三个顶点A,B,C 分别在l1 , l2 , l3上,∠ACB=90°,AC交l2与点D.已知l1与l2的距离为1,l2与l3的距离为3,则线段CD的长等于________.14. (1分)(2019·河北) 勘测队按实际需要构建了平面直角坐标系,并标示了A , B , C三地的坐标,数据如图(单位:km).笔直铁路经过A , B两地.(1) A , B间的距离为________km;(2)计划修一条从C到铁路AB的最短公路l ,并在l上建一个维修站D ,使D到A , C的距离相等,则C , D间的距离为________km .15. (1分)(2019·岳阳模拟) 点P的坐标是(a,b),从-2,-1,0,1,2这五个数中任取一个数作为a的值,再从余下的四个数中任取一个数作为b的值,则点P(a,b)在平面直角坐标系中第二象限内的概率是________.16. (1分)在平行四边形ABCD中, AB=4, BC=5,过点A作AE垂直直线BC于点E,,再过点A作AF垂直于直线CD于点F,则CE+CF=________.三、解答题(一) (共3题;共3分)17. (1分)解下列一元二次方程.(1) x2﹣5x+1=0;(2) 3(x﹣2)2=x(x﹣2).18. (1分)已知关于x的一元二次方程x2﹣(k+2)x+2k=0.(1)若x=1是这个方程的一个根,求k的值和它的另一根;(2)对于任意的实数k,判断原方程根的情况,并说明理由.19. (1分)如图,在宽为20m,长为30m的矩形地面上修建两条同样宽的道路,余下部分作为耕地.根据图中数据,请计算耕地的面积.四、解答题(二) (共3题;共6分)20. (2分)(2016·云南) 某超市为庆祝开业举办大酬宾抽奖活动,凡在开业当天进店购物的顾客,都能获得一次抽奖的机会,抽奖规则如下:在一个不透明的盒子里装有分别标有数字1、2、3、4的4个小球,它们的形状、大小、质地完全相同,顾客先从盒子里随机取出一个小球,记下小球上标有的数字,然后把小球放回盒子并搅拌均匀,再从盒子中随机取出一个小球,记下小球上标有的数字,并计算两次记下的数字之和,若两次所得的数字之和为8,则可获得50元代金券一张;若所得的数字之和为6,则可获得30元代金券一张;若所得的数字之和为5,则可获得15元代金券一张;其他情况都不中奖.(1)请用列表或树状图(树状图也称树形图)的方法(选其中一种即可),把抽奖一次可能出现的结果表示出来;(2)假如你参加了该超市开业当天的一次抽奖活动,求能中奖的概率P.21. (2分)(2011·连云港) 某课题研究小组就图形面积问题进行专题研究,他们发现如下结论:①有一条边对应相等的两个三角形面积之比等于这条边上的对应高之比;②有一个角对应相等的两个三角形面积之比等于夹这个角的两边乘积之比;…现请你继续对下面问题进行探究,探究过程可直接应用上述结论.(S表示面积)问题1:如图1,现有一块三角形纸板ABC,P1 , P2三等分边AB,R1 , R2三等分边AC.经探究知= S△ABC ,请证明.问题2:若有另一块三角形纸板,可将其与问题1中的拼合成四边形ABCD,如图2,Q1 , Q2三等分边DC.请探究与S四边形ABCD之间的数量关系.问题3:如图3,P1 , P2 , P3 , P4五等分边AB,Q1 , Q2 , Q3 , Q4五等分边DC.若S四边形ABCD=1,求.问题4:如图4,P1 , P2 , P3四等分边AB,Q1 , Q2 , Q3四等分边DC,P1Q1 , P2Q2 , P3Q3将四边形ABCD分成四个部分,面积分别为S1 , S2 , S3 , S4 .请直接写出含有S1 , S2 , S3 , S4的一个等式.22. (2分) (2019八下·北京期末) “美化城市,改善人民居住环境”是城市建设的一项重要内容.北京市将重点围绕城市副中心、大兴国际机场、冬奥会、世园会、永定河、温榆河、南中轴等重要节点区域绿化,到2022年,全市将真正形成一片集“万亩城市森林、百万乔灌树木、百种乡土植物、二十四节气林窗、四季景观大道”于一体的城市森林.2018年当年计划新增造林23万亩,2019年计划新增造林面积大体相当于27.8个奥森公园的面积,预计2020年计划新增造林面积达到38.87万亩,求2018年至2020年计划新增造林面积的年平均增长率.五、解答题(三) (共3题;共8分)23. (2分) (2020八下·越城期中) 商场某种商品平均每天可销售40件,每件盈利60元.为减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多销售2件.(1)每件商品降价多少元时,商场日盈利可达到3150元?(2)商场日盈利能否达到3300元?(3)每件商品降价多少元时,商场日盈利最多?24. (3分)(2020·永州模拟) 如图,△ABC为⊙O的内接三角形,AB为⊙O的直径,过点A作⊙O的切线交BC的延长线于点D .(1)求证:△DAC∽△DBA;(2)过点C作⊙O的切线CE交AD于点E ,求证:CE= AD;(3)若点F为直径AB下方半圆的中点,连接CF交AB于点G ,且AD=6,AB=3,求CG的长.25. (3分)(2017·日照模拟) 如图,AB为⊙O的直径,点C为AB延长线上一点,动点P从点A出发沿AC 方向以lcm/s的速度运动,同时动点Q从点C出发以相同的速度沿CA方向运动,当两点相遇时停止运动,过点P 作AB的垂线,分别交⊙O于点M和点N,已知⊙O的半径为l,设运动时间为t秒.(1)若AC=5,则当t=________时,四边形AMQN为菱形;当t=________时,NQ与⊙O相切;(2)当AC的长为多少时,存在t的值,使四边形AMQN为正方形?请说明理由,并求出此时t的值.参考答案一、选择题 (共10题;共10分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、14-2、15-1、16-1、三、解答题(一) (共3题;共3分)17-1、17-2、18-1、19-1、四、解答题(二) (共3题;共6分)20-1、20-2、22-1、五、解答题(三) (共3题;共8分) 23-1、23-2、23-3、24-1、24-2、24-3、25-1、25-2、。

贵州省黔南州独山二中九年级(上)期中数学试卷

贵州省黔南州独山二中九年级(上)期中数学试卷

贵州省黔南州独山二中九年级(上)期中数学试卷一、选择题(每小题4分,共52分)1.(4分)下列方程中,是一元二次方程的是()A.x+3=0B.x2﹣3y=0C.x2﹣2x+1=0D.x﹣=02.(4分)下列汽车标志中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(4分)抛物线y=(x﹣2)2+3的顶点坐标是()A.(﹣2,3)B.(2,3)C.(﹣2,﹣3)D.(2,﹣3)4.(4分)用配方法解一元二次方程x2﹣6x﹣4=0,下列变形正确的是()A.(x﹣6)2=﹣4+36B.(x﹣6)2=4+36C.(x﹣3)2=﹣4+9D.(x﹣3)2=4+9 5.(4分)已知点P关于x轴对称的点P1的坐标是(4,5),那么点P关于原点的对称点P2的坐标是()A.(﹣5,﹣4)B.(4,﹣5)C.(﹣4,5)D.(﹣4,﹣5)6.(4分)下列函数中属于二次函数的是()A.y=x(x+1)B.x2y=1C.y=2x2﹣2(x2+1)D.y=7.(4分)抛物线y=(x+2)2﹣3可以由抛物线y=x2平移得到,则下列平移过程正确的是()A.先向左平移2个单位,再向上平移3个单位B.先向左平移2个单位,再向下平移3个单位C.先向右平移2个单位,再向下平移3个单位D.先向右平移2个单位,再向上平移3个单位8.(4分)若函数y=(1﹣m)+2是关于x的二次函数,且抛物线的开口向上,则m的值为()A.﹣2B.1C.2D.﹣19.(4分)设二次函数y=(x﹣3)2﹣4图象的对称轴为直线l,若点M在直线l上,则点M的坐标可能是()A.(1,0)B.(3,0)C.(﹣3,0)D.(0,﹣4)10.(4分)某养殖户的养殖成本逐年增长,已知第1年的养殖成本为13万元,第3年的养殖成本为20万元.设每年平均增长的百分率为x,则下面所列方程中正确的是()A.13(1﹣x)2=20B.20(1﹣x)2=13C.20(1+x)2=13D.13(1+x)2=20 11.(4分)如图,把菱形ABOC绕点O顺时针旋转得到菱形DFOE,则下列角中不是旋转角的为()A.∠BOF B.∠AOD C.∠COE D.∠COF12.(4分)如图,若一次函数y=ax+b的图象经过二、三、四象限,则二次函数y=ax2+bx 的图象可能是()A.B.C.D.13.(4分)如图所示,在平面直角坐标系中,二次函数y=ax2+bx+c的图象顶点为A(﹣2,﹣2),且过点B(0,2),则y与x的函数关系式为()A.y=x2+2B.y=(x﹣2)2+2C.y=(x﹣2)2﹣2D.y=(x+2)2﹣2二、填空题(每题4分,共24分)14.(4分)点(﹣b,1)关于原点对称的点的坐标为.若x=2是一元二次方程x2+x﹣a=0的解,则a的值为.15.(4分)抛物线y=2x2﹣4x+3绕坐标原点旋转180°所得的抛物线的解析式是.16.(4分)某水果批发商场经销一种水果,如果每千克盈利5元,每天可售出200千克,经市场调查发现,在进价不变的情况下,若每千克涨价1元,销售量将减少10千克.现该商场要保证每天盈利1500元,同时又要顾客得到实惠,那么每千克应涨价元.17.(4分)现定义运算“★”,对于任意实数a、b,都有a★b=a2﹣3a+b,如:3★5=32﹣3×3+5,若x★2=6,则实数x的值是.18.(4分)如图所示,P是等边△ABC内一点,△BMC是由△BPA旋转所得,则∠PBM=度.19.(4分)二次函数y=ax2+bx+c和一次函数y=mx+n的图象如图所示,则ax2+bx+c≤mx+n时,x的取值范围是.三、解答题(共74分)20.(12分)用适当的方法解下列方程(1)(2x+3)2=(x﹣1)2(2)x2﹣2x﹣8=0.。

黔西南州2016-2017学年九年级上期中考试数学试卷含答案

黔西南州2016-2017学年九年级上期中考试数学试卷含答案

(2)、 a2
a(a﹥0) 0(a=0) ……………………2分 -a(a﹤0)
问:(1)这种分析方法渗透了
数学思想;
(2)请访照例中的分类讨论的方法,分析二次根式 a 2 的各种展开的情况;
(3)猜想|a︱与 a
2
(4)尝试用以上探究中的得大到小的关结系论;来解答下面的问题:
化简 (x 5)2
(x 3)2
(﹣3≤x≤5)
24、某商场销售一批名牌衬衫,平均每天可售出 20 件,每件赢利 40 元.为了扩大销售, 商场决定采取适当的降价措施,经调查发现,如果每件衬衫降价 1 元,商场平均每天可多 售出 2 件.

个单位得到,其对称轴是

。向
平移
个单位、再向

14、中心对称图形的旋转角是

15、方程 x2 3x 1 0 的根的情况是:

16、设 x1 、 x2 是方程 2x2 x 1 0 的两个根,则 x1 x2
, x1gx

2
17、若 y (n 2 n)x n2 n 是二次函数,则 n=

18、如图所示,在同一坐标系中,作出①y
3x2 ②y
1 x2 y 2③
x2
的图象,则图象从里到外的三条抛物线对应的
函数依次是_______(填序号)
y
o
x
第 18 题
19、请写出一个开口向下,对称轴为直线 x=1,且与 y 轴的交点坐标为
(0,2)的抛物线的解析式
。25116377
20、如图是一个三角形点阵图,从上向下有无数多行,251637
参考答案
一、选择题(第小题 4 分,共 40 分)
题号 1

【最新】2016-2017学年新课标人教版九年级(上册)期中数学试卷及答案

【最新】2016-2017学年新课标人教版九年级(上册)期中数学试卷及答案

2016-2017学年九年级(上)期中数学试卷一、选择题(每小题3分,共30分.下列各题均有四个选项,其中只有一个是符合题意的.)1.抛物线y=(x﹣1)2+2的对称轴是()A.直线x=﹣1 B.直线x=1 C.直线x=﹣2 D.直线x=22.若将抛物线y=2x2先向左平移2个单位,再向下平移1个单位得到一个新的抛物线,则新抛物线的顶点坐标是()A.(﹣2,1)B.(﹣2,﹣1) C.(2,1) D.(2,﹣1)3.如图,在△ABC中,DE∥BC,AD:AB=1:3,若△ADE的面积等于4,则△ABC的面积等于()A.12 B.16 C.24 D.364.如图,在4×4的正方形网格中,tanα的值等于()A.B.C.D.5.如图,在平面直角坐标系中,以P(4,6)为位似中心,把△ABC缩小得到△DEF,若变换后,点A、B的对应点分别为点D、E,则点C的对应点F的坐标应为()A.(4,2) B.(4,4) C.(4,5) D.(5,4)6.为了测量被池塘隔开的A,B两点之间的距离,根据实际情况,作出如图所示图形,其中AB⊥BE,EF⊥BE,AF交BE于D,C在BD上.有四位同学分别测量出以下四组数据,根据所测数据不能求出A,B间距离的是()A.BC,∠ACB B.DE,DC,BC C.EF,DE,BD D.CD,∠ACB,∠ADB7.将抛物线y=2x2+1绕原点O旋转180°,则旋转后的抛物线的解析式为()A.y=﹣2x2B.y=﹣2x2+1 C.y=2x2﹣1 D.y=﹣2x2﹣18.图(1)是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2m,水面宽4m.如图(2)建立平面直角坐标系,则抛物线的关系式是()A.y=﹣2x2B.y=2x2C.y=﹣x2D.y=x29.二次函数y=ax2+bx+c的部分对应值如下表:x …﹣2 ﹣1 0 1 2 3 …y … 5 0 ﹣3 ﹣4 ﹣3 0 …当函数值y<0时,x的取值范围是()A.﹣2<x<0 B.﹣1<x<0 C.﹣1<x<3 D.0<x<210.如图,正△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿A→B→C的方向运动,到达点C时停止,设运动时间为x(秒),y=PC2,则y关于x的函数的图象大致为()A .B .C .D .二、填空题(每小题3分,共18分)11.已知△ABC ∽△A 1B 1C 1,AB :A 1B 1=2:3,则S △ABC 与S △A1B1C1之比为.12.在Rt △ABC 中,∠C=90°,BC :AC=3:4,则cosA= .13.点A (x 1,y 1)、B (x 2,y 2)在二次函数y=x 2﹣4x ﹣1的图象上,若当1<x 1<2,3<x 2<4时,则y 1与y 2的大小关系是y 1y 2.(用“>”、“<”、“=”填空)14.二次函数y=m 2x 2+(2m+1)x+1的图象与x 轴有两个交点,则m 取值范围是.15.在研究了平行四边形的相关内容后,老师提出这样一个问题:“四边形ABCD 中,AD ∥BC ,请添加一个条件,使得四边形ABCD 是平行四边形”.经过思考,小明说“添加AD=BC ”,小红说“添加AB=DC ”.你同意的观点,理由是.16.如图,在平面直角坐标系xOy 中,二次函数y=﹣x 2﹣2x 图象位于x 轴上方的部分记作F 1,与x轴交于点P 1和O ;F 2与F 1关于点O 对称,与x 轴另一个交点为P 2;F 3与F 2关于点P 2对称,与x 轴另一个交点为P 3;….这样依次得到F 1,F 2,F 3,…,F n ,则其中F 1的顶点坐标为,F 8的顶点坐标为,F n 的顶点坐标为(n 为正整数,用含n 的代数式表示).三、解答题(本题共72分,第17-21题,每小题6分,第22-25题,每小题6分,第26题7分,第27题7分,第28题8分)17.计算:3tan30°+2cos45°﹣sin60°﹣2sin30°.18.已知:二次函数y=ax2+bx+c的图象经过(﹣3,0)、(1,0)、(0,﹣3)三点,(1)求:二次函数的表达式;(2)求:二次函数的对称轴、顶点坐标,并画出此二次函数的图象.19.如图,?ABCD中,点E在BA的延长线上,连接CE,与AD相交于点F.(1)求证:△EBC∽△CDF;(2)若BC=8,CD=3,AE=1,求AF的长.20.已知:如图,在△ABC中,CD⊥AB,sinA=,AB=13,CD=12,求AD的长和tanB的值.21.如图,有一座抛物线形拱桥,在正常水位时水面AB的宽为20米,如果水位上升3米,则水面CD的宽是10米.(1)建立如图所示的直角坐标系,求此抛物线的解析式;(2)当水位在正常水位时,有一艘宽为6米的货船经过这里,船舱上有高出水面 3.6米的长方体货物(货物与货船同宽).问:此船能否顺利通过这座拱桥?22.如图,一艘海轮位于灯塔P的南偏东45°方向,距离灯塔100海里的A处,它计划沿正北方向航行,去往位于灯塔P的北偏东30°方向上的B处.(1)B处距离灯塔P有多远?(2)圆形暗礁区域的圆心位于PB的延长线上,距离灯塔200海里的O处.已知圆形暗礁区域的半径为50海里,进入圆形暗礁区域就有触礁的危险.请判断若海轮到达B处是否有触礁的危险,并说明理由.23.如图,在四边形ABCD中,∠C=60°,∠B=∠D=90°,AD=2AB,CD=3,求BC的长.24.在平面直角坐标系xOy中,点P(x,y)经过变换τ得到点P′(x′,y′),该变换记作τ(x,y)=(x′,y′),其中(a,b为常数).例如,当a=1,且b=1时,τ(﹣2,3)=(1,﹣5).(1)当a=1,且b=﹣2时,τ(0,1)= ;(2)若τ(1,2)=(0,﹣2),则a= ,b= ;(3)设点P(x,y)是直线y=2x上的任意一点,点P经过变换τ得到点P′(x′,y′).若点P与点P′重合,求a和b的值.25.动手操作:小明利用等距平行线解决了二等分线段的问题.作法:(1)在e上任取一点C,以点C为圆心,AB长为半径画弧交c于点D,交d于点E;(2)以点A为圆心,CE长为半径画弧交AB于点M;∴点M为线段AB的二等分点.解决下列问题:(尺规作图,保留作图痕迹)(1)仿照小明的作法,在图2中作出线段AB的三等分点;(2)点P是∠AOB内部一点,过点P作PM⊥OA于M,PN⊥OB于N,请找出一个满足下列条件的点P.(可以利用图1中的等距平行线)①在图3中作出点P,使得PM=PN;②在图4中作出点P,使得PM=2PN.26.小东同学在学习了二次函数图象以后,自己提出了这样一个问题:探究:函数的图象与性质.小东根据学习函数的经验,对函数的图象与性质进行了如下探究:下面是小东的探究过程,请补充完成:(1)函数的自变量x的取值范围是;(2)下表是y与x的几组对应值.x …﹣2 ﹣1 0 2 3 4 …y …m …则m的值是;(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,并画出该函数的图象;(4)小东进一步探究发现,该函数图象在第一象限内的最低点的坐标是,结合函数的图象,写出该函数的其他性质(一条即可):.27.如图1,在等腰直角△ABC中,∠BAC=90°,AB=AC=2,点E是BC边上一点,∠DEF=45°且角的两边分别与边AB,射线CA交于点P,Q.(1)如图2,若点E为BC中点,将∠DEF绕着点E逆时针旋转,DE与边AB交于点P,EF与CA的延长线交于点Q.设BP为x,CQ为y,试求y与x的函数关系式,并写出自变量x的取值范围;(2)如图3,点E在边BC上沿B到C的方向运动(不与B,C重合),且DE始终经过点A,EF与边AC交于Q点.探究:在∠DEF运动过程中,△AEQ能否构成等腰三角形,若能,求出BE的长;若不能,请说明理由.28.已知:如图1,抛物线的顶点为M,平行于x轴的直线与该抛物线交于点A,B(点A在点B左侧),根据对称性△AMB恒为等腰三角形,我们规定:当△AMB为直角三角形时,就称△AMB为该抛物线的“完美三角形”.(1)①如图2,求出抛物线y=x2的“完美三角形”斜边AB的长;②抛物线y=x2+1与y=x2的“完美三角形”的斜边长的数量关系是;(2)若抛物线y=ax2+4的“完美三角形”的斜边长为4,求a的值;(3)若抛物线y=mx2+2x+n﹣5的“完美三角形”斜边长为n,且y=mx2+2x+n﹣5的最大值为﹣1,求m,n的值.2016-2017学年九年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分.下列各题均有四个选项,其中只有一个是符合题意的.)1.抛物线y=(x﹣1)2+2的对称轴是()A.直线x=﹣1 B.直线x=1 C.直线x=﹣2 D.直线x=2【考点】二次函数的性质.【分析】由抛物线的顶点式y=(x﹣h)2+k直接看出对称轴是x=h.【解答】解:∵抛物线的顶点式为y=(x﹣1)2+2,∴对称轴是x=1.故选B.【点评】要求熟练掌握抛物线解析式的各种形式的运用.2.若将抛物线y=2x2先向左平移2个单位,再向下平移1个单位得到一个新的抛物线,则新抛物线的顶点坐标是()A.(﹣2,1)B.(﹣2,﹣1) C.(2,1) D.(2,﹣1)【考点】二次函数图象与几何变换.【分析】先确定出原抛物线的顶点坐标,再根据向左平移横坐标减,向下平移,纵坐标减解答即可.【解答】解:抛物线y=2x2的顶点坐标为(0,0),∵向左平移2个单位,向下平移1个单位,∴新抛物线的顶点坐标是(﹣2,﹣1).故选:B.【点评】本题考查了二次函数图象与几何变换,利用点的平移规律左减右加,上加下减解答是解题的关键.3.(2015秋?北京校级期中)如图,在△ABC中,DE∥BC,AD:AB=1:3,若△ADE的面积等于4,则△ABC的面积等于()A.12 B.16 C.24 D.36【考点】相似三角形的判定与性质.【分析】由条件证明△ADE∽△ABC,且相似比为,再利用相似三角形的性质可求得△ABC的面积.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴=()2=()2=,∵S△ADE=2,∴=,解得S△ABC=36.故选D.【点评】本题主要考查相似三角形的判定和性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.4.如图,在4×4的正方形网格中,tanα的值等于()A.B.C.D.【考点】锐角三角函数的定义.【专题】网格型.【分析】直接根据锐角三角函数的定义即可得出结论.【解答】解:∵AD⊥BC,AD=3,BD=2,∴tanα==.故选C.【点评】本题考查的是锐角三角函数的定义,熟记锐角三角函数的定义是解答此题的关键.5.如图,在平面直角坐标系中,以P(4,6)为位似中心,把△ABC缩小得到△DEF,若变换后,点A、B的对应点分别为点D、E,则点C的对应点F的坐标应为()A.(4,2) B.(4,4) C.(4,5) D.(5,4)【考点】位似变换.【专题】数形结合.【分析】根据两个图形必须是相似形;②对应点的连线都经过同一点,即可得出F点的坐标.【解答】解:∵△DEF∽△ABC,且F点在CP的连线上,∴可得F点位置如图所示:故P点坐标为(4,4).故选B.【点评】本题考查位似的定义,难度不大,注意掌握两位似图形的对应点的连线都经过同一点,这一点即是位似中心.6.为了测量被池塘隔开的A,B两点之间的距离,根据实际情况,作出如图所示图形,其中AB⊥BE,EF⊥BE,AF交BE于D,C在BD上.有四位同学分别测量出以下四组数据,根据所测数据不能求出A,B间距离的是()A.BC,∠ACB B.DE,DC,BC C.EF,DE,BD D.CD,∠ACB,∠ADB【考点】相似三角形的应用.【分析】根据三角形相似可知,要求出AB,只需求出EF即可.所以借助于相似三角形的性质,根据即可解答.【解答】解:此题比较综合,要多方面考虑,A、因为知道∠ACB和BC的长,所以可利用∠ACB的正切来求AB的长;B、无法求出A,B间距离.C、因为△ABD∽△EFD,可利用,求出AB;D、可利用∠ACB和∠ADB的正切求出AB;据所测数据不能求出A,B间距离的是选项B;故选:B.【点评】本题考查相似三角形的应用和解直角三角形的应用;将实际问题转化为数学问题是解决问题的关键.7.将抛物线y=2x2+1绕原点O旋转180°,则旋转后的抛物线的解析式为()A.y=﹣2x2B.y=﹣2x2+1 C.y=2x2﹣1 D.y=﹣2x2﹣1【考点】二次函数图象与几何变换.【分析】根据关于原点对称的两点的横坐标纵坐标都互为相反数求解则可.【解答】解:根据题意,可得﹣y=2(﹣x)2+1,得到y=﹣2x2﹣1.故旋转后的抛物线解析式是y=﹣2x2﹣1.故选D.【点评】此题主要考查了根据二次函数的图象的变换求抛物线的解析式.8.图(1)是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2m,水面宽4m.如图(2)建立平面直角坐标系,则抛物线的关系式是()A.y=﹣2x2B.y=2x2C.y=﹣x2D.y=x2【考点】根据实际问题列二次函数关系式.【专题】压轴题.【分析】由图中可以看出,所求抛物线的顶点在原点,对称轴为y轴,可设此函数解析式为:y=ax2,利用待定系数法求解.【解答】解:设此函数解析式为:y=ax2,a≠0;那么(2,﹣2)应在此函数解析式上.则﹣2=4a即得a=﹣,那么y=﹣x2.故选:C.【点评】根据题意得到函数解析式的表示方法是解决本题的关键,关键在于找到在此函数解析式上的点.9.二次函数y=ax2+bx+c的部分对应值如下表:x …﹣2 ﹣1 0 1 2 3 …y … 5 0 ﹣3 ﹣4 ﹣3 0 …当函数值y<0时,x的取值范围是()A.﹣2<x<0 B.﹣1<x<0 C.﹣1<x<3 D.0<x<2【考点】二次函数的性质.【分析】根据图表可以得出二次函数的顶点坐标为(1,﹣4),图象与x轴的交点坐标为(﹣1,0),(3,0),且图象开口向上,结合图象可以得出函数值y<0时,x的取值范围.【解答】解:根据图表可以得出二次函数的顶点坐标为(1,﹣4),图象与x轴的交点坐标为(﹣1,0),(3,0),如右图所示:∴当函数值y<0时,x的取值范围是:﹣1<x<3.故选C.【点评】此题主要考查了二次函数的性质,利用图表得出二次函数的图象即可得出函数值的取值范围.数形结合是这部分考查重点,同学们应熟练掌握.10.如图,正△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿A→B→C的方向运动,到达点C时停止,设运动时间为x(秒),y=PC2,则y关于x的函数的图象大致为()A.B.C.D.【考点】动点问题的函数图象.【专题】压轴题.【分析】需要分类讨论:①当0≤x≤3,即点P在线段AB上时,根据余弦定理知cosA=,所以将相关线段的长度代入该等式,即可求得y与x的函数关系式,然后根据函数关系式确定该函数的图象.②当3<x≤6,即点P在线段BC上时,y与x的函数关系式是y=(6﹣x)2=(x﹣6)2(3<x≤6),根据该函数关系式可以确定该函数的图象.【解答】解:∵正△ABC的边长为3cm,∴∠A=∠B=∠C=60°,AC=3cm.①当0≤x≤3时,即点P在线段AB上时,AP=xcm(0≤x≤3);根据余弦定理知cosA=,即=,解得,y=x2﹣3x+9(0≤x≤3);该函数图象是开口向上的抛物线;解法二:过C作CD⊥AB,则AD=1.5cm,CD=cm,点P在AB上时,AP=x cm,PD=|1.5﹣x|cm,∴y=PC2=()2+(1.5﹣x)2=x2﹣3x+9(0≤x≤3)该函数图象是开口向上的抛物线;②当3<x≤6时,即点P在线段BC上时,PC=(6﹣x)cm(3<x≤6);则y=(6﹣x)2=(x﹣6)2(3<x≤6),∴该函数的图象是在3<x≤6上的抛物线;故选:C.【点评】本题考查了动点问题的函数图象.解答该题时,需要对点P的位置进行分类讨论,以防错选.二、填空题(每小题3分,共18分)11.已知△ABC∽△A1B1C1,AB:A1B1=2:3,则S△ABC与S△A1B1C1之比为4:9 .【考点】相似三角形的性质.【分析】根据相似三角形的面积比等于相似比的平方即可得到答案.【解答】解:∵△ABC∽△A1B1C1,AB:A1B1=2:3,∴.【点评】本题考查对相似三角形性质的理解:(1)相似三角形周长的比等于相似比;(2)相似三角形面积的比等于相似比的平方;(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.12.(2007?眉山)在Rt△ABC中,∠C=90°,BC:AC=3:4,则cosA= .【考点】锐角三角函数的定义.【专题】压轴题.【分析】根据BC:AC=3:4,设BC:AC的长,再根据勾股定理及直角三角形中锐角三角函数的定义求解.【解答】解:∵Rt△ABC中,∠C=90°,BC:AC=3:4,∴设BC=3x,则AC=4x,∴AB=5x,∴cosA===.【点评】本题利用了勾股定理和锐角三角函数的定义,比较简单.13.点A(x1,y1)、B(x2,y2)在二次函数y=x2﹣4x﹣1的图象上,若当1<x1<2,3<x2<4时,则y1与y2的大小关系是y1<y2.(用“>”、“<”、“=”填空)【考点】二次函数图象上点的坐标特征.【分析】先根据二次函数的解析式判断出抛物线的开口方向及对称轴,根据图象上的点的横坐标距离对称轴的远近来判断纵坐标的大小.【解答】解:由二次函数y=x2﹣4x﹣1=(x﹣2)2﹣5可知,其图象开口向上,且对称轴为x=2,∵1<x1<2,3<x2<4,∴A点横坐标离对称轴的距离小于B点横坐标离对称轴的距离,∴y1<y2.故答案为:<.【点评】本题主要考查对二次函数图象上点的坐标特征,二次函数的性质等知识点的理解和掌握,能求出对称轴和根据二次函数的性质求出正确答案是解此题的关键.14.二次函数y=m2x2+(2m+1)x+1的图象与x轴有两个交点,则m取值范围是m>﹣且m≠0 .【考点】抛物线与x轴的交点.【专题】二次函数图象及其性质.【分析】题目考查二次函数图象与x轴的交点个数与二次函数系数之间的关系,当图象与x轴有两个交点时,△>0,当图象与x轴有一个交点时,△=0,当图象与x轴没有交点时,△<0,同时不要遗漏二次函数二次项系数不为零.【解答】解:∵二次函数y=m2x2+(2m+1)x+1的图象与x轴有两个交点,∴△>0即b2﹣4ac>0代入得:(2m+1)2﹣4×m2×1>0解得:m>﹣∵二次函数二次项系数大于零,∴m2>0∴m≠0综上所述:【点评】题目考查二次函数定义及二次函数图象与x轴交点个数与△的关系,在计算△>0取值范围后,不要忘记二次函数不为零的前提.题目较简单.15.在研究了平行四边形的相关内容后,老师提出这样一个问题:“四边形ABCD 中,AD∥BC,请添加一个条件,使得四边形ABCD是平行四边形”.经过思考,小明说“添加AD=BC”,小红说“添加AB=DC”.你同意小明的观点,理由是一组对边平行且相等的四边形是平行四边形.【考点】平行四边形的判定.【分析】根据一组对边平行且相等的四边形是平行四边形可得小明正确.【解答】解:四边形ABCD 中,AD∥BC,请添加一个条件,使得四边形ABCD是平行四边形,应添加AD=BC,根据一组对边平行且相等的四边形是平行四边形,因此小明说的对;小红添加的条件,也可能是等腰梯形,因此小红错误,故答案为:小明;一组对边平行且相等的四边形是平行四边形.【点评】此题主要考查了平行四边形的判定,关键是熟练掌握平行四边形的判定定理.16.如图,在平面直角坐标系xOy中,二次函数y=﹣x2﹣2x图象位于x轴上方的部分记作F1,与x 轴交于点P1和O;F2与F1关于点O对称,与x轴另一个交点为P2;F3与F2关于点P2对称,与x轴另一个交点为P3;….这样依次得到F1,F2,F3,…,F n,则其中F1的顶点坐标为(﹣1,1),F8的顶点坐标为(13,﹣1),F n的顶点坐标为[2n﹣3,(﹣1)n+1] (n为正整数,用含n的代数式表示).【考点】二次函数图象与几何变换.【分析】根据抛物线的解析式来求F1的顶点坐标;根据该“波浪抛物线”顶点坐标纵坐标分别为1和﹣1即可得出结论.【解答】解:∵y=﹣x2﹣2x=﹣(x+1)2+1,∴F1的顶点坐标为(﹣1,1).又y=﹣x2﹣2x=﹣x(x+2),∴P1(﹣2,0),∴根据函数的对称性得到:F2的顶点坐标为(1,﹣1),P2(2,0),F3的顶点坐标为(3,1),P3(4,0),…F的顶点坐标为(13,﹣1),8的顶点坐标为[2n﹣3,(﹣1)n+1].Fn故答案是:(﹣1,1);(13,﹣1);[2n﹣3,(﹣1)n+1].【点评】本题考查了二次函数图象与几何变换.解题的关键是找到F n的顶点坐标变换规律.三、解答题(本题共72分,第17-21题,每小题6分,第22-25题,每小题6分,第26题7分,第27题7分,第28题8分)17.计算:3tan30°+2cos45°﹣sin60°﹣2sin30°.【考点】特殊角的三角函数值.【分析】将特殊角的三角函数值代入求解.【解答】解:原式=3×+2×﹣﹣2×=+﹣1.【点评】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.18.(2015秋?北京校级期中)已知:二次函数y=ax2+bx+c的图象经过(﹣3,0)、(1,0)、(0,﹣3)三点,(1)求:二次函数的表达式;(2)求:二次函数的对称轴、顶点坐标,并画出此二次函数的图象.【考点】待定系数法求二次函数解析式;二次函数的图象;二次函数的性质.【专题】计算题.【分析】(1)设交点式二次函数解析式为:y=a(x﹣1)(x+3),然后把(0,﹣3)代入求出a即可;(2)把(1)中解析式配成顶点式,然后根据二次函数的性质得到二次函数的对称轴、顶点坐标,然后利用描点法画函数图象.【解答】解:(1)∵二次函数的图象经过(﹣3,0)、(1,0)两点∴设二次函数解析式为:y=a(x﹣1)(x+3)又∵图象经过(0,﹣3)点,∴﹣3=a(0﹣1)(0+3)解得a=1∴二次函数解析式为:y=x2+2x﹣3;(2)∵y=x2+2x﹣3=(x+1)2﹣4,∴二次函数图象的对称轴为直线x=﹣1;顶点坐标为:(﹣1,﹣4);如图,【点评】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.也考查了二次函数的图象.19.如图,?ABCD中,点E在BA的延长线上,连接CE,与AD相交于点F.(1)求证:△EBC∽△CDF;(2)若BC=8,CD=3,AE=1,求AF的长.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】(1)利用平行四边形的性质:对角相等和对边平行可得∠B=∠D和∠FCD=∠E,有两对角相等的三角形相似可判定△EBC∽△CDF;(2)有(1)可知:△EBC∽△CDF,利用相似三角形的性质:对应边的比值相等即可求出AF的长.【解答】(1)证明:∵四边形ABCD是平行四边形,∴∠B=∠D,AB∥CD,∴∠FCD=∠E,∴△EBC∽△CDF;(2)解:∵△EAF∽△EBC,∴,即.解得:AF=2.【点评】本题考查了平行四边形的性质以及相似三角形的判定和相似三角形的性质,难度不大,属于基础性题目.20.已知:如图,在△ABC中,CD⊥AB,sinA=,AB=13,CD=12,求AD的长和tanB的值.【考点】解直角三角形;锐角三角函数的定义.【分析】由sinA=,CD=12,根据三角函数可得AC=15,根据勾股定理可得AD=9,则BD=4,再根据正切的定义求出tanB的值.【解答】解:∵CD⊥AB,∴∠CDA=90°…(1分)∵sinA=∴AC=15.…(2分)∴AD=9.…∴BD=4.…(4分)∴tanB=…【点评】考查了解直角三角形和锐角三角函数的定义,要熟练掌握好边角之间的关系.21.如图,有一座抛物线形拱桥,在正常水位时水面AB的宽为20米,如果水位上升3米,则水面CD的宽是10米.(1)建立如图所示的直角坐标系,求此抛物线的解析式;(2)当水位在正常水位时,有一艘宽为6米的货船经过这里,船舱上有高出水面 3.6米的长方体货物(货物与货船同宽).问:此船能否顺利通过这座拱桥?【考点】二次函数的应用.【专题】应用题.【分析】(1)以拱桥最顶端为原点,建立直角坐标系,根据题目中所给的数据写出函数解析式.(2)计算出本问可用两种方法求得,求x=3米时求出水面求出此时y的值,A、B点的横坐标减去y 此时的值到正常水面AB的距离与 3.6相比较即可得出答案.【解答】解:(1)设抛物线解析式为y=ax2,因为抛物线关于y轴对称,AB=20,所以点B的横坐标为10,设点B(10,n),点D(5,n+3),n=102?a=100a,n+3=52a=25a,即,解得,∴;(2)∵货轮经过拱桥时的横坐标为x=3,∴当x=3时,∵﹣(﹣4)>3.6∴在正常水位时,此船能顺利通过这座拱桥.答:在正常水位时,此船能顺利通过这座拱桥.【点评】此题考查了坐标系的建立,以及抛物线的性质与求值.22.如图,一艘海轮位于灯塔P的南偏东45°方向,距离灯塔100海里的A处,它计划沿正北方向航行,去往位于灯塔P的北偏东30°方向上的B处.(1)B处距离灯塔P有多远?(2)圆形暗礁区域的圆心位于PB的延长线上,距离灯塔200海里的O处.已知圆形暗礁区域的半径为50海里,进入圆形暗礁区域就有触礁的危险.请判断若海轮到达B处是否有触礁的危险,并说明理由.【考点】解直角三角形的应用-方向角问题.【分析】(1)首先作PC⊥AB于C,利用∠CPA=90°﹣45°=45°,进而利用锐角三角函数关系得出PC的长,即可得出答案;(2)首先求出OB的长,进而得出OB>50,即可得出答案.【解答】解:(1)作PC⊥AB于C.(如图)在Rt△PAC中,∠PCA=90°,∠CPA=90°﹣45°=45°.∴.在Rt△PCB中,∠PCB=90°,∠PBC=30°.∴.答:B处距离灯塔P有海里.(2)海轮到达B处没有触礁的危险.理由如下:∵,而,∴.∴OB>50.∴B处在圆形暗礁区域外,没有触礁的危险.【点评】此题主要考查了解直角三角形的应用,利用数形结合以及锐角三角函数关系得出线段PC的长是解题关键.23.如图,在四边形ABCD中,∠C=60°,∠B=∠D=90°,AD=2AB,CD=3,求BC的长.【考点】解直角三角形.【分析】延长DA、CB交于点E,解直角三角形求出DE、EC,求出∠E=30°,解直角三角形求出EB,即可求出答案.【解答】解:延长DA、CB交于点E,∵在Rt△CDE中,tanC==,cosC==,∴DE=3,EC=6,∵AD=2AB设AB=k,则AD=2k,∵∠C=60°,∠B=∠D=90°,∴∠E=30°,∵在Rt△ABE中,sinE==tanE==,∴AE=2AB=2k,EB=AB=k,∴DE=4k=3,解得:k=,∴EB=,∴BC=6﹣=.【点评】本题考查了解直角三角形的应用,主要考查学生进行计算的能力,是一道比较好的题目,关键是构造直角三角形.24.在平面直角坐标系xOy中,点P(x,y)经过变换τ得到点P′(x′,y′),该变换记作τ(x,y)=(x′,y′),其中(a,b为常数).例如,当a=1,且b=1时,τ(﹣2,3)=(1,﹣5).(1)当a=1,且b=﹣2时,τ(0,1)= (﹣2,2);(2)若τ(1,2)=(0,﹣2),则a= ﹣1 ,b= ;(3)设点P(x,y)是直线y=2x上的任意一点,点P经过变换τ得到点P′(x′,y′).若点P与点P′重合,求a和b的值.【考点】一次函数综合题.【分析】(1)将a=1,b=﹣2,τ(0,1),代入,可求x′,y′的值,从而求解;(2)将τ(1,2)=(0,﹣2),代入,可得关于a,b的二元一次方程组,解方程组即可求解;(3)由点P(x,y)经过变换τ得到的对应点P'(x',y')与点P重合,可得τ(x,y)=(x,y).根据点P(x,y)在直线y=2x上,可得关于a,b的二元一次方程组,解方程组即可求解.【解答】解:(1)当a=1,且b=﹣2时,x′=1×0+(﹣2)×1=﹣2,y′=1×0﹣(﹣2)×1=2,则τ(0,1)=(﹣2,2);(2)∵τ(1,2)=(0,﹣2),∴,解得a=﹣1,b=;(3)∵点P(x,y)经过变换τ得到的对应点P'(x',y')与点P重合,∴τ(x,y)=(x,y).∵点P(x,y)在直线y=2x上,∴τ(x,2x)=(x,2x).∴,即∵x为任意的实数,∴,解得.∴,.故答案为:(﹣2,2);﹣1,.【点评】考查了一次函数综合题,关键是对题意的理解能力,具有较强的代数变换能力,要求学生熟练掌握解二元一次方程组.25.(2015秋?北京校级期中)动手操作:小明利用等距平行线解决了二等分线段的问题.作法:(1)在e上任取一点C,以点C为圆心,AB长为半径画弧交c于点D,交d于点E;(2)以点A为圆心,CE长为半径画弧交AB于点M;∴点M为线段AB的二等分点.解决下列问题:(尺规作图,保留作图痕迹)(1)仿照小明的作法,在图2中作出线段AB的三等分点;(2)点P是∠AOB内部一点,过点P作PM⊥OA于M,PN⊥OB于N,请找出一个满足下列条件的点P.(可以利用图1中的等距平行线)①在图3中作出点P,使得PM=PN;②在图4中作出点P,使得PM=2PN.【考点】作图—应用与设计作图.【分析】(1)作法:①在e上任取一点C,以点C为圆心,AB长为半径画弧交b于点D,交d于点E,交c于点F;②以点A为圆心,CE长为半径画弧交AB于点P1,再以点B为圆心,CE长为半径画弧交AB于点P2;则点P1、P2为线段AB的三等分点;(2)①以O为圆心,任意长为半径画弧,交OA于M,交OB于N;在d上任取一点C,以点C为圆心,MN长为半径画弧交b于点D,交c于点E;以点M为圆心,CE长为半径画弧交MN于点P;则P 点为所求;②以O为圆心,任意长为半径画弧,交OA于M,交OB于N;在d上任取一点C,以点C为圆心,MN 长为半径画弧交a于点D,交c于点E,交b于点F;②以点M为圆心,CF长为半径画弧交MN于点P;则P点为所求.【解答】解:(1)如下图所示,点P1、P2为线段AB的三等分点;(2)①如下图所示,点P即为所求;②如下图所示,点P即为所求.【点评】本题考查了作图﹣应用与设计作图,学生的阅读理解能力及知识的迁移能力,理解等距平行线的含义及平行线分线段成比例定理是解题的关键.26.小东同学在学习了二次函数图象以后,自己提出了这样一个问题:探究:函数的图象与性质.小东根据学习函数的经验,对函数的图象与性质进行了如下探究:下面是小东的探究过程,请补充完成:(1)函数的自变量x的取值范围是x≠1 ;(2)下表是y与x的几组对应值.x …﹣2 ﹣1 0 2 3 4 …y …m …则m的值是;(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,并画出该函数的图象;。

数学试卷期中九年级贵州【含答案】

数学试卷期中九年级贵州【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若函数f(x) = x² 4x + 3,则f(2)的值为:A. 1B. -1C. 2D. 32. 下列函数中,奇函数是:A. f(x) = x³B. f(x) = x²C. f(x) = |x|D. f(x) = x² + 13. 若a, b为实数,且a ≠ b,则方程ax² + bx + 1 = 0:A. 必有两个实根B. 必有两个不相等的实根C. 可能有两个实根D. 必有一个实根4. 在ΔABC中,若sinA = 3/5,则cosB的值为:A. 4/5B. 3/5C. 4/3D. 5/45. 若一组数据的方差为4,则这组数据的标准差为:A. 2B. 4C. 8D. 16二、判断题(每题1分,共5分)6. 任何两个奇函数的乘积一定是偶函数。

()7. 若a, b为实数,且a < b,则ax² + bx + 1 = 0的判别式Δ一定小于0。

()8. 在ΔABC中,若a = b,则角A = 角B。

()9. 一组数据的平均数一定大于等于这组数据的中位数。

()10. 两个相互独立的随机事件一定互斥。

()三、填空题(每题1分,共5分)11. 若函数f(x) = 2x + 3,则f(-1)的值为______。

12. 在ΔABC中,若a = 3, b = 4, sinB = 3/5,则cosA的值为______。

13. 若一组数据的平均数为10,方差为4,则这组数据的标准差为______。

14. 若两个事件的和事件为必然事件,则这两个事件的关系是______。

15. 若函数f(x) = x³ 3x + 2,则f'(x)的值为______。

四、简答题(每题2分,共10分)16. 简述函数的单调性及其判定方法。

17. 简述余弦定理及其应用。

18. 简述概率的基本性质。

2016九年级(上)数学期中试卷

2016-2017学年度第一学期第一阶段学业质量监测试卷九年级数学注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.2.答选择题必须用2B 铅笔将答题卷上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卷上的指定位置,在其他位置答题一律无效.3.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题..卷.相应位置....上) 1.下列方程中,是一元二次方程的是 A .2x +3y +1=0 B .x 2-1=0C .y =(x -2)2D .1x+x =12.某校九年级学生参加体育测试,其中10人的引体向上成绩如下表:这10人完成引体向上个数的众数与中位数分别是 A .9和10B .9.5和10C .10和9D .10和9.53.设x 1、x 2是一元二次方程x 2-4x -1=0的两个根,则x 1+x 2的值为A .1B .4C .-1D .-44.如图,点A 、B 、C 、D 在⊙O 上,C 是AB ︵的中点,∠CDB =25°,∠AOB 的度数是 A .50°B .100°C .125°D .150°5.如图,正八边形ABCDEFGH 的两条对角线AC 、BE 相交于点P ,∠EPC 的度数为(第5题)AB C DEFPGH (第4题)A .67.5°B .69°C .72°D .112.5°6.如果四边形内存在一个点到四个顶点的距离相等,那么这个四边形一定..有 A .一组邻角相等B .一组对角相等C .两组对角分别相等D .两组对角的和相等二、填空题(本大题共10小题,每小题2分,共20分. 不需写出解答过程,请把答案直接填写在答题卷相应位置.......上) 7.将方程x 2+4x -1=0化为(x +a )2=b 的形式为 ▲ .8.圆锥的母线长为5,底面半径为3,圆锥的侧面积为 ▲ .(结果保留π) 9.小亮本学期数学的平时作业、期中考试、期末考试及数学综合实践活动的成绩分别是88分、82分、90分和90分,各项占学期成绩的百分比分别为30%、30%、35%、5%,则小亮的数学学期成绩是 ▲ 分.10.已知关于x 的一元二次方程3(x -1)(x -m )=0的两个根是1和2,则m 的值是 ▲ . 11.甲、乙两地5月下旬10天的日平均气温统计如下表(单位:°C ):则甲、乙两地这10天日平均气温的方差的大小关系为:S 2甲 ▲ S 2乙.(填“>”、“<”或“=”)12.某电视机厂今年3月的产量为50万台,5月上升到72万台,求该厂平均每月产量增长的百分率.若设该厂平均每月产量增长的百分率为x ,则列出的方程是 ▲ . 13.在直径为650 mm 的圆柱形油罐内装进一些油后,其横截面如图.若油面宽AB =600 mm ,则油的最大深度为 ▲ mm .14.如图,四边形ABCD 中,AB 、CD 分别与以AD 为直径的半圆O 切于点A 、D ,BC切半圆O 于点E ,若AB =4 cm ,CD =9 cm ,则AD = ▲ cm .15.如图,四边形OABC 为菱形,点B 在以点O 为圆心、以OC 为半径的EF ︵上,若OA =3,∠COF =∠AOE ,则EF ︵的长度为 ▲ .(结果保留π)OABCEF(第15题)(第14题)(第13题)16.顶点在圆外,并且两边都和圆相交的角叫做圆外角.圆外角的两边所夹的两条弧的度数与该角的度数之间的数量关系是:圆外角的度数等于 ▲ .三、解答题(本大题共11小题,共88分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(6分)解方程x 2-3x -1=0.18.(6分)解方程x (x +2)=6+3x .19.(8分)已知关于x 的一元二次方程x 2+(2m -1)x +m 2+3=0有两个不相等的实数根,求m 的取值范围.20.(8分)证明定理“垂直于弦的直径平分弦以及弦所对的两条弧”. 如图,AB 为⊙O 的直径,CD 是⊙O 的弦,AB ⊥CD ,垂足为P .求证CP =DP ,BC ︵=BD ︵,AC ︵=AD ︵.21.(8分)如图,我区准备用一块长为60 m ,宽为54 m 的矩形荒地建造一个综合性休闲广场,其中阴影部分为通道,通道的宽度均相等,中间的两个完全一样的矩形区域将铺设塑胶作为运动场地.若塑胶运动场地总面积为2700 m 2,求通道的宽度.B(第20题)(第21题)22.(8分)如图,⊙O 是正方形ABCD 与正六边形AEFCGH 的外接圆.(1)正方形ABCD 与正六边形AEFCGH 的边长之比为 ▲ ; (2)连接BE .BE 是否为⊙O 的内接正n 边形的一边?如果是,求出n 的值;如果不是,请说明理由.23.(8分)教练想从甲、乙两名运动员中选拔一人参加射击锦标赛,故先在射击队举行了一场选拔比赛.在相同的条件下各射靶5次,每次射靶的成绩情况如图所示.(1)请你根据图中的数据填写下表:(2)根据选拔赛结果,教练选择了甲运动员参加射击锦标赛,请给出解释.24.(8分)如图,在⊙O 的内接四边形ABCD 中,AB =AD ,∠C =120°.E 是AB ︵上一点(点E 不与点A 、B 重合). (1)求∠E 的度数;(2)若⊙O 的半径为2,则图中阴影部分的面积是 ▲ . (结果保留根号和π)25.(8分)如图,过△ABC 的顶点A 作射线AM ,使∠1=∠B .(第24题)(第22题) 甲射靶成绩的条形统计图 乙射靶成绩的折线统计图(第23题)(1)用直尺和圆规作出△ABC 的外接圆O (保留作图痕迹,不写作法); (2)判断直线AM 与⊙O 的位置关系,并说明理由.26.(10分)实际问题某批发商以40元/kg 的成本价购入了某产品700 kg ,据市场预测,该产品的销售价y (元/kg )与保存时间x (天)的函数关系为y =50+2x ,但保存这批产品平均每天将损耗15 kg .另外,批发商每天保存该批产品的费用为50元.已知该产品每天的销量不超过600 kg ,若批发商希望通过这批产品卖出获利7000元,则批发商应在保存该产品多少天时一次性...卖出? 小明的思路及解答当x =0时,700-15x =700>600(不合题意,舍去), 当x =40时,700-15x =100<600.答:批发商应在保存该产品40天时一次性卖出可获利7000元. 数学老师的批改数学老师在小明的解答中画了一条横线,并打了一个“×”. 你的观点及做法AM C (第25题)B1(1)请指出小明错误的原因;(2)重新给出正确的解答过程.27.(10分)如图①,已知AB 是⊙O 的直径,C 是AmB ︵上的一个动点(点C 与点A 、B 不重合),连接AC .D 是ABC ︵的中点,作弦DE ⊥AB ,垂足为F .(1)若点C 和点E 不重合,连接BC 、CE 和EB .当△BCE 是等腰三角形时,求∠CAB的度数;(2)若点C 和点E 重合,如图②.探索AB 与AC 的数量关系并说明理由.(第27题)②①。

九年级(上)期中数学试卷(含答案)

九年级(上)期中数学试卷一.选择题(每小题3分,共30分)1.(3分)在艺术字中,有些字母是中心对称图形,下面的5个字母中,是中心对称图形的有()A.2个 B.3个 C.4个 D.5个2.(3分)二次函数y=﹣(x﹣1)2+3的图象的顶点坐标是()A.(﹣1,3)B.(1,3) C.(﹣1,﹣3)D.(1,﹣3)3.(3分)用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A.(x+1)2=6 B.(x﹣1)2=6 C.(x+2)2=9 D.(x﹣2)2=94.(3分)若x1,x2是一元二次方程x2﹣5x+6=0的两个根,则x1+x2的值是()A.1 B.5 C.﹣5 D.65.(3分)在平面直角坐标系xOy中,已知点A(2,3),若将OA绕原点O逆时针旋转180°得到OA′,则点A′在平面直角坐标系中的位置是在()A.第一象限B.第二象限C.第三象限D.第四象限6.(3分)如图,在⊙O中,圆心角∠BOC=60°,则圆周角∠BAC等于()A.60°B.50°C.40°D.30°7.(3分)把抛物线y=﹣x2向右平移一个单位,再向上平移3个单位,得到抛物线的解析式为()A.y=﹣(x﹣1)2+3 B.y=(x﹣1)2+3 C.y=﹣(x+1)2+3 D.y=(x+1)2+3 8.(3分)使用墙的一边,再用13m的铁丝网围成三边,围成一个面积为20m2的长方形,求这个长方形的两边长.设墙的对边长为xm,可得方程()A.x(13﹣x)=20 B.x•=20 C.x(13﹣x)=20 D.x•=209.(3分)如图所示,AB是⊙O的直径,CD是弦,CD⊥AB于点E,则下列结论中不一定正确的是()A.∠COE=∠DOE B.CE=DE C.AC=AD D.OE=BE10.(3分)如图,已知:正方形ABCD边长为1,E、F、G、H分别为各边上的点,且AE=BF=CG=DH,设小正方形EFGH的面积为s,AE为x,则s关于x的函数图象大致是()A.B.C.D.二.填空题(本大题共10小题,每小题3分,共30分.把答案填在题中横线上)11.(3分)已知抛物线y=x2+4x+5的对称轴是直线x=.12.(3分)若关于x的方程x2+2x+k﹣1=0的一个根是0,则k=.13.(3分)某县2008年农民人均年收入为7 800元,计划到2010年,农民人均年收入达到9 100元.设人均年收入的平均增长率为x,则可列方程.14.(3分)钟表的运动可以看作是一种旋转现象,那么分针匀速旋转时,它的旋转中心是钟表的旋转轴的轴心,经过45分钟旋转了度.15.(3分)如图,AB是半圆O的直径,E是的中点,OE交弦BC于点D,已知BC=8cm,DE=2cm,则AD的长为cm.16.(3分)已知抛物线y=x2﹣2x﹣3,若点P(﹣2,5)与点Q关于该抛物线的对称轴对称,则点Q的坐标是.17.(3分)若一元二次方程(k﹣1)x2﹣4x﹣5=0有两个不相等实数根,则k的取值范围是.18.(3分)已知⊙O的半径为6cm,弦AB的长为6cm,则弦AB所对的圆周角的度数为.19.(3分)根据下列5个图形及相应点的个数的变化规律,试猜测第n个图中有个点.20.(3分)若x1,x2(x1<x2)是方程(x﹣a)(x﹣b)=1(a<b)的两个根,则实数a,b,x1,x2的大小关系为.三.解答题(本大题共8个小题,共60分)21.(12分)解方程(1)3(x﹣2)2=x(x﹣2)(2)x2﹣2x﹣3=0.22.(8分)已知一元二次方程x2﹣(2k+1)x+k2+k=0.(1)求证:方程有两个不相等的实数根;(2)若△ABC的两边AB、AC的长是这个方程的两个实数根,第三边BC的长为5.当△ABC是等腰三角形时,求k的值.23.(9分)在建立平面直角坐标系的方格纸中,每个小方格都是边长为1的小正方形,△ABC的顶点均在格点上,点P的坐标为(﹣1,0),请按要求画图与作答:(1)把△ABC绕点P旋转180°得△A′B′C.(2)把△ABC向右平移7个单位得△A″B″C″.(3)△A′B′C与△A″B″C″是否成中心对称,若是,找出对称中心P′,并写出其坐标.24.(9分)某百货商店从一制衣厂以每件21元的价格购进一批服装,若以每件衣服售价为x元,则可卖出(350﹣10x)件,但物价局限定每件衣服加价不能超过20%,商店计划要盈利400元,需要卖出多少件衣服?每件衣服售价多少元?25.(10分)如图,⊙O的弦AD∥BC,过点D的切线交BC的延长线于点E,AC ∥DE交BD于点H,DO及延长线分别交AC、BC于点G、F.(1)求证:DF垂直平分AC;(2)求证:FC=CE;(3)若弦AD=5cm,AC=8cm,求⊙O的半径.26.(12分)如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3).(1)求抛物线的解析式;(2)在(1)中抛物线的对称轴上是否存在点D,使△BCD的周长最小?若存在,求出点D的坐标,若不存在,请说明理由;(3)若点E是(1)中抛物线上的一个动点,且位于直线AC的下方,试求△ACE 的最大面积及E点的坐标.参考答案与试题解析一.选择题(每小题3分,共30分)1.(3分)在艺术字中,有些字母是中心对称图形,下面的5个字母中,是中心对称图形的有()A.2个 B.3个 C.4个 D.5个【解答】解:H、I、N是中心对称图形,所以是中心对称图形的有3个.故选B.2.(3分)二次函数y=﹣(x﹣1)2+3的图象的顶点坐标是()A.(﹣1,3)B.(1,3) C.(﹣1,﹣3)D.(1,﹣3)【解答】解:二次函数y=﹣(x﹣1)2+3为顶点式,其顶点坐标为(1,3).故选:B.3.(3分)用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A.(x+1)2=6 B.(x﹣1)2=6 C.(x+2)2=9 D.(x﹣2)2=9【解答】解:方程移项得:x2﹣2x=5,配方得:x2﹣2x+1=6,即(x﹣1)2=6.故选:B.4.(3分)若x1,x2是一元二次方程x2﹣5x+6=0的两个根,则x1+x2的值是()A.1 B.5 C.﹣5 D.6【解答】解:依据一元二次方程根与系数得:x1+x2=5.故选:B.5.(3分)在平面直角坐标系xOy中,已知点A(2,3),若将OA绕原点O逆时针旋转180°得到OA′,则点A′在平面直角坐标系中的位置是在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:旋转后得到的点A′与点A成中心对称,旋转后A′的坐标为(﹣2,﹣3),所以在第三象限.故选:C.6.(3分)如图,在⊙O中,圆心角∠BOC=60°,则圆周角∠BAC等于()A.60°B.50°C.40°D.30°【解答】解:∵∠BOC=60°,∴∠BAC=∠BOC=30°.故选:D.7.(3分)把抛物线y=﹣x2向右平移一个单位,再向上平移3个单位,得到抛物线的解析式为()A.y=﹣(x﹣1)2+3 B.y=(x﹣1)2+3 C.y=﹣(x+1)2+3 D.y=(x+1)2+3【解答】解:抛物线y=﹣x2的顶点坐标为(0,0),把点(0,0)向右平移一个单位,再向上平移3个单位得到点的坐标为(﹣1,3),所以平移后的抛物线解析式为y=﹣(x+1)2+3.故选:A.8.(3分)使用墙的一边,再用13m的铁丝网围成三边,围成一个面积为20m2的长方形,求这个长方形的两边长.设墙的对边长为xm,可得方程()A.x(13﹣x)=20 B.x•=20 C.x(13﹣x)=20 D.x•=20【解答】解:设墙的对边长为x m,可得方程:x×=20.故选:B.9.(3分)如图所示,AB是⊙O的直径,CD是弦,CD⊥AB于点E,则下列结论中不一定正确的是()A.∠COE=∠DOE B.CE=DE C.AC=AD D.OE=BE【解答】解:如图,∵AB是⊙O的直径,CD是弦,CD⊥AB于点E,∴CE=DE,即AB为CD的垂直平分线,∴AC=AD;∴选项B、C正确;∵OC=OD,OE⊥CD,∴∠COE=∠DOE,∴选项A正确;故选:D.10.(3分)如图,已知:正方形ABCD边长为1,E、F、G、H分别为各边上的点,且AE=BF=CG=DH,设小正方形EFGH的面积为s,AE为x,则s关于x的函数图象大致是()A.B.C.D.【解答】解:∵根据正方形的四边相等,四个角都是直角,且AE=BF=CG=DH,∴可证△AEH≌△BFE≌△CGF≌△DHG.设AE为x,则AH=1﹣x,根据勾股定理,得EH2=AE2+AH2=x2+(1﹣x)2即s=x2+(1﹣x)2.s=2x2﹣2x+1,∴所求函数是一个开口向上,对称轴是直线x=.∴自变量的取值范围是大于0小于1.故选:B.二.填空题(本大题共10小题,每小题3分,共30分.把答案填在题中横线上)11.(3分)已知抛物线y=x2+4x+5的对称轴是直线x=﹣2.【解答】解:由对称轴公式:对称轴是直线x=﹣=﹣=﹣2,故答案为:﹣2.12.(3分)若关于x的方程x2+2x+k﹣1=0的一个根是0,则k=1.【解答】解:设方程的另一根为x1,又∵x2+2x+k﹣1=0的一个根是0,∴x1•0=k﹣1,解得k=1.13.(3分)某县2008年农民人均年收入为7 800元,计划到2010年,农民人均年收入达到9 100元.设人均年收入的平均增长率为x,则可列方程7800(x+1)2=9100.【解答】解:设人均年收入的平均增长率为x,根据题意可列出方程为:7800(x+1)2=9100.故答案为:7800(x+1)2=9100.14.(3分)钟表的运动可以看作是一种旋转现象,那么分针匀速旋转时,它的旋转中心是钟表的旋转轴的轴心,经过45分钟旋转了270度.【解答】解:∵时钟上的分针匀速旋转一周的度数为360°,时钟上的分针匀速旋转一周需要60分钟,则时钟上的分针匀速旋转一分钟时的度数为:360÷60=6°,那么45分钟,分针旋转了45×6°=270°.故答案为:270.15.(3分)如图,AB是半圆O的直径,E是的中点,OE交弦BC于点D,已知BC=8cm,DE=2cm,则AD的长为cm.【解答】解:连接AC,则∠ACB=90°.∵E是的中点,OE交弦BC于点D,∴OE⊥CD,CD=BD=BC=×8=4cm.设⊙O的半径为r,则OD=r﹣2,OB=r.故OB2=OD2+BD2,即r2=(r﹣2)2+42,解得:r=5.故AB=2r=2×5=10cm.在Rt△ABC中,AC===6cm.在Rt△ADC中,AC=6cm,CD=4cm,故AD===2(cm).16.(3分)已知抛物线y=x2﹣2x﹣3,若点P(﹣2,5)与点Q关于该抛物线的对称轴对称,则点Q的坐标是(4,5).【解答】解:∵x=﹣=﹣=1.∴P(﹣2,5)关于对称轴的对称点Q的坐标是(4,5).故点Q的坐标是(4,5).故答案为:(4,5).17.(3分)若一元二次方程(k﹣1)x2﹣4x﹣5=0有两个不相等实数根,则k的取值范围是k>且k≠1.【解答】解:∵a=k﹣1,b=﹣4,c=﹣5,方程有两个不相等的实数根,∴△=b2﹣4ac=16﹣4×(﹣5)×(k﹣1)=20k﹣4>0,∴k>,又∵二次项系数不为0,∴k≠1,即k≥且k≠1.18.(3分)已知⊙O的半径为6cm,弦AB的长为6cm,则弦AB所对的圆周角的度数为30°或150°.【解答】解:根据题意,弦AB与两半径组成等边三角形,∴弦AB所对的圆心角=60°,①圆周角在优弧上时,圆周角=30°,②圆周角在劣弧上时,圆周角=180°﹣30°=150°.∴圆周角的度数为30°或150°;故答案为:30°或150°.19.(3分)根据下列5个图形及相应点的个数的变化规律,试猜测第n个图中有n2﹣n+1个点.【解答】解:根据题意分析可得:第n个图中,从中心点分出n个分支,每个分支上有(n﹣1)个点,不含中心点;则第n个图中有n×(n﹣1)+1=n2﹣n+1个点.20.(3分)若x1,x2(x1<x2)是方程(x﹣a)(x﹣b)=1(a<b)的两个根,则实数a,b,x1,x2的大小关系为x1<a<b<x2.【解答】解:用作图法比较简单,首先作出(x﹣a)(x﹣b)=0图象,随便画一个(开口向上的,与x轴有两个交点),再向下平移一个单位,就是(x﹣a)(x ﹣b)=1,这时与x轴的交点就是x1,x2,画在同一坐标系下,很容易发现:x1<a<b<x2,故答案为:x1<a<b<x2.三.解答题(本大题共8个小题,共60分)21.(12分)解方程(1)3(x﹣2)2=x(x﹣2)(2)x2﹣2x﹣3=0.【解答】解:(1)3(x﹣2)2﹣x(x﹣2)=0,(x﹣2)(3x﹣6﹣x)=0,x﹣2=0或3x﹣6﹣x=0,所以x1=2,x2=3;(2)(x﹣3)(x+1)=0,x﹣3=0或x+1=0,所以x1=3,x2=﹣1.22.(8分)已知一元二次方程x2﹣(2k+1)x+k2+k=0.(1)求证:方程有两个不相等的实数根;(2)若△ABC的两边AB、AC的长是这个方程的两个实数根,第三边BC的长为5.当△ABC是等腰三角形时,求k的值.【解答】(1)证明:∵△=[﹣(2k+1)]2﹣4(k2+k)=1>0,∴无论k为何值,方程总有两个不相等的实数根;(2)解:∵△=1>0,∴AB≠AC,∴AB、AC中有一个数为5.当x=5时,原方程为:25﹣5(2k+1)+k2+k=0,即k2﹣9k+20=0,解得:k1=4,k2=5.当k=4时,原方程为x2﹣9x+20=0,∴x1=4,x2=5.∵4、5、5能围成等腰三角形,∴k=4符合题意;当k=5时,原方程为x2﹣11x+30=0,解得:x1=5,x2=6.∵5、5、6能围成等腰三角形,∴k=5符合题意.综上所述:k的值为4或5.23.(9分)在建立平面直角坐标系的方格纸中,每个小方格都是边长为1的小正方形,△ABC的顶点均在格点上,点P的坐标为(﹣1,0),请按要求画图与作答:(1)把△ABC绕点P旋转180°得△A′B′C.(2)把△ABC向右平移7个单位得△A″B″C″.(3)△A′B′C与△A″B″C″是否成中心对称,若是,找出对称中心P′,并写出其坐标.【解答】解:(1)如图,△A'B'C'即为所求;(2)如图,A''B''C''即为所求;(3)如图,P'(2.5,0).24.(9分)某百货商店从一制衣厂以每件21元的价格购进一批服装,若以每件衣服售价为x元,则可卖出(350﹣10x)件,但物价局限定每件衣服加价不能超过20%,商店计划要盈利400元,需要卖出多少件衣服?每件衣服售价多少元?【解答】解:由题意,得(350﹣10x)(x﹣21)=400,解得:x1=25,x2=31.∵x<21(1+20%),∴x<25.2.∴x=31应舍去.∴x=25.答:每件衣服的售价为25元.25.(10分)如图,⊙O的弦AD∥BC,过点D的切线交BC的延长线于点E,AC ∥DE交BD于点H,DO及延长线分别交AC、BC于点G、F.(1)求证:DF垂直平分AC;(2)求证:FC=CE;(3)若弦AD=5cm,AC=8cm,求⊙O的半径.【解答】(1)证明:∵DE是⊙O的切线,且DF过圆心O,∴DF是⊙O的直径所在的直线,∴DF⊥DE,又∵AC∥DE,∴DF⊥AC,∴G为AC的中点,即DF平分AC,则DF垂直平分AC;(2分)(2)证明:由(1)知:AG=GC,又∵AD∥BC,∴∠DAG=∠FCG;又∵∠AGD=∠CGF,∴△AGD≌△CGF(ASA),(4分)∴AD=FC;∵AD∥BC且AC∥DE,∴四边形ACED是平行四边形,∴AD=CE,∴FC=CE;(5分)(3)解:连接AO,∵AG=GC,AC=8cm,∴AG=4cm;在Rt△AGD中,由勾股定理得GD2=AD2﹣AG2=52﹣42=9,∴GD=3;(6分)设圆的半径为r,则AO=r,OG=r﹣3,在Rt△AOG中,由勾股定理得AO2=OG2+AG2,有:r2=(r﹣3)2+42,解得r=,(8分)∴⊙O的半径为cm.26.(12分)如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3).(1)求抛物线的解析式;(2)在(1)中抛物线的对称轴上是否存在点D,使△BCD的周长最小?若存在,求出点D的坐标,若不存在,请说明理由;(3)若点E是(1)中抛物线上的一个动点,且位于直线AC的下方,试求△ACE的最大面积及E点的坐标.【解答】解:(1)∵抛物线y=ax2+bx+3经过点A(1,0),点C(4,3),∴,解得,所以,抛物线的解析式为y=x2﹣4x+3;(2)∵点A、B关于对称轴对称,∴点D为AC与对称轴的交点时△BCD的周长最小,设直线AC的解析式为y=kx+b(k≠0),则,解得,所以,直线AC的解析式为y=x﹣1,∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的对称轴为直线x=2,当x=2时,y=2﹣1=1,∴抛物线对称轴上存在点D(2,1),使△BCD的周长最小;(3)如图,设过点E与直线AC平行线的直线为y=x+m,联立,消掉y得,x2﹣5x+3﹣m=0,△=(﹣5)2﹣4×1×(3﹣m)=0,解得:m=﹣,即m=﹣时,点E到AC的距离最大,△ACE的面积最大,此时x=,y=﹣=﹣,∴点E的坐标为(,﹣),设过点E的直线与x轴交点为F,则F(,0),∴AF=﹣1=,∵直线AC的解析式为y=x﹣1,∴∠CAB=45°,∴点F到AC的距离为AF•sin45°=×=,又∵AC==3,∴△ACE的最大面积=×3×=,此时E点坐标为(,﹣).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017学年贵州省黔南州独山二中九年级(上)期中数学试卷一、选择题(每小题4分,共52分)1.(4分)下列方程中,是一元二次方程的是()A.x+3=0 B.x2﹣3y=0 C.x2﹣2x+1=0 D.x﹣=02.(4分)下列汽车标志中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(4分)抛物线y=(x﹣2)2+3的顶点坐标是()A.(﹣2,3)B.(2,3)C.(﹣2,﹣3)D.(2,﹣3)4.(4分)用配方法解一元二次方程x2﹣6x﹣4=0,下列变形正确的是()A.(x﹣6)2=﹣4+36 B.(x﹣6)2=4+36 C.(x﹣3)2=﹣4+9 D.(x﹣3)2=4+9 5.(4分)已知点P关于x轴对称的点P1的坐标是(4,5),那么点P关于原点的对称点P2的坐标是()A.(﹣5,﹣4)B.(4,﹣5)C.(﹣4,5)D.(﹣4,﹣5)6.(4分)下列函数中属于二次函数的是()A.y=x(x+1)B.x2y=1 C.y=2x2﹣2(x2+1)D.y=7.(4分)抛物线y=(x+2)2﹣3可以由抛物线y=x2平移得到,则下列平移过程正确的是()A.先向左平移2个单位,再向上平移3个单位B.先向左平移2个单位,再向下平移3个单位C.先向右平移2个单位,再向下平移3个单位D.先向右平移2个单位,再向上平移3个单位8.(4分)若函数y=(1﹣m)+2是关于x的二次函数,且抛物线的开口向上,则m的值为()A.﹣2 B.1 C.2 D.﹣19.(4分)设二次函数y=(x﹣3)2﹣4图象的对称轴为直线l,若点M在直线l上,则点M 的坐标可能是()A.(1,0)B.(3,0)C.(﹣3,0)D.(0,﹣4)10.(4分)某养殖户的养殖成本逐年增长,已知第1年的养殖成本为13万元,第3年的养殖成本为20万元.设每年平均增长的百分率为x,则下面所列方程中正确的是()A.13(1﹣x)2=20 B.20(1﹣x)2=13 C.20(1+x)2=13 D.13(1+x)2=20 11.(4分)如图,把菱形ABOC绕点O顺时针旋转得到菱形DFOE,则下列角中不是旋转角的为()A.∠BOF B.∠AOD C.∠COE D.∠COF12.(4分)如图,若一次函数y=ax+b的图象经过二、三、四象限,则二次函数y=ax2+bx的图象可能是()A.B.C.D.13.(4分)如图所示,在平面直角坐标系中,二次函数y=ax2+bx+c的图象顶点为A(﹣2,﹣2),且过点B(0,2),则y与x的函数关系式为()A.y=x2+2 B.y=(x﹣2)2+2 C.y=(x﹣2)2﹣2 D.y=(x+2)2﹣2二、填空题(每题4分,共24分)14.(4分)点(﹣b,1)关于原点对称的点的坐标为.若x=2是一元二次方程x2+x﹣a=0的解,则a的值为.15.(4分)抛物线y=2x2﹣4x+3绕坐标原点旋转180°所得的抛物线的解析式是.16.(4分)某水果批发商场经销一种水果,如果每千克盈利5元,每天可售出200千克,经市场调查发现,在进价不变的情况下,若每千克涨价1元,销售量将减少10千克.现该商场要保证每天盈利1500元,同时又要顾客得到实惠,那么每千克应涨价元.17.(4分)现定义运算“★”,对于任意实数a、b,都有a★b=a2﹣3a+b,如:3★5=32﹣3×3+5,若x★2=6,则实数x的值是.18.(4分)如图所示,P是等边△ABC内一点,△BMC是由△BPA旋转所得,则∠PBM=度.19.(4分)二次函数y=ax2+bx+c和一次函数y=mx+n的图象如图所示,则ax2+bx+c≤mx+n 时,x的取值范围是.三、解答题(共74分)20.(12分)用适当的方法解下列方程(1)(2x+3)2=(x﹣1)2(2)x2﹣2x﹣8=0.21.(8分)已知x=1是一元二次方程ax2+bx﹣40=0的一个解,且a≠b,求的值.22.(10分)如图:在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度;已知△ABC.(1)作出△ABC关于x轴对称的△A1B1C1,(只画出图形).(2)作出△ABC关于原点O成中心对称的△A2B2C2,(只画出图形),写出B2和C2的坐标.23.(10分)如图,矩形ABCD的两边长AB=18cm,AD=4cm,点P、Q分别从A、B同时出发,P在边AB上沿AB方向以每秒2cm的速度匀速运动,Q在边BC上沿BC方向以每秒1cm的速度匀速运动,当一点到达终点时,另一点也停止运动.设运动时间为x秒,△PBQ的面积为y(cm2).(1)求y关于x的函数关系式,并写出x的取值范围;(2)求△PBQ的面积的最大值.24.(10分)抛物线的图象如图,求这条抛物线的解析式.(结果化成一般式)25.(12分)在同一平面内,△ABC和△ABD如图①放置,其中AB=BD.小明做了如下操作:将△ABC绕着边AC的中点旋转180°得到△CEA,将△ABD绕着边AD的中点旋转180°得到△DFA,如图②,请完成下列问题:(1)试猜想四边形ABDF是什么特殊四边形,并说明理由;(2)连接EF,CD,如图③,求证:四边形CDEF是平行四边形.26.(12分)如图,隧道的截面由抛物线AED和矩形ABCD构成,矩形的长BC为8m,宽AB为2m,以BC所在的直线为x轴,线段BC的中垂线为y轴,建立平面直角坐标系(如图1),y轴是抛物线的对称轴,顶点E到坐标原点O的距离为6m.(1)求抛物线的解析式;(2)现有一辆货运卡车,高4.4m,宽2.4m,它能通过该隧道吗?(3)如果该隧道内设双向道(如图2),为了安全起见,在隧道正中间设有0.4m的隔离带,则该辆货运卡车还能通过隧道吗?2016-2017学年贵州省黔南州独山二中九年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题4分,共52分)1.(4分)(2016秋•秀峰区校级期中)下列方程中,是一元二次方程的是()A.x+3=0 B.x2﹣3y=0 C.x2﹣2x+1=0 D.x﹣=0【分析】根据一元二次方程的定义对各选项进行逐一分析即可.【解答】解:A、方程x+3=0是一元一次方程,故本选项错误;B、方程x2﹣3y=0是二元二次方程,故本选项错误;C、方程x2﹣2x+1=0是一元二次方程,故本选项正确;D、方程x﹣=0是分式方程,故本选项错误.故选C.2.(4分)(2016秋•独山县校级期中)下列汽车标志中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念解答.【解答】解:A、是轴对称图形,不是中心对称图形;B、不是轴对称图形,是中心对称图形;C、不是轴对称图形,是中心对称图形;D、是轴对称图形,是中心对称图形.故选D.3.(4分)(2009•内江)抛物线y=(x﹣2)2+3的顶点坐标是()A.(﹣2,3)B.(2,3)C.(﹣2,﹣3)D.(2,﹣3)【分析】由抛物线的顶点式y=(x﹣h)2+k直接看出顶点坐标是(h,k).【解答】解:∵抛物线为y=(x﹣2)2+3,∴顶点坐标是(2,3).故选B.4.(4分)(2015•随州)用配方法解一元二次方程x2﹣6x﹣4=0,下列变形正确的是()A.(x﹣6)2=﹣4+36 B.(x﹣6)2=4+36 C.(x﹣3)2=﹣4+9 D.(x﹣3)2=4+9【分析】根据配方法,可得方程的解.【解答】解:x2﹣6x﹣4=0,移项,得x2﹣6x=4,配方,得(x﹣3)2=4+9.故选:D.5.(4分)(2016秋•独山县校级期中)已知点P关于x轴对称的点P1的坐标是(4,5),那么点P关于原点的对称点P2的坐标是()A.(﹣5,﹣4)B.(4,﹣5)C.(﹣4,5)D.(﹣4,﹣5)【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”先求出点P的坐标,再根据“关于原点对称的点的坐标的横坐标与纵坐标都变为相反数”解答即可.【解答】解:∵P点关于x轴的对称点P1的坐标是(4,5),∴P(4,﹣5),∴点P点关于原点对称的点是:(﹣4,5).故选C.6.(4分)(2015秋•广西期中)下列函数中属于二次函数的是()A.y=x(x+1)B.x2y=1 C.y=2x2﹣2(x2+1)D.y=【分析】整理成一般形式后,利用二次函数的定义即可解答.【解答】解:A、y=x2+x,是二次函数;B、y=,不是二次函数;C、y=﹣2,不是二次函数;D、不是整式,不是二次函数;故选A.7.(4分)(2012•兰州)抛物线y=(x+2)2﹣3可以由抛物线y=x2平移得到,则下列平移过程正确的是()A.先向左平移2个单位,再向上平移3个单位B.先向左平移2个单位,再向下平移3个单位C.先向右平移2个单位,再向下平移3个单位D.先向右平移2个单位,再向上平移3个单位【分析】根据“左加右减,上加下减”的原则进行解答即可.【解答】解:抛物线y=x2向左平移2个单位可得到抛物线y=(x+2)2,抛物线y=(x+2)2,再向下平移3个单位即可得到抛物线y=(x+2)2﹣3.故平移过程为:先向左平移2个单位,再向下平移3个单位.故选:B.8.(4分)(2015秋•河南期中)若函数y=(1﹣m)+2是关于x的二次函数,且抛物线的开口向上,则m的值为()A.﹣2 B.1 C.2 D.﹣1【分析】根据题意列出关于m的不等式组,求出m的值即可.【解答】解:∵函数y=(1﹣m)+2是关于x的二次函数,且抛物线的开口向上,∴,解得m=﹣2.故选A.9.(4分)(2015•台州)设二次函数y=(x﹣3)2﹣4图象的对称轴为直线l,若点M在直线l上,则点M的坐标可能是()A.(1,0)B.(3,0)C.(﹣3,0)D.(0,﹣4)【分析】根据二次函数的解析式可得出直线l的方程为x=3,点M在直线l上则点M的横坐标一定为3,从而选出答案.【解答】解:∵二次函数y=(x﹣3)2﹣4图象的对称轴为直线x=3,∴直线l上所有点的横坐标都是3,∵点M在直线l上,∴点M的横坐标为3,故选B.10.(4分)(2015秋•河南期中)某养殖户的养殖成本逐年增长,已知第1年的养殖成本为13万元,第3年的养殖成本为20万元.设每年平均增长的百分率为x,则下面所列方程中正确的是()A.13(1﹣x)2=20 B.20(1﹣x)2=13 C.20(1+x)2=13 D.13(1+x)2=20 【分析】根据第一年的养殖成本×(1+平均年增长率)2=第三年的养殖成本,列出方程即可.【解答】解:设增长率为x,根据题意得13(1+x)2=20.故选:D.11.(4分)(2015春•沂源县期末)如图,把菱形ABOC绕点O顺时针旋转得到菱形DFOE,则下列角中不是旋转角的为()A.∠BOF B.∠AOD C.∠COE D.∠COF【分析】两对应边所组成的角都可以作为旋转角,结合图形即可得出答案.【解答】解:OB旋转后的对应边为OF,故∠BOF可以作为旋转角,故本选项错误;B、OA旋转后的对应边为OD,故∠AOD可以作为旋转角,故本选项错误;C、OC旋转后的对应边为OE,故∠COE可以作为旋转角,故本选项错误;D、OC旋转后的对应边为OE不是OF,故∠COF不可以作为旋转角,故本选项正确;故选D.12.(4分)(2012秋•新都区期末)如图,若一次函数y=ax+b的图象经过二、三、四象限,则二次函数y=ax2+bx的图象可能是()A.B.C.D.【分析】根据一次函数的性质判断出a、b的正负情况,再根据二次函数的性质判断出开口方向与对称轴,然后选择即可.【解答】解:∵y=ax+b的图象经过二、三、四象限,∴a<0,b<0,∴抛物线开口方向向下,∵抛物线对称轴为直线x=﹣<0,∴对称轴在y轴的左边,纵观各选项,只有C选项符合.故选C.13.(4分)(2010•石家庄一模)如图所示,在平面直角坐标系中,二次函数y=ax2+bx+c的图象顶点为A(﹣2,﹣2),且过点B(0,2),则y与x的函数关系式为()A.y=x2+2 B.y=(x﹣2)2+2 C.y=(x﹣2)2﹣2 D.y=(x+2)2﹣2【分析】已知二次函数的顶点坐标,设顶点式比较简单.【解答】解:设这个二次函数的关系式为y=a(x+2)2﹣2,将(0,2)代入得2=a(0+2)2﹣2解得:a=1故这个二次函数的关系式是y=(x+2)2﹣2,故选D.二、填空题(每题4分,共24分)14.(4分)(2016秋•独山县校级期中)点(﹣b,1)关于原点对称的点的坐标为(b,﹣1).若x=2是一元二次方程x2+x﹣a=0的解,则a的值为6.【分析】根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),然后直接作答即可.根据一元二次方程的解的定义,将x=2代入已知方程得到关于a的新方程,通过解新方程可以求得a的值.【解答】解:点(﹣b,1)关于原点对称的点的坐标为(b,﹣1).把x=2代入x2+x﹣a=0,得22+2﹣a=0,解得a=6.故答案是:(b,﹣1);6.15.(4分)(2015•龙岩)抛物线y=2x2﹣4x+3绕坐标原点旋转180°所得的抛物线的解析式是y=﹣2x2﹣4x﹣3.【分析】根据旋转的性质,可得a的绝对值不变,根据中心对称,可得答案.【解答】解:将y=2x2﹣4x+3化为顶点式,得y=2(x﹣1)2+1,抛物线y=2x2﹣4x+3绕坐标原点旋转180°所得的抛物线的解析式是y=﹣2(x+1)2﹣1,化为一般式,得y=﹣2x2﹣4x﹣3,故答案为:y=﹣2x2﹣4x﹣3.16.(4分)(2015秋•河南期中)某水果批发商场经销一种水果,如果每千克盈利5元,每天可售出200千克,经市场调查发现,在进价不变的情况下,若每千克涨价1元,销售量将减少10千克.现该商场要保证每天盈利1500元,同时又要顾客得到实惠,那么每千克应涨价5元.【分析】设每千克应涨价x元,根据每千克涨价1元,销售量将减少10千克,每天盈利1500元,列出方程,求解即可.【解答】解:设每千克应涨价x元,由题意列方程得:(5+x)(200﹣10x)=1500,解得:x=5或x=10,为了使顾客得到实惠,那么每千克应涨价5元;故答案为:5.17.(4分)(2013•临夏州)现定义运算“★”,对于任意实数a、b,都有a★b=a2﹣3a+b,如:3★5=32﹣3×3+5,若x★2=6,则实数x的值是﹣1或4.【分析】根据题中的新定义将所求式子转化为一元二次方程,求出一元二次方程的解即可得到x的值.【解答】解:根据题中的新定义将x★2=6变形得:x2﹣3x+2=6,即x2﹣3x﹣4=0,因式分解得:(x﹣4)(x+1)=0,解得:x1=4,x2=﹣1,则实数x的值是﹣1或4.故答案为:﹣1或418.(4分)(2015春•平顶山期末)如图所示,P是等边△ABC内一点,△BMC是由△BPA 旋转所得,则∠PBM=60度.【分析】连接PM,根据旋转的性质,易得△BCM≌△BAP,由全等的性质进而可得∠MBC=∠PBA,∠MBC+∠CBP=∠PBA+∠CBP=∠ABC=60°,代入数据即可得答案.【解答】解:连接PM,根据旋转的性质,△BCM≌△BAP,则∠MBC=∠PBA,则∠MBC+∠CBP=∠PBA+∠CBP=∠ABC=60°,即∠PBM=60度.故答案为60.19.(4分)(2009•巩义市一模)二次函数y=ax2+bx+c和一次函数y=mx+n的图象如图所示,则ax2+bx+c≤mx+n时,x的取值范围是﹣2≤x≤1.【分析】求关于x的不等式ax2+bx+c≤mx+n的解集,实质上就是根据图象找出函数y=ax2+bx+c的值小于或等于y=mx+n的值时x的取值范围,由两个函数图象的交点及图象的位置,可求范围.【解答】解:依题意得求关于x的不等式ax2+bx+c≤mx+n的解集,实质上就是根据图象找出函数y=ax2+bx+c的值小于或等于y=mx+n的值时x的取值范围,由两个函数图象的交点及图象的位置可以得到此时x的取值范围是﹣2≤x≤1.故填空答案:﹣2≤x≤1.三、解答题(共74分)20.(12分)(2016秋•独山县校级期中)用适当的方法解下列方程(1)(2x+3)2=(x﹣1)2(2)x2﹣2x﹣8=0.【分析】(1)直接开平方法求解可得;(2)十字相乘法分解因式后求解可得.【解答】解:(1)2x+3=x﹣1或2x+3=﹣(x﹣1),解得:x=﹣4或x=﹣;(2)(x+2)(x﹣4)=0,∴x+2=0或x﹣4=0,解得:x=﹣2或x=4.21.(8分)(2011•庆阳)已知x=1是一元二次方程ax2+bx﹣40=0的一个解,且a≠b,求的值.【分析】方程的解是使方程左右两边成立的未知数的值.同时注意根据分式的基本性质化简分式.【解答】解:由x=1是一元二次方程ax2+bx﹣40=0的一个解,得:a+b=40,又a≠b,得:.故的值是20.22.(10分)(2016秋•独山县校级期中)如图:在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度;已知△ABC.(1)作出△ABC关于x轴对称的△A1B1C1,(只画出图形).(2)作出△ABC关于原点O成中心对称的△A2B2C2,(只画出图形),写出B2和C2的坐标.【分析】(1)先利用关于x轴对称的点的坐标特征写出A、B、C的对应点A1、B1、C1的坐标,然后描点即可;(2)先利用关于原点对称的点的坐标特征写出A、B、C的对应点A2、B2、C2的坐标,然后描点即可.【解答】解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作,点B2和C2的坐标分别为(4,﹣1),(1,﹣2).23.(10分)(2012•日照)如图,矩形ABCD的两边长AB=18cm,AD=4cm,点P、Q分别从A、B同时出发,P在边AB上沿AB方向以每秒2cm的速度匀速运动,Q在边BC上沿BC方向以每秒1cm的速度匀速运动,当一点到达终点时,另一点也停止运动.设运动时间为x秒,△PBQ的面积为y(cm2).(1)求y关于x的函数关系式,并写出x的取值范围;(2)求△PBQ的面积的最大值.【分析】(1)分别表示出PB、BQ的长,然后根据三角形的面积公式列式整理即可得解;(2)把函数关系式整理成顶点式解析式,然后根据二次函数的最值问题解答.【解答】解:(1)∵S△PBQ=PB•BQ,PB=AB﹣AP=18﹣2x,BQ=x,∴y=(18﹣2x)x,即y=﹣x2+9x(0<x≤4);(2)由(1)知:y=﹣x2+9x,∴y=﹣(x﹣)2+,∵当0<x≤时,y随x的增大而增大,而0<x≤4,∴当x=4时,y最大值=20,即△PBQ的最大面积是20cm2.24.(10分)(2016秋•独山县校级期中)抛物线的图象如图,求这条抛物线的解析式.(结果化成一般式)【分析】由图象可知抛物线的顶点坐标为(1,4),所以设此二次函数的解析式为y=a(x﹣1)2+4,把点(3,0)代入解析式即可解答.【解答】解:由图象可知抛物线的顶点坐标为(1,4),设此二次函数的解析式为y=a(x﹣1)2+4,把点(3,0)代入解析式,得:4a+4,即a=﹣1,所以此函数的解析式为y=﹣(x﹣1)2+4.故这条抛物线的解析式y=﹣x2+2x+3.25.(12分)(2014•永州)在同一平面内,△ABC和△ABD如图①放置,其中AB=BD.小明做了如下操作:将△ABC绕着边AC的中点旋转180°得到△CEA,将△ABD绕着边AD的中点旋转180°得到△DFA,如图②,请完成下列问题:(1)试猜想四边形ABDF是什么特殊四边形,并说明理由;(2)连接EF,CD,如图③,求证:四边形CDEF是平行四边形.【分析】(1)根旋转的性质得AB=DF,BD=FA,由于AB=BD,所以AB=BD=DF=FA,则可根据菱形的判定方法得到四边形ABDF是菱形;(2)由于四边形ABDF是菱形,则AB∥DF,且AB=DF,再根据旋转的性质易得四边形ABCE为平行四边形,根据平行四边形的性质得AB∥CE,且AB=CE,所以CE∥FD,CE=FD,所以可判断四边形CDEF是平行四边形.【解答】(1)解:四边形ABDF是菱形.理由如下:∵△ABD绕着边AD的中点旋转180°得到△DFA,∴AB=DF,BD=FA,∵AB=BD,∴AB=BD=DF=FA,∴四边形ABDF是菱形;(2)证明:∵四边形ABDF是菱形,∴AB∥DF,且AB=DF,∵△ABC绕着边AC的中点旋转180°得到△CEA,∴AB=CE,BC=EA,∴四边形ABCE为平行四边形,∴AB∥CE,且AB=CE,∴CE∥FD,CE=FD,∴四边形CDEF是平行四边形.26.(12分)(2015秋•高安市期中)如图,隧道的截面由抛物线AED和矩形ABCD构成,矩形的长BC为8m,宽AB为2m,以BC所在的直线为x轴,线段BC的中垂线为y轴,建立平面直角坐标系(如图1),y轴是抛物线的对称轴,顶点E到坐标原点O的距离为6m.(1)求抛物线的解析式;(2)现有一辆货运卡车,高4.4m,宽2.4m,它能通过该隧道吗?(3)如果该隧道内设双向道(如图2),为了安全起见,在隧道正中间设有0.4m的隔离带,则该辆货运卡车还能通过隧道吗?【分析】(1)抛物线的解析式为y=ax2+c,根据E点及D点的坐标由待定系数法就可以求出结论;(2)当y=2.4时代入(1)的解析式求出x的值就求出结论;(3)将(2)求出的宽度﹣0.4m后除以2的值与2.4比较就可以求出结论.【解答】解:(1)∵OE为线段BC的中垂线,∴OC=BC.∵四边形ABCD是矩形,∴AD=BC=8m,AB=CD=2m,∴OC=4.∴D(4,2,).E(0,6).设抛物线的解析式为y=ax2+c,由题意,得,解得:,∴y=﹣x2+6;(2)由题意,得当y=4.4时,4.4=﹣x2+6,解得:x=±,∴宽度为:>2.4,∴它能通过该隧道;(3)由题意,得(﹣0.4)=﹣0.2>2.4,∴该辆货运卡车还能通过隧道.。

相关文档
最新文档