Optimization of train plan for urban rail transit in the multi-routing mode

合集下载

城市轨道交通列车追踪间隔与牵引能耗优化

城市轨道交通列车追踪间隔与牵引能耗优化

第20卷第6期2020年12月交通运输系统工程与信息Journal of Transportation Systems Engineering and Information TechnologyV ol.20No.6December 2020文章编号:1009-6744(2020)06-0170-08中图分类号:U268.6文献标志码:ADOI:10.16097/ki.1009-6744.2020.06.022城市轨道交通列车追踪间隔与牵引能耗优化高豪,郭进*,张亚东(西南交通大学信息科学与技术学院,成都611756)摘要:针对城市轨道交通高峰小时列车密集追踪运行的特点,将降低列车牵引能耗和提升线路通过能力同时作为优化目标,研究列车运行操纵优化问题.给出移动闭塞条件下列车牵引能耗和最小追踪间隔的计算方式,考虑列车安全、正点运行约束,构建双目标优化模型.结合ε-约束法,提出一种基于动态规划的搜索算法求解模型.以亦庄线为优化算例,求解得到一组列车最优操纵Pareto 解,体现两优化目标之间的均衡关系:列车进站过程采用两次制动操纵策略可有效压缩最小追踪间隔,为弥补两次制动过程额外消耗的运行时间,列车需付出更多的牵引能耗提升进站以前的运行速度以满足正点运行约束.关键词:铁路运输;列车最优操纵;动态规划;列车;最小追踪间隔;节能Optimization of Train Headway and Traction EnergyConsumption in UrbanRail TransitGAO Hao,GUO Jin,ZHANG Ya-dong(School of Information Science and Technology,Southwest Jiaotong University,Chengdu 611756,China)Abstract:Focusing on the characteristics of dense train tracking operation during the peak hour in urban rail transit,this paper takes both reducing traction energy consumption and improving line capacity as objectives in the train driving strategy optimization.The calculation method of traction energy consumption and minimum headway is given under the moving block system.Considering the constraint of safe running and punctual arriving,the two-objective optimization model is constructed.A dynamic programming based approach combined with ε-constraint method is proposed to solve the model.A case study of Yizhuang urban rail line was executed and a set of Pareto solutions were achieved which reflecting the trade-off between those two objectives.The results showed that the multi-step braking strategy during the phase of entering a station can compress the minimum headway effectively.To reduce the increased running time because of the multi-step braking strategy,trains need to improve their velocity before the phase of entering a station to satisfy the constraint of punctual arriving,which consumes more traction energy.Keywords:railway transportation;optimum driving strategy;dynamic programming;train;minimum headway;energy saving0引言随着城市轨道交通大量新建线路投入网络化运营,我国轨道交通客运量增长明显,北京、上海两市日均客运量均已超过1000万人.为满足日益增长的客运需求,以基于通信的列车运行控制(Communication Based Train Control,CBTC)为代表的移动闭塞系统取代了传统固定闭塞系统,并得到广泛应用.利用高精度列车定位、双向大容量车地无线通信等新兴技术,CBTC 系统可以进一步提升高峰小时线路通过能力.据资料统计,2019年收稿日期:2020-07-15修回日期:2020-09-16录用日期:2020-09-17基金项目:国家自然科学基金青年科学基金/Young Scientists Fund of the National Natural Science Foundation of China(61703349).作者简介:高豪(1989-),男,江苏苏州人,博士生.*通信作者:*******************.cn第20卷第6期城市轨道交通列车追踪间隔与牵引能耗优化全国城市轨道交通高峰小时最小发车间隔平均为290s,进入120s以内的线路共12条.同线路能力一样,列车牵引能耗是制约城市轨道交通可持续发展的关键因素.面向高峰小时多列车密集追踪的运行场景,能耗问题尤为突出.在保证列车安全、正点运行前提下,通过调整列车操纵策略,进一步压缩行车间隔并减少牵引能耗,可有效提升城市轨道交通服务水平和经济效益.针对多列车运行操纵优化问题,国内外学者开展了广泛讨论.Wang[1]面向固定闭塞和移动闭塞系统下的列车追踪运行场景,以最小追踪间隔为约束条件,研究列车运行受扰后的多列车节能操纵优化问题.Ye[2]考虑快慢车越行场景下的列车安全追踪及正点运行约束,通过构建多阶段优化控制模型求解多列车节能操纵最优策略.进一步地,柏赟[3]考虑追踪间隔要求和再生制动能利用,研究以列车净能耗最少为目标的快慢车线路列车协同操纵优化问题.Wang[4]在确保列车运行满足最小追踪间隔的前提下,通过调整各列车的站间运行时间来最大化多列车追踪优化的节能效果.以上文献将最小追踪间隔作为约束条件,研究不同场景下多列车节能驾驶优化问题.优化后的列车运行间隔发生改变,但线路能力并未得到本质提升.Takeuchi[5]将最小追踪间隔作为衡量线路能力的性能指标,分析列车运行速度对最小追踪间隔的影响.陈荣武[6]通过调整车站限速区域及限速值压缩了近6.3%的列车最小追踪间隔.Nakamura[7]指出列车采用多级制动的进站操纵策略可有效压缩最小追踪间隔,并利用遗传算法优化列车进站操纵策略.上述文献将最小追踪间隔作为优化目标,通过调整列车操纵策略提升线路通过能力,却忽略了操纵策略改变带来的牵引能耗增加问题.针对高峰小时地铁列车密集追踪运行的特点,本文同时将降低列车牵引能耗和缩短最小追踪间隔作为优化目标,通过优化列车操纵策略实现列车节能驾驶并提升线路通过能力.首先给出移动闭塞条件下列车牵引能耗和最小追踪间隔的计算方式,在此基础上考虑列车正点运行和线路限速约束,构建双目标优化模型;引入ε-约束法将模型转为单目标形式,并利用动态规划方法作进一步求解.1列车运行性能指标1.1列车牵引能耗对运行过程中的列车进行受力分析,构建基于单质点的列车运动学计算模型,即d v()xd x=u()x-r()xM⋅()1+α⋅v()x(1)r()x=r b()x+r1()x(2) r b()x=M⋅[]a+b⋅v()x+c⋅v2()x(3)r1()x=r g()x+r c()x+r t()x(4)式中:M为列车质量;x为列车位置;v()x为列车速度;α为回转系数;u()x为列车牵引制动力;r()x为列车运行阻力,包括基本阻力r b()x和和附加阻力r1()x;r b()x由戴维斯方程来表示,其系数a、b及c根据列车型号而定;r1()x包括坡道附加阻力r g()x、曲线附加阻力r c()x和隧道附加阻力r t()x.列车以操纵策略U={u()x|u min()x≤u()x≤}u max()x,x∈[0,X]在线路上追踪运行,其中,u max()x 和u min()x分别为列车保证乘客安全、舒适条件下的最大牵引力和最大制动力,X为列车站间运行距离.列车执行U后的牵引能耗E()U和运行时间T()U为E()U=∫0X max[]0,u()x⋅d x(5)T()U=∫0X1v()x⋅d x(6) 1.2最小追踪间隔线路通过能力体现为列车追踪运行过程中最小追踪间隔的倒数[5],取决于列车在线路最受限制点处的最小安全追踪距离及通过该距离的运行速度[6].移动闭塞系统中,相邻列车的间隔距离必须始终大于最小安全追踪距离.现有CBTC系统均采用不考虑先行列车速度的“硬撞墙”模型来计算最小安全追踪距离,即S min()x a=L react()x a+L eb()x a+L sm+L train(7)L react()x a=T react⋅v()x a(8)L eb()x a=v2()x a2a eb(9)式中:S min()x a为列车在位置x a处的最小安全追踪171交通运输系统工程与信息2020年12月距离;L react()x a为列车在反应时间T react内的走行距离;L eb()x a为列车紧急制动距离;a eb为紧急制动率;L sm为安全余量;L train为列车车长.为简化计算,假设T react、a eb、L sm和L train为固定值.根据列车在通过最小安全追踪距离期间是否停靠站台,将最小追踪间隔的计算分为区间和车站两种模式.图1为区间最小追踪间隔示意,相邻两车以最小安全追踪距离为间隔分别运行至x a和x a+S min()x a处,其中,x a+S min()x a<x S,x S为站台位置.相邻列车沿图中实线所示的运行轨迹连续经过x a的最小时间间隔H min()x a为H min()x a=∫x a x a+S min()x a1v()x⋅d x(10)图1区间最小追踪间隔Fig.1Minimum headway of interstation地铁车站一般不设配线,列车到达车站后需在正线上完成停站作业,且同一时间只允许1列列车进行停站作业.车站最小追踪间隔的计算不考虑存在多配线条件下的列车到达、到通、出发、发通等间隔,如图2所示.相邻两车分别运行至x a和x a+S min()x a处,其中,x a+S min()x a≥x S,列车通过S min()x a期间需经历减速进站、停车和加速出站过程.因此,相邻列车连续经过x a的最小时间间隔H min()x a为H min()x a=T in()x a+T dwell+T out()x a(11)T in()x a=∫x a x S1v()x⋅d x(12)T out()x a=∫x S x a+S min()x a1v()x⋅d x(13)式中:T in()x a、T out()x a分别为列车进站、出站运行时间;T dwell为停站时间.图2车站区域最小追踪间隔Fig.2Minimum headway of station area对于任意位置x a,H min()x a取决于S min()x a和通过S min()x a的列车运行速度.由式(7)~式(9)可知,S min()x a取决于v()x a和x a以前的列车操纵策略有关,通过S min()x a的列车运行速度和x a以后的列车操纵策略有关.因此,操纵策略决定了列车追踪运行过程中可实现的最小追踪间隔.全线列车执行相同U在线路上追踪运行,可实现的最小追踪间隔H()U为列车连续通过最受限制点的最小时间间隔,即H()U=maxx∈[]0,XH min()x(14) 2列车运行性能优化2.1问题描述列车站间运行时间由运行图预先给定,理论上存在无数种操纵策略保证列车安全、正点运行.面向高峰小时地铁列车密集追踪的运行场景,将其中可实现追踪间隔最小且牵引能耗最小的操纵策略作为最优操纵策略.Takeuchi[5]对最小追踪间隔计算进行了灵敏度分析,结果表明,增大列车牵引/制动加速度可有效压缩最小追踪间隔.Liu[8]利用极大值原理推导出连续控制条件下的列车节能驾驶最优控制应包括最大牵引、巡航、惰行和最大制动.上述文献表明,列车最大牵引和最大制动是实现节能驾驶和高效追踪的必要控制条件.因此,本文选择最大牵引、巡航、惰行和最大制动组成列车最优操纵策略的4种控制变量,目标问题转化为寻找这些控制变量之间的组合顺序及其对应的转换点.本文假设列车装备自动驾驶系统,能够在线172第20卷第6期城市轨道交通列车追踪间隔与牵引能耗优化路任意位置实现巡航控制.因现有地铁系统并未完全装备再生制动设备,为不失一般性,再生制动能不在本文考虑范围内.2.2优化模型将U 作为决策变量,将min E ()U 和min H ()U 作为优化目标,设置列车安全、正点运行约束条件,构建双目标优化模型为ìíîïïïïmin E ()U min H ()U s.t.T ()U =T setv ()x <V limit ()x ,x ∈[0,X ](15)式中:V limit ()x 为线路限速条件;T set 为指定站间运行时间.2.3模型求解构建双目标优化模型旨在降低列车牵引能耗的同时压缩列车最小追踪间隔,期望得到一组准确的Pareto 最优解以体现两目标之间的均衡,采用基于动态规划方法的精确算法求解式(15).由于最小追踪间隔指标在动态规划逐段递推过程中并不严格单调,不具备动态规划方法所需的“无后效性”,引入ε-约束法将其转化为约束条件,并将式(15)转化为单目标优化模型,并以Δε为间隔由小到大调整ε参数值后多次利用动态规划方法进行求解.ìíîïïïïmin E ()U s.t .H ()U ≤εT ()U =T setv ()x <V limit ()x ,x ∈[0,X ](16)对式(16)的状态空间进行离散,将列车运行过程在空间域上划分K 个阶段,保证各阶段线路条件不变且各阶段长度不大于Δx .在k 阶段开始位置x k 处,按间隔Δv 划分k 阶段的开始状态集{}s k,i|sk,i=()x k ,i ⋅Δv ,0≤i ⋅Δv ≤Vˉ()x ,i ∈Ν,其中,Vˉ()x 为列车在最速策略下运行至x 处的速度.如图3所示,实线为列车最速运行轨迹,圆点为各阶段开始状态,亦为上一阶段的结束状态.列车运行过程的起点和终点分别记为s 1,0和s K +1,0.动态规划始终运行在基于上述离散划分规则的状态空间内,其优化结果一定能够满足安全运行约束v ()x <V limit ()x.图3模型阶段状态划分示意图Fig.3Stages and vertices of optimization model列车在k 阶段运行时固定采用最大牵引、巡航、惰行和最大制动中的一种工况,将其简记为u k ,列车在相邻阶段的最优控制工况切换还应满足图4所示的接续条件.图4列车控制接续约束Fig.4Train regime switching constraint列车在k 阶段s k,i 处施加u k 后运行至k +1阶段()x k +1,v ′处,()x k +1,v ′有可能不属于已划分的开始状态集,需要对其进行近似处理并修正至s k +1,j 处,其中j =round ()v ′Δv ,将上述状态转移过程简写为s k +1,j =F ()s k,i ,u k (17)列车在s k,i 处施加u k 阶段牵引能耗e ()s k,i ,u k 和运行时间t ()s k,i ,u k 计算为e ()s k,i ,u k =∫x kx k +1max []0,u ()x ⋅d x(18)t ()s k,i ,u k =∫xkx k +11v ()x ⋅d x(19)为获取式(16)在ε参数下的最优操纵策略U *ε,采用后向动态规划的求解方式,从s K +1,0开始逐段向前推进寻找列车在各阶段的最优控制决策173交通运输系统工程与信息2020年12月直至s 1,0.对于阶段k ,将列车从s k,i 运行至s K +1,0的操纵子策略记为U ()s k,i ,其对应的牵引能耗和运行时间分别为E []U () s k,i 和T []U ()s k,i ,下面建立评价U ()s k,i 最优性的过程指标函数.将列车从s 1,0运行至s k,i 处的操纵子策略记为U ()s k,i ,其对应的牵引能耗及运行时间分别记为E []U () s k,i 和T []U ()s k,i .因此,式(16)的优化目标min E ()U 可拆解为min E []U () s k,i 和min E []U ()s k,i .在后向动态规划求解过程中,E []U ()s k,i 无法直接求解得到.列车牵引能耗与运行时间在节能操纵条件下呈反比关系,故min E []U ()s k,i 等效于max T []U () s k,i .因T []U () s k,i +T []U ()s k,i =T set ,故min E []U () s k,i 等效于min T []U ()s k,i .因此,评价U ()s k,i 最优性的过程指标函数为E []U *() s k,i =min u k{}e ()s k,i ,u k +E {}U *éëùû F ()s k,i ,u k (20)T []U *() s k,i =min u k{}t ()s k,i ,u k +T {}U *éëùûF ()s k,i ,u k (21)U ()s k,i 对应的最小追踪间隔H []U () s k,i 应满足ε约束,即H []U ()s k,i ≤ε(22)U ()s k,i 应满足准点运行约束为T min []U () s k,i ≤T []U () s k,i ≤T max []U () s k,i (23)式中:T min []U () s k,i 、T max []U ()s k,i 分别为列车从s k,i 到s K +1,0的最短、最长运行时间.特别的,列车在s 1,0和s K +1,0的准点约束条件为T []U () s 1,0=T min []U () s 1,0=T max []U ()s 1,0=T set (24)T []U () s K +1,0=T min []U () s K +1,0=T max []U ()s K +1,0=0(25)T min []U () s k,i 和T max []U ()s k,i 的计算方法如图5所示.点划线为列车从s k,i 到s K +1,0的最速运行轨迹,其对应的运行时间为T min []U ()s k,i .虚线为列车从s 1,0到s k,i 的最速运行轨迹,其对应的运行时间为T min []U () s k,i ,则T max []U () s k,i =T set -T min []U () s k,i .图5T min []U () s k,i 和T max []U ()s k,i 计算原理Fig.5Calculation principle of T min []U () s k,i and T max []U ()s k,i由于存在2个冲突的过程指标,即式(20)和式(21),列车从s k,i 处运行至s K +1,0的最优操纵子策略应为一组Pareto 解,记为{}U *w () s k,i ,其中,U *w ()s k,i 为s k,i 处的第w 个最优子策略.动态规划方法从s K +1,0开始逐段向前推进,求解各阶段各状态点的Pareto 最优子操纵策略集直至起点s 1,0.由于准点运行式(24)的限制,s 1,0处的最优操纵策略有且只有一个,为式(16)在ε参数下的最优解,即U *ε=U *1()s 1,0.式(16)的具体求解步骤描述如下:Step 1读入线路数据及列车参数并计算V ˉ()x ,设定模型参数Δx 、Δv 和ε,划分离散状态集合{}s k,i ,设定边界条件E []U *1()s K +1,0=0,T []U *1()s K +1,0=0,令k =K ,完成模型求解初始化.Step 2对于k 阶段所有的s k,i ,遍历4种最优控制工况u k ,获取k +1阶段F ()s k,i ,u k 处的最优子策略集{}U *w éëùûF ()s k,i ,u k .在满足式(22)和式(23)的条件下,将u k 加入{}U *w éëùûF ()s k,i ,u k 生成s k,i 处的可行子策略集{}U ()s k,i .Step 3根据过程指标式(20)和式(21),对{}U ()s k,i 进行Pareto 占优操作,得到s k,i 的Pareto 最优子策略集{}U *w () s k,i .若k ≠1,则令k =k -1,跳转174第20卷第6期城市轨道交通列车追踪间隔与牵引能耗优化至Step 2;若k =1,输出式(16)的最优解U *ε.3算例分析基于C++开发优化程序,以北京地铁亦庄线为算例,选择文献[2]中线路数据和车辆参数,在此基础上进一步设定,a eb =-1.0m/s 2、L sm =30m 、L train =90m 、T react =0.5s 和T dwell =30s .根据“计算时间—优化效益可接受原则”设置模型参数如下:Δx =10m 、Δv =1km/h 和Δε=0.1,模型参数决定模型的求解精度和求解效率,间隔越小,模型求解精度越高且求解效率越低.以第7区间“万源街—荣京东”为例:首先,令ε=0,不断迭代计算ε=ε+Δε后的式(16)直至获取第1个有效解,该解即为能够实现理论最小追踪间隔的操纵策略U *headway ,令εmin =H ()U *headway ;其次,将ε设置为一个较大的正值后对式(16)进行求解,所得解即为只考虑节能目标的最优操纵策略U *energy ,令εmax =H ()U *energy ;最后,以Δε为间隔在[]εmin ,εmax 内由小到大调整ε参数值,多次求解式(16),获得一组Pareto 最优解,如图6所示.图6列车最优操纵Pareto 解Fig.6Pareto solution of optimum driving strategy选取ε=70条件下的最优操纵策略U *70,对比U*energy、U *70和U*headway这3种策略下的v ()x 及其对应的H min ()x ,如图7所示.U*energy条件下列车从起点开始最大牵引至A 1,然后以惰行和巡航的组合方式运行至B 1,最后施加最大制动至终点;列车从C 1开始进入车站追踪模式,H min ()x 发生跃变;U *energy的性能指标分别为E ()U*energy=9.8kW ⋅h ,H ()U *energy =77.2s .U *70条件下列车最大牵引至A 2,惰行并巡航至B -2后开始施加第1次最大制动至C 2,然后惰行至B 2后施加第2次最大制动至终点;由于提前制动,列车在C 2处才进入车站追踪模式,其性能指标为E ()U *70=10.7kW∙h,H ()U *70=70.0s .同U *70一样,U *headway 在B -3处提前制动,采用两次制动的进站模式分别经过了A 3-B -3-C 3-B 3点,列车自C 3开始进入车站追踪模式,性能指标为E ()U *headway =13.0kW∙h ,H ()U *headway =67.1s .相较于U *energy,U *70和U *headway 在进站过程中执行两次制动策略,压缩了列车最小追踪间隔,为弥补两次制动进站过程中额外消耗的运行时间,U *70和U *headway 提升了进站以前的运行速度,额外增加了牵引能耗.图7U *energy 、U *70和U *headway 的列车运行轨迹及最小时间间隔Fig.7Train trajectory and minimum time separation ofU *energy ,U *70and U *headway列车进站操纵策略变化本质上影响的是车站追踪模式下T in ()x 和T out ()x ,从而改变H min ()x .U *energy 、U *70和U *headway 策略下的T in ()x 和T out ()x 随v ()x 的变化趋势如图8所示.上述操纵策略在车站追踪模式下的运行过程均包含1次惰行和1次最大制动.随着列车向终点运行,3种操纵策略对应的175交通运输系统工程与信息2020年12月T out()x从0开始递增并分别在列车进站的制动初始点B1、B2和B3处达到极大值,T in()x呈递减趋势并在终点处减为0.由于不同操纵策略下T in()x和T out()x存在差异,U*energy条件下的H min()x呈先增后减趋势,在B1处达到极大值;U*70和U*headway条件下,H min()x分别在C2和C3处达到极大值.图8车站追踪模式下列车运行轨迹及相关时间间隔Fig.8Train trajectory and related time separation under station tracking mode 计算全线13个站间的最优操纵Pareto解,选取各站间的U*headway与U*energy进行比较,如表1所示.与U*energy相比,列车在U*headway下的全线通行能力提升了17.0%,牵引总能耗增加了19.3%.各站间的U*headway均采用两次制动的进站策略且第2次制动的进站初速度都为23.0km/h,各站间U*headway的最小追踪间隔均达到约67s的极小值.各站间的U*energy都采用一次制动进站策略,其最小追踪间隔的大小与列车进站制动初速度正相关.不失一般性,图9以第2区间和第4区间为例,描绘U*headway和U*energy策略下v(x)和H min(x)来进一步印证上述结论.表1列车操纵策略优化结果Table1Optimaziton results of drivingstrategy176第20卷第6期城市轨道交通列车追踪间隔与牵引能耗优化图9U *headway 和U *energy 的列车运行轨迹及最小时间间隔Fig.9Train trajectory and minimu time separation of U *headway 和U *energy4结论列车操纵策略决定了列车在线路上运行的牵引能耗和可实现的最小追踪间隔.列车采用两次制动的进站策略可以有效压缩最小追踪间隔,但需要消耗更多的牵引能耗.列车最小追踪间隔和进站制动初速度正相关且存在极小值.相较于只考虑节能目标的最优操纵策略,追踪间隔压缩后的最优操纵策略最多可提升17.0%的线路通过能力,同时也增加了19.3%的牵引能耗.运营商可权衡地铁高峰小时服务水平和运营成本的实际需求,利用本文方法获得列车追踪运行最优操纵策略,具有一定实际意义.随着再生制动设备在城市轨道交通系统的应用普及,考虑再生制动能利用的列车运行能耗和追踪间隔多目标优化问题有待进一步讨论.参考文献:[1]WANG Y,DE SCHUTTER B,VAN DEN BOOM T J J,et al.Optimal trajectory planning for trains under fixed and moving signaling systems using mixed integer linear programming[J].Control Engineering Practice,2014,22:44-56.[2]YE H,LIU R.A multiphase optimal control method for multi-train control and scheduling on railway lines[J].Transportation Research Part B:Methodological,2016,93:377-393.[3]柏赟,于昭,贾文峥,等.考虑追踪安全的地铁快慢车协同操纵节能优化[J].交通运输系统工程与信息,2019,19(3):126-133.[BAI Y,YU Z,JIA W Z,et al.Cooperative control of express/local metro trains for energy saving considering the safe headway[J].Journal of Transportation Systems Engineering and Information Technology,2019,19(3):126-133.][4]WANG P,GOVERDE R M P.Multi-train trajectory optimization for energy-efficient timetabling[J].European Journal of Operational Research,2019,272(2):621-635.[5]TAKEUCHI H,GOODMAN C J,SONE S.Moving block signalling dynamics:Performance measures and re-starting queued electric trains[J].IEE Proceedings-electric Power Applications,2003,150(4):483-492.[6]陈荣武,诸昌钤,刘莉.CBTC 系统列车追踪间隔计算及优化[J].西南交通大学学报,2011,46(4):579-585.[CHEN R W,ZHU C Q,LIU L.Calculation and optimization of train headway in CBTC system[J].Journal of Southwest Jiaotong University,2011,46(4):579-585.]下转第204页177交通运输系统工程与信息2020年12月Influences of traffic flow characteristics on accidentseverity on secondary roads[J].China Journal ofHighway and Transport,2020,33(2):135-145.] [9]吴琴,施欣,陶学宗.海事事故严重性影响因素及影响程度识别[J].交通运输系统工程与信息,2019,19(1):189-195.[WU Q,SHI X,TAO X Z.Identifying the factors and their impact levels on severity of maritime traffic accidents[J].Journal of Transportation Systems Engineering and Information Technology,2019,19(1): 189-195.]上接第177页[7]NAKAMURA H.Analysis of minimum train headway ona moving block system by genetic algorithm[J].WITTransactions on the Built Environment,1998,37:1013-1022.[8]LIU R R,GOLOVITCHER I M.Energy-efficientoperation of rail vehicles[J].Transportation ResearchPart A:Policy and Practice,2003,37(10):917-932.上接第183页[2]李军,邓红平.基于公交IC卡数据的乘客出行分类研究[J].重庆交通大学学报(自然科学版),2016,35(6):109-114.[LI J,DENG H P.Classification ofpassenger's travel behavior based on IC card data[J].Journal of Chongqing Jiaotong University(NaturalSciences),2016,35(6):109-114.][3]何兆成,余畅,许敏行.考虑出行模式和周期性的公交出行特征分析[J].交通运输系统工程与信息,2016,16(6):135-141.[HE Z C,YU C,XU M X.Analyzingmethods of residents'travel characteristics consideringtravel patterns and periodicity[J].Journal ofTransportation Systems Engineering and InformationTechnology,2016,16(6):135-141.][4]GOULET-LANGLOIS G,KOUTSOPOULOS H N,ZHAO Z,et al.Measuring regularity of individual travelpatterns[J].IEEE Transactions on IntelligentTransportation Systems,2017,19(5):1583-1592. [5]翁剑成,王昌,王月玥,等.基于个体出行数据的公共交通出行链提取方法[J].交通运输系统工程与信息,2017,17(3):67-73.[WENG J C,WANG C,WANG YY,et al.Extraction method of public transit trip chainsbased on the individual riders'data[J].Journal ofTransportation Systems Engineering and InformationTechnology,2017,17(3):67-73.][6]ZOU Q,YAO X,ZHAO P,et al.Detecting home locationand trip purposes for cardholders by mining smart cardtransaction data in Beijing subway[J].Transportation,2018,45(3):919-944.[7]PEI J,HAN J,MORTAZAVI-ASL B,et al.Miningsequential patterns by pattern-growth:The prefixspanapproach[J].IEEE Transactions on Knowledge and DataEngineering,2004,16(11):1424-1440.204。

城轨线路ATO系统控车策略优化

城轨线路ATO系统控车策略优化

U城轨交通RBAN RAIL TRANSIT 城轨线路ATO系统控车策略优化吴大武(合肥市轨道交通集团有限公司运营分公司,合肥 230092)摘要:针对ATO 控制列车制动的算法策略,首先介绍目前ATO 控车策略的研究现状与列车制动系统。

然后阐述基于追赶时间计算控制的列车制动控制策略。

最后分析本控制策略在合肥3号线列控系统的应用,验证ATO 控制列车进站制动过程中的舒适度与停车精准度的效果,对列车智能化控车策略的研究具有重要意义。

关键词:ATO 系统;制动曲线;控车策略;城市轨道中图分类号:U284.48 文献标志码:A 文章编号:1673-4440(2022)12-0060-04Optimization of Train Control Strategy of ATO System forUrban Rail LineWu Dawu(Operating Branch, Hefei Rail Transit Group Co., Ltd., Hefei 230092, China)Abstract: Aiming at the algorithm strategy of Automatic Train Operation (ATO) to control the train braking, this paper first introduces the current research status of ATO train control strategy and the train braking system, and then expounds the train braking control strategy based on the calculation of chasing time. Finally, analyzes the application of this control strategy in the train control system of Hefei Line 3, and verifies the effect of ATO on the comfort and parking accuracy during the braking process of a train entering the station, which are of great significance to the research of intelligent train control strategy.Keywords: ATO system, braking curve; train control strategy; urban railDOI: 10.3969/j.issn.1673-4440.2022.12.012收稿日期:2022-07-06;修回日期:2022-11-07作者简介:吴大武(1982—),男,高级工程师,本科,主要研究方向:城市轨道交通列控技术,邮箱:****************。

城市轨道交通列车大小交路开行方案优化

城市轨道交通列车大小交路开行方案优化

③类客流出行起讫点均在 H2 区段 ,②类客流出行 讫点在 H1 区段 ,起点不限 ,④类客流出行起点在 H1 区段 ,讫点不限;tj 为列车在 s1 至 sj 间的往返旅 行时间;Tk 内开行在大交路区段 (H1 与 H2 区段 ) 的 列车数量和列车编组数分别记做 f1,q1,仅开行在 小交路区段 (H2 区段 ) 的列车数量和列车编组数分 别记做 f2,q2。
Abstract: On the urban rail transit with imbalanced distribution of cross section passenger flow, the operations of trains on different routes are incompatible and the trains cannot run at the minimum cycle of the train working diagram. To solve this problem, the train working diagram cycle analysis method is applied to define the train working diagram cycle, which is used as the basis of fleet and fixed operation cost calculation. A multi-objective nonlinear mixed integer programming model is established by selecting the passenger in-station waiting time cost, fleet fixed operation cost and capacity waste cost minimization as the objective functions. Different costs are converted into a total cost and the original model is optimized as a single-objective model, which is then verified with actual cases. The results show that, compared with the classic operation plan, the long and short routing operation plan helps reduce the total cost. The model is proved to be feasible and valid. Keywords: Urban Rail Transit; Operation Plan; Long and Short Routing; Cycle Analysis Method of Train Working Diagram; Non-linear Mixed Integer Programming

城市轨道交通多编组列车开行方案优化研究

城市轨道交通多编组列车开行方案优化研究

城市轨道交通多编组列车开行方案优化研究戎亚萍;张星臣;柏赟;许得杰【摘要】In order to meet the fluctuation of passenger flow, a multi-objective optimization modal for train plan of urban rail transit based on hybrid train formation is established, which is aimed to minimize the passengers’waiting time and operator’s cost. The constraints are transport supply, policy headway and fleet size. And a two-phase mathematical programming algorithm is also proposed. At last, the validation of the proposed model and the algorithm has been tested with an urban rail transit line in China. The results show that compared with the traditional train plan of single train formation, the train plan based on hybrid train formation can reduce the waiting time of passengers and the cost of operation by 17%and 27%, but increase the total train-hours by 20%. When the threshold ratio of peak demand to off-peak demand is more than 1.48, the train plan of hybrid train formation is preferable.%针对城市轨道交通全日客流时间分布不均衡下的列车开行方案优化问题,以乘客等待时间和企业成本最小为优化目标,以运输供给、列车最小发车间隔、最大服务间隔,以及列车数为约束条件,构建基于多编组模式下的多目标列车开行方案优化模型,并设计两阶段求解算法.案例分析表明:与传统单一编组列车开行方案相比,基于多编组的轨道交通列车开行方案使乘客等待时间和车公里数分别减少17%和27%,列车运行小时增加20%;当客流不均衡系数大于1.48时,宜采用多编组运输组织方式.【期刊名称】《交通运输系统工程与信息》【年(卷),期】2016(016)005【总页数】6页(P117-122)【关键词】城市交通;列车开行方案;多目标优化模型;多编组;两阶段求解算法【作者】戎亚萍;张星臣;柏赟;许得杰【作者单位】北京交通大学城市交通复杂系统理论与技术教育部重点实验室,北京100044;北京交通大学城市交通复杂系统理论与技术教育部重点实验室,北京100044;北京交通大学城市交通复杂系统理论与技术教育部重点实验室,北京100044;北京交通大学城市交通复杂系统理论与技术教育部重点实验室,北京100044【正文语种】中文【中图分类】U268.6随着线网规模的扩大,城市轨道交通全日客流时间分布呈现明显的不均衡性,尤其是市域快速轨道交通线路,其客流具有显著的潮汐特征.为了解决单一编组模式下非高峰期运能浪费,服务水平低的问题,已有部分学者在多编组研究方面取得了一定成果.所谓多编组是指针对城市轨道交通线路客流在不同时段或不同区段的差异,由车辆基地事先设计并发出的具有不同编组长度的列车,其在运行过程中不进行拆解或重联的运营组织技术[1].Niu等[2]以城际铁路为研究对象,构建了以乘客等待成本和在车成本最小为目标的城际铁路开行方案优化模型,研究结果表明高峰期开行大编组列车,平峰期开行小编组列车能够减小乘客成本;杨信丰等[3]研究了多车型快速公交的车型调度问题,算例分析表明通过合理的发车频率和车型组合可以得到多种满足需求的调度方案;Sun等[4]以单一公交线路为研究对象,构建了基于两种车型混合使用的时刻表优化模型,算例表明采用不同容量的车辆混跑,对于节省乘客出行时间和企业费用是有效的;Hassold等[5]以减少乘客等待时间和提高列车满载率为目标,构建了考虑多种公交车容量的等间隔发车时刻表优化模型,结果表明该方案在提高满载率的同时乘客等待时间可以节省43%. Ceder等[6]以节省公交车能耗为出发点,采用大小两种容量的公交车构造非均衡发车时刻表优化模型,结果表明该运营模式可以提高19%的满载率,从而达到节约能耗的目的.Lee等[7]在公交网络车辆共享的基础上,认为同一线路不同时段采用不同容量的公交车,可以节省系统费用.尽管上述文献均考虑了多种车容量下的列车运营组织模式,但是城市轨道交通系统与城际铁路、公交系统有着明显的不同.城际铁路和公交系统的车辆可以在不同线路间共用,而轨道交通系统采用各线路独立运行的模式,不同线路间一般不能共享车辆.所以,考虑到企业运营成本,采用多编组模式下的运用车辆数不能超过单一编组模式.因此,本文增加了车体保有量的约束条件,以乘客等待时间和企业运营成本最小为优化目标,以各时段编组方案和发车频率为决策变量,构建了基于多编组的列车开行方案多目标优化模型,并设计了两阶段求解算法.最后,以某轨道交通线路为例进行了实例研究.针对1条具有N个车站,线路长度为L的城市轨道交通直线型线路,所有列车从始发站1开始,沿下行方向环形逆转到上行方向,依次标记为车站2,3,…,N,N+1,…,2N-1,直至终点站2N,如图1所示.本文用 i、j标记车站,用Di,j (t)表示t时段内从i站前往 j站的乘客数;由于列车到折返站后所有的乘客都将下车,故当i∈{1,2,…,N},j∈{N+1,N+2,…,2N},或i∈{N+1,N+2,…,2N},j∈{1,2,…,N}时,客流需求Di,j(t)=0.在城市轨道交通全日运营时段[Ts,Te]内,客流随时间波动形成以一定时间段为周期的客流时段.与客流波动相对应,本文将全日运营时段划分为若干个列车开行时段,且每个开行时段具有相对独立的列车开行频率和编组方案.令列车开行时段集合T={Tk|k=1,2,…,K },其中K为时间分段总数,|Tk|为时段长度.多编组列车开行方案由具有不同编组长度的列车构成,客流的不均衡性使得不同时段开行不同编组的列车.为减小运营组织难度,一般选取大、小两种编组的列车分别用于不同的客流时段.在多编组运输组织模式中,定义多编组方案的列车集合B={Bm|m=1,2},其中B1表示小编组列车对应的编组辆数;B2表示大编组列车对应的编组辆数;M为列车最大编组辆数;开行对数集合F={fm(k)|k=1,2,…,K },其中 fm(k)为开行时段k内第m种编组方案的列车开行对数.依照以上定义,基于多编组的城市轨道交通列车开行方案可表示为Ω={B,T ,F}.多编组城市轨道交通列车开行方案的优化过程需要兼顾运营企业和乘客两方面的利益.一方面,运营单位希望在满足客流需求的前提下,开行大间隔、小编组列车以尽可能地降低成本;另一方面,乘客则希望开行小间隔、大编组列车以减少等待时间和提高舒适度,双方利益相互矛盾.因此本文以乘客出行成本和企业运行成本最小为优化目标,以各时段编组方案和发车频率为决策变量,构建多编组列车开行方案优化模型.2.1 模型假设针对多编组列车开行方案优化问题,本文做出如下假设:(1)采用单一交路站站停的运营组织模式,同一时段的发车间隔保持不变;(2)以每1h作为一个列车开行时段,全天分为18个列车开行时段;(3)乘客均匀到达车站,服从先到先服务的原则,不存在留乘;(4)不考虑列车重联成本和耗时,且不同编组列车的旅行速度相同.2.2 模型建立(1)乘客出行成本.乘客出行成本由乘客在车时间成本和等待时间成本两部分构成,考虑到不同编组列车的旅行速度相同,乘客在车时间相同,因此乘客出行成本可由乘客等待时间表示.相关研究表明,城市轨道交通列车发车间隔较小且均匀发车时,乘客平均等待时间为发车间隔的一半[8],所以,乘客总等待时间为各车站乘客等待时间之和. (2)企业运营成本.企业运营成本主要包括列车运行成本(能耗费用、检修费用等)和人力成本(司乘人员工资).由于开行单趟列车的运行成本和单位车小时人员工资是固定的,所以本文采用车辆走行公里和列车运行时间表示企业运营成本.2.3 约束条件根据基本运输组织条件及要求,基于多编组的列车开行方案需要满足:式中:为第k个开行时段内的最大断面流量;V为每节车辆的定员;hmin,hmax分别表示最小、最大发车间隔;Nm表示第m种单元列车的可用列车数;N0表示采用单一编组模式下的运用车辆数.式(4)和式(5)表示列车编组数约束;式(6)和式(7)表示发车间隔与发车频率约束;式(8)表示运输供给约束,对客流高峰区段进行满载率限制;式(9)和式(10)表示车体保有量约束,多编组运营模式下各编组的运用列车数不能超过各自的车体保有量,且运用车辆数之和不能超过单一编组.基于多编组的城市轨道交通列车开行方案优化模型涉及多个参数和目标函数,同时列车编组与开行频率均为离散变量,且相互影响.因此,该模型是一个不连续、非凸的多目标整数规划问题,直接求解难度较大.为此,本文提出一种两阶段求解算法:第1阶段从乘客等待时间和企业运营成本综合优化角度出发,在满载率和发车频率的约束下,求解单一编组模式下的全日行车计划,从而得到单一编组模式下的运用车辆数.然后,将单一编组模式下的车体保有量作为输入条件,求解多编组运营模式下不同编组列车的车体保有量.第2阶段采用模糊折中法和线性加权法将多目标优化转化为单目标优化问题,并运用遗传算法求解该模型,染色体采用特殊的二进制编码方法,从而确定各时段列车编组方案和开行频率.3.1 车体保有量确定方法车体保有量是指在满足给定的发车间隔和编组条件下所需要运用的车底数量.对于多编组列车开行方案,一般选取大、小两种编组的列车分别用于不同的客流时段,此时,,.首先,根据高峰时段客流确定大编组列车运用数,从乘客等待时间最小化的角度构建列车开行方案评价指标,如式(11)所示.即在满足高峰断面客流需求的基础上,仅需高峰小时的大编组列车开行对数最小或小编组列车开行对数最大.然后,综合目标函数式(1)和式(2)和约束条件式(4)~式(6)确定单一编组模式下的车体保有量,以单一编组模式下的车体保有量和多编组模式下的大编组运用车数作为输入条件,可以求得小编组列车车体保有量的最大值.具体算法如下:①针对客流高峰时段,初始化大编组列车的发车频率 f1(k*)=1.②根据式(8)计算小编组列车的发车频率,则.③判断是否成立,若成立,;否则,f1(k*)=f1(k*)+1,转②.④计算大小编组列车的车体保有量,,N2=(N0-N1·B1)/B2,结束.3.2 列车开行方案确定方法采用遗传算法求解模型,染色体采用二进制编码方式,染色体长度为列车开行时段数量K,基因编码对应各时段各编组类型的发车频率.由于模型中3个目标函数的量纲不同,在设计适应度函数时首先将它们转化为同一量纲,本文采用极差化方法[9]进行无量纲化处理,如式(12)所示.然后根据适应度函数筛选出较优的开行方案,并通过交叉、变异等操作产生新的解集,直至达到最大迭代次数,筛选出最优解.式中:分别为各目标当前函数值、最小函数值及最大函数值;wobj为权重,且,本文取3个目标函数的权重相等.4.1 基础数据本文以某城市地铁线路的开行方案优化为例进行说明.线路长度为18.03km,共有16个车站,采取单一交路站站停的运营组织模式.单元列车为3节编组,车辆定员V=310人/辆,组合编组列车为6节编组,由2列单元列车组成;列车最大满载率αmax=1.2,车底周转时间T周=73min;全天各时段最大和最小发车间隔为别为10 min和3 min;运营时段参数Ts=6 h,Te=24 h,K=18 h,||Tk=1 h,即每1 h作为一个列车开行时段.本案例线路高峰时段与平峰时段的客运量均值之比为2.85,表明全日客流分布具有明显的不均衡性,全日客流时段分布如图2所示.4.2 求解结果按照高峰断面客流法确定单一编组条件下列车编组长度为6,应用本文设计的算法可求得单一编组和多编组条件下,全天各时段列车编组方案和发车频率,具体结果如表1和表2所示.结果表明,相对于单一编组方案,多编组条件下的发车频率更优,全天乘客总等待时间可减少17%,客流平峰时段(11:00-14:00和21:00-23:00)发车间隔最大可缩短22%.进一步分析企业运营成本可知,基于多编组的列车开行方案使车公里数减少27%,但列车运行时间增加了20%.可见企业采用多编组的运营模式时可以减少乘客等待时间和列车运行成本,但这是以增加司机成本为代价的.4.3 灵敏度分析客流时间分布不均衡性是列车开行方案的重要影响因素,因此,本文根据高峰小时最大断面客流与各时段最大断面客流之间的关系,将各时段最大断面客流按其差值等差波动设置,观察客流不均衡系数不同的情景下,列车开行方案的差异性.由图3可知,当客流不均衡系数趋于1时,客流在各个时间段分布较均匀.客流不均衡系数不同的条件下,多编组与单一编组列车开行方案的乘客等待时间、车辆走行公里数及列车运行时间如图4所示.由图4可以得到以下结论:(1)随着客流时间分布越均匀,两种编组方案的乘客等待时间均呈下降趋势,列车运行时间均呈上升趋势.当客流不均衡系数达到1.48时(情景7),两种编组方案的乘客等待时间和列车运行时间相同,且仅出现一种列车编组形式.这说明,随着高峰期客流减少,平峰期客流增加,单一编组模式下的列车编组数降低,发车频率提高;多编组模式下,大编组列车数减少,小编组列车数增多,将会有更多的时段采用“小编组高密度”的运营模式.当高峰客流减少到一定程度时,小编组列车即可满足需求.(2)随着客流时间分布越均匀,单一编组方案的车公里数呈波动式下降,多编组方案的车公里数呈上升趋势,且二者的差距逐渐减小.当客流不均衡系数达到1.48时,两种编组方案的车公里数相等.这说明客流时间分布不均衡性越高,基于多编组的运营模式优势越明显.综上可知,多编组是在全日客流分时需求差异较大的前提下所采用的相对较优的运输组织模式.本文以城市轨道交通多编组列车开行方案优化问题为研究对象,在考虑运用车辆数限制的基础上,以综合优化乘客等待时间和企业运营成本为目标,构建了多目标优化模型,并讨论了不同客流时间分布对结果的影响.结合案例研究,得到以下结论:(1)以某城市轨道交通线路为例,应用本文的模型和算法进行测算.结果表明,相对于单一编组方案,多编组方案使乘客的等待时间和车公里数分别减少17%和27%,列车运行小时增加20%.这说明,当企业采用多编组的运营模式时可以减少乘客等待时间和列车运行成本,但这是以增加司机成本为代价的.(2)随着客流时间分布越均匀,多编组方案的优势逐渐减弱,当线路单向高峰小时客流不均衡系数达到1.48时,仅出现一种编组形式.这说明多编组是在全日客流需求差异较大的前提下所采用的相对较优的运输组织模式.【相关文献】[1]毛保华,刘明君,黄荣,等.轨道交通网络化运营组织理论与关键技术[M].北京:科学出版社,2011.[MAO B H,LIU M J,HUANG R,et al.Operational theories and key technologies of rail transit networks[M].Beijing:Science Press,2011.][2] NIU H M,ZHANG M H.An optimization to schedule train operationswith phase-regularframework for intercity rail lines[J].Discrete Dynamics in Nature and Society,2012(549374).[3]杨信丰,刘兰芬,李引珍,等.多目标快速公交多车型优化调度研究[J].交通运输系统工程与信息,2016,16(3):107-112.[YANG X F,LIU L F,LI Y Z,et al. A multi-objective bus rapid transit dispatching optimization considering multiple types of buses[J]. Journal of Transportation Systems Engineering and Information Technology,2016,16(3):107-112.][4] SUN D J,XU Y,PENG Z R.Timetable optimization for single bus line based on hybrid vehicle size model[J]. JournalofTraffic and Transportation Engineering(English Edition),2015,2(3):179-186.[5] HASSOLD S,CEDER A.Multiobjective approach to creating bus timetables with multiple vehicle types[J]. Transportation Research Record:Journal of the Transportation Research Board,2012(2276):56-62.[6] CEDER A,HASSOLD S,DUNLOP C,et al.Improving urban public transport service using new timetabling strategies with different vehicle sizes[J].International Journal of Urban Sciences,2013,17(2):239-58.[7] LEE K K,KUO S H F,SCHONFELD P M.Optimal mixed bus fleet for urban operations[J].Transportation Research Record:Journal of the Transportation Research Board,1995(1503):39-48.[8]邓连波,曾强,高伟,等.基于弹性需求的城市轨道交通列车开行方案研究[J].铁道学报,2012,34(12):16-25.[DENG L B,ZENG Q,GAO W,et al.Research on train plan ofurban rail transit with elastic demand[J]. Journal of the China Railway Society,2012,34(12):16-25.][9]张玉召,严余松.快捷货物列车开行方案多目标优化模型及算法[J].交通运输系统工程与信息,2014,14(3):111-116.[ZHANG Y Z,YAN Y S.A multiobjective model and algorithm of operation plan for expressfreighttrains[J].JournalofTransportation Systems Engineering and Information Technology,2014,14(3):111-116.]。

基于灵活编组的城市轨道交通大小交路优化

基于灵活编组的城市轨道交通大小交路优化

第20期2023年10月无线互联科技Wireless Internet Science and TechnologyNo.20October,2023基金项目:河北省高等学校科学技术研究项目;项目名称:城市轨道交通大小交路开行方案研究;项目编号:ZC2023018㊂作者简介:安飞(1989 ),男,河北石家庄人,讲师,硕士研究生;研究方向:交通运输工程㊂∗通信作者:常秀娟(1989 ),女,河北保定人,讲师,硕士研究生;研究方向:交通运输工程㊂基于灵活编组的城市轨道交通大小交路优化安㊀飞1,刘亚苹1,常秀娟2∗,何㊀彬1,李㊀欣1,卜东一1(1.河北交通职业技术学院,河北石家庄050035;2.河北轨道运输职业技术学院,河北石家庄052165)摘要:随着城市轨道交通的迅猛发展,客流在时空上分布的不均衡性越来越明显,一成不变的列车开行方案不再适用于现在的城市轨道交通,部分城市现有的列车开行方案存在乘客等待时间长㊁运输能力浪费的现象㊂文章以城轨灵活编组列车的大小交路运输组织模式为研究对象,兼顾乘客出行时间成本和企业运营成本,将大小交路编组数目㊁起终点㊁发车频率作为决策变量,综合考虑发车频率要求㊁客流需求㊁满载率㊁编组数目㊁车底保有量等约束条件,建立灵活编组列车大小交路开行方案优化模型,并以某条线验证模型的可行性,利用Python 求解最优列车开行方案㊂将优化后的列车开行方案与现有的列车开行方案进行对比,证明其优势㊂关键词:客流;灵活编组;大小交路;列车开行方案;优化模型中图分类号:U292㊀㊀文献标志码:A0㊀引言㊀㊀截至2022年年底,我国城市轨道交通运营总里程已经突破1万km(10287.45km),在建线路总规模6675.57km,总体规模和建设速度都居世界第一㊂随着线路不断地由城市中心向外扩张,客流强度也呈现较大的不均衡性㊂固定编组㊁单一交路㊁固定停站的列车开行方案已经不能满足乘客的出行需求,存在乘客平均等待时间较长㊁部分区间运力虚弥的现象,造成乘客满意度较低和部分运营资源浪费㊂因此,探索灵活编组㊁大小交路等运营组织模式,合理配置资源,设计与客流相匹配的列车开行方案,从而减少乘客等待时长,提高列车满载率,将有助于地铁企业取得更好的经济效益和社会效益,同时有利于推动城市轨道交通双碳发展战略㊂陈维亚等[1]从乘客㊁企业以及车站的候车人数比例方差之和3个方面建立目标函数,求解最小成本,并设计了智能算法进行模型求解㊂杨安安[2]以企业车辆使用成本㊁列车运营成本和乘客出行成本最小为目标,考虑跨线列车对线路通过能力的影响,以列车发车间隔㊁满载率㊁可用车辆数为约束,构建跨线运营模式下的运力配置模型㊂高毅[3]根据市域线的特点,对乘客和运营企业进行综合考虑,研究了快慢车和多交路结合运营方案㊂本文重点研究灵活编组时大小交路方案的优化,此研究能为城轨灵活编组列车大小交路运输组织工作提供一定的支撑和参考㊂1㊀问题描述㊀㊀如图1所示,某条城市轨道交通线路共N 个车站,下行方向为车站1到N ,上行反之㊂假设采用大小交路开行方案,大交路从车站1到N 往返运行,编组数目为B 2,发车频率为B 2;小交路从折返站x 到y 往返运行,编组数目为B 1,发车频率为F 1,且大小交路列车成比例开行㊂在Q 1区段,乘客可以乘坐大交路和小交路两种列车,在Q 2区段,乘客只能乘坐大交路列车㊂本文以某城市轨道交通线路高峰时段为研究对象,已知相关客流数据及设备设施参数,在大小交路㊁灵活编组㊁站站停车形式下,在满足乘客需求㊁现有车底数㊁线路通过能力㊁断面满载率㊁编组数目㊁发车频率等约束下,确定该时段是否需要开行大小交路以及大小交路列车发车频率㊁开行大小交路时小交路折返站的位置和大小交路列车编组数目,使乘客出行成本㊁企业运营成本的综合目标最小,依据此来设定目标函数㊂2㊀模型㊀㊀基本假设:(1)列车上行和下行开行数量一致,列车到每个㊀㊀图1㊀城市轨道交通线路车站均需停车㊂(2)假定只有大小交路,不设置其他交路形式,且大小交路列车独立运用车底㊂(3)假设站台候车的所有乘客在列车到站后都能够上车,而且乘客的时间价值相同㊂(4)小交路列车折返时对大交路列车运行不产生影响㊂(5)两个相邻车站上下行站间距㊁区间运行时分均相同,大小交路列车在每个站的上下行方向停站时间相同㊂(6)不考虑编组解体而产生的附加费用㊂2.1㊀参数定义㊀㊀(1)i ,j ,m 车站索引,i ,j ,m ɪ{1,2, ,N };(2)x ,y 下行起始站㊁终点站折返站索引,x <y ;(3)e (m ,m +1) 区间索引,表示相邻两个车站的区间或断面;(4)c 上下行索引,c ɪ(1,2),1表示下行,2表示上行;(5)h 大小交路,h ɪ(1,2),1表示小交路,2表示大交路;(6)O ij 该小时从第i 车站上车到第j 车站下车的客流量,单位:人次;(7)L m ,m +1 第m 车站中心到第m +1车站中心的站间距,单位:km;(8)T m ,m +1 区间e (m ,m +1)的列车运行时分,单位:s;(9)l zf m 第m 车站中心到折返线终点的长度,单位:km;(10)S m 第m 站停站时分,单位:s;(11)t zf m第m 站列车折返时间,单位:s;(12)U 一辆车的定员;(13)β 一列车满载率;(14)B max 现有列车的编组数目;(15)T 周h 交路h 周转时间㊂2.2㊀变量定义㊀㊀(1)F 1㊁F 2 小㊁大交路的列车开行频率,单位:对/h;(2)B 1㊁B 2 小㊁大交路列车编组辆数,单位:辆;(3)x ㊁y 小交路的起始㊁终到折返站㊂2.3㊀目标函数㊀㊀目标函数考虑用乘客等待时间来表示乘客出行成本,用车辆总走行公里数来表示企业运营成本㊂2.3.1㊀乘客等待时间㊀㊀当列车行车间隔小于10min 时,可以用发车间隔的一半来表示整体客流的平均候车时间[4]㊂T x =12ˑ60F 1+F 2ˑðy -1i =x ðyj =x +1O ij +12ˑ60F 2ˑðN -1i =1ðNj =2Oij-ðy -1i =x ðyj =x +1O ij (),i <j (1)T s =12ˑ60F 1+F 2ˑðyi =x +1ðy -1j =xO ij +12ˑ60F 2ˑðNi =2ðN -1j =1Oij-ðyi =x +1ðy -1j =xO ij (),i >j(2)min Z 1=T s +T x (3)式(1)是下行乘客总等待时间(min),式(2)是上行乘客总等待时间(min),式(3)是乘客总等待时间(min)㊂2.3.2㊀车辆总走行公里数最小㊀㊀min Z 2=B 2ˑF 2ˑ2ˑðN -1m =1L m ,m +11000+l zf1+l zfN()+B 1ˑF 1ˑ2ˑðy -1m =xL m ,m +11000+l zf x +l zfy()(4)将两个目标加以权重系数转化为单目标:min Z =min(λ1Z 1+λ2Z 2)(5)式中,λ1为Z 1的权重系数;λ2为Z 2的权重系数㊂根据世界银行给出的推荐值,非工作出行单位小时价值为人均小时工资收入的0.3倍[5],故取0.3倍的人均工作小时工资收入作为单位候车时间成本㊂λ1=0.3ˑGDPR ˑT(6)式中,GDP 为研究城市的国民生产总值,万元;R 为研究城市的年均就业人口数,万人;T 为研究城市的人均年工作时间,h㊂2.4㊀约束条件㊀㊀式(7)~(11)是发车频率的限制,式(13)~(14)表示该时段的运输能力能够满足各断面客流的需求,式(12)是各断面客流的计算方法;式(15)是满载率满足条件限制,式(16)是列车编组数目限制,式(17)是小交路折返站的约束,式(18)是可用车底数约束㊂ð2h =1F h ɤ30(7)F 2ɤ3600min{t zf1,t zf N }(8)F 1ɤ3600min{t zf x ,t zfy }(9)F h ɪN +,h =1,2(10)σ=F 1F 2,σɪN +(11)D e (m ,m +1),c=ðm i =1ðN j =m +1O ij ,c =1,i <j ðN i =m +1ðmj =1O ij ,c =2,i >j ìîíïïïï(12)max{D e (m ,m +1),c ,1ɤm ɤx -1ɣy ɤm ɤN -1,c =1,2}ɤF 2ˑU ˑB 2ˑβmax (13)max{D e (m ,m +1),c ,m ɤN -1,c =1,2}ɤð2h =1F h ˑU ˑB h ˑβmax(14)0ɤβɤ1(15)1ɤB h ɤB max (16)1ɤx ɤy ɤN (17)ð2h =1’T 周hˑF h ˑB h 60⌉ɤ’0.75ˑN 车底ˑB max ⌉(18)3㊀案例分析3.1㊀基本参数㊀㊀某线路自东向西共26个车站,25个区间㊂可以实现自动折返的车站有:{1,7,14,21,23,26},各车站站间距L 1,2 L 25,26={1.064,1.316,1.174,3.607,1.403,1.404,1.030,1.195,1.622,1.285,2.345,0.810,1.270,1.441,1.146,0.898,0.876,0.984,1.267,0.862,1.083,1.156,1.337,1.220,1.290}(km),各车站中心到折返线终点的长度均约为0.4km,各区间运行时分T 1,2 T 25,26={91,101,100,221,108,105,89,95,122,102,165,77,102,107,95,80,84,85,105,80,91,94,103,95,102}(s),各车站的停站时间S 1 S 26={45,40,40,35,35,35,45,30,35,40,40,35,40,40,40,40,40,45,40,40,55,35,40,35,35,45}(s),如果小交路的起点和终点车站现在没有折返线,则需要重新铺设折返线,这样造价非常高㊂所以本文规定:目前不具备折返线的车站,其折返时间设置成ɕ,具备折返线的车站,其折返时间均为120s㊂该线路目前采用A 型车,为了充分利用现有资源,节省成本,本文假定仍采用现有的A 型车,其定员是310人,车底保有量是36列,现有列车编组数目是6㊂早高峰8:00 9:00的部分客流分布如表1所示㊂表1㊀部分OD 数据车站1617181920211604522328641719041014161811075031527194911743317204612111233232166387352348198㊀㊀该市2022年人均GDP 为89000元,人均年工作时间为2091h,将其带入式(6),计算得λ1=0.21元/min,单车运营成本为48元/km [6]㊂则目标函数确定为:min Z =min(0.21Z 1+48Z 2)(19)3.2㊀结果分析㊀㊀将相关参数数据带入模型,用Python 软件求解㊂计算结果为:B 1=2,B 2=1,F 1=16,F 2=8,x =7,y =26㊂优化后的与现有的开行方案的评价指标对比如表2所示㊂经计算,该时段优化后的开行方案乘客总等待时间是35760min,现有的开行方案乘客总等待时间是68782.5min,减少了33022.5min,减少了48.01%;该时段优化后的开行方案车辆走行公里数是4162.824km,现有的开行方案车辆走行公里数是2073.088km,减少了2074.088km,减少了㊀㊀㊀㊀㊀㊀表2㊀不同交路方案评价指标对比评价指标现有开行方案优化开行方案列车编组发车频率/(对/h)列车编组发车频率/(对/h)乘客总等待时间/min 车辆走行公里数/km 大交路661868782.54162.824小交路66216357602073.088变化量33022.52074.088变化率/%48.0149.8249.82%㊂说明优化的列车开行方案不管是乘客出行成本还是企业运营成本都大大降低了,不仅可以提升乘客服务水平,还能有效降低城市轨道交通公司的运营成本㊂4 结语㊀㊀本文以某条城市轨道交通线路高峰期为研究对象,综合考虑乘客和企业的利益,建立了列车开行方案优化模型㊂将客流OD 分布表及相关参数输入模型,可以计算出当前条件下的最优列车开行方案㊂本文以某条地铁线路为例,将优化的开行方案与现有的开行方案进行对比㊂结果表明优化后的方案目标函数更小,综合成本更低,验证了模型的可行性与正确性㊂参考文献[1]陈维亚,章雍,陈鑫,等.城市轨道交通大小交路开行方案与多站联合限流协同优化研究[J ].通运输系统工程与信息,2019(5):177-184.[2]杨安安.多运营方式下城市轨道交通开行方案研究[D ].北京:北京工业大学,2019.[3]高毅.市域线快慢车结合多交路开行方案研究[D ].北京:北京交通大学,2016.[4]王媛媛,倪少权.城市轨道交通大小交路模式列车开行方案的优化[J ].铁道学报,2013(7):1-8.[5]廖定芳.城市轨道交通大小交路开行方案设计研究[D ].西安:长安大学,2019.[6]张宇石,陈旭梅,于雷,等.基于换乘站点的轨道交通与常规公交运营协调模型研究[J ].铁道学报,2009(3):11-19.(编辑㊀王雪芬)Optimization of urban rail transit routing based on flexible organizationAn Fei 1 Liu Yaping 1 Chang Xiujuan 2∗ He Bin 1 Li Xin 1 Bu Dongyi 11.Hebei Transportation Vocational and Technical College Shijiazhuang 050035 China2.Hebei Rail Transportation Vocational and Technical College Shijiazhuang 052165 ChinaAbstract With the rapid development of urban rail transit the uneven distribution of passenger flow in time and space is becoming increasingly evident.The fixed train operation plan is no longer applicable to current urban rail transit and existing train operation plans in various cities have the phenomenon of long waiting times for passengers and insufficient transportation capacity in some sections.This article takes the transportation organization mode of flexible marshalling trains in urban rail transit as the research object taking into account the cost of passenger travel time and enterprise operation costs.The starting and ending points of the large and small routes the departure frequency of the large and small routes and the number of formations are taken as decision variables and constraints such as departure frequency line capacity number of formations full load rate and vehicle ownership are comprehensively considered Establish an optimization model for the operation plan of flexible marshalling train routing with different sizes.And validate the feasibility of the model with a certain line and use Python to solve the optimal train operation pare the optimized train operation plan with the existing train operation plan to demonstrate its advantages.Key words passenger flow flexible grouping large and small routing train operation plan optimization model。

低效工业用地 书籍英语

低效工业用地 书籍英语

低效工业用地书籍英语Brownfields Redevelopment: Transforming Blighted Industrial Land into Vibrant Assets.Introduction:The proliferation of underutilized and contaminated industrial sites, known as brownfields, poses significant challenges to communities worldwide. These sites often lie dormant due to environmental concerns, economic disinvestment, or a lack of viable redevelopment options. However, brownfield redevelopment holds immense potential to revitalize urban areas, create economic opportunities, and improve public health.Defining Brownfields:Brownfields are defined as abandoned, idled, or underused industrial and commercial properties where past activities have resulted in environmental contamination orthe potential for contamination. These sites may have been used for manufacturing, mining, transportation, or other industrial purposes that have left behind hazardous substances or pollutants.Challenges of Brownfield Redevelopment:Redeveloping brownfields presents unique challenges compared to traditional development projects. These challenges include:Environmental Contamination: Brownfields often require extensive environmental cleanup to address soil, groundwater, or air contamination. This can be a costly and time-consuming process.Financial Barriers: The high cost of environmental cleanup and redevelopment can deter investors and make it difficult to secure financing for brownfield projects.Zoning Restrictions: Existing zoning may restrict the use of brownfields for certain types of development,limiting redevelopment options.Public Perception: The negative perception of brownfields as contaminated and dangerous can discourage investment and development.Benefits of Brownfield Redevelopment:Despite the challenges, redeveloping brownfields offers substantial benefits to communities:Economic Revitalization: Brownfield redevelopment can spur economic growth by creating jobs, attracting businesses, and increasing property values.Environmental Sustainability: Cleaning up contaminated sites protects public health and the environment, reducing the risk of further pollution.Community Enhancement: By transforming blighted areas into vibrant spaces, brownfield redevelopment improves the quality of life for residents and enhances communitycohesion.Infrastructure Optimization: Reusing existing infrastructure on brownfields reduces the need for new construction, conserving resources and saving costs.Strategies for Successful Brownfield Redevelopment:Comprehensive Planning: Developing a clear and comprehensive plan for brownfield redevelopment is crucial. This plan should outline goals, objectives, and strategies for cleanup, redevelopment, and sustainability.Public Engagement: Engaging stakeholders, including residents, businesses, and environmental groups, in the redevelopment process is essential to address concerns and build support.Financial Incentives: Offering tax credits, grants, and other financial incentives can encourage investment in brownfield redevelopment.Environmental Cleanup: Conducting thorough environmental cleanup to address contamination is paramount for the health and safety of the community and future users of the site.Zoning Flexibility: Amending zoning regulations to permit appropriate redevelopment options for brownfields is crucial to facilitate successful reuse.Case Studies:Riverfront Park, Chicago, Illinois: This 20-acre brownfield on the Chicago River was transformed into a vibrant urban park with walking trails, playgrounds, and a boathouse. The redevelopment utilized sustainable design principles and restored the riverfront ecosystem.Brooklyn Navy Yard, New York: This historic 300-acre brownfield has been redeveloped into a thriving commercial and industrial complex. The redevelopment preservedhistoric buildings, created new jobs, and stimulated economic growth in the surrounding neighborhood.Belle Isle, Detroit, Michigan: This 982-acre former industrial island in the Detroit River has been converted into a popular park and recreation area. The redevelopment included extensive environmental cleanup and the restoration of historic structures.Conclusion:Brownfield redevelopment is a complex but transformative undertaking that presents both challenges and opportunities. By addressing the challenges and leveraging the benefits, communities can unlock the potential of these blighted sites and create vibrant, sustainable, and economically prosperous spaces. Through careful planning, stakeholder engagement, financial incentives, and innovative approaches, brownfield redevelopment can revitalize urban areas, improve public health, and foster economic growth. As our industrial landscapes evolve, it becomes imperative to reclaim these brownfields, breathing new life into abandoned spaces andcreating a more sustainable and resilient future for our communities.。

城市轨道交通车辆牵引系统黏着控制优化方法及其应用

1SH2020年城市#$%&'(牵*+0优2方4567用葛洪勇"刘承波#马法运"张佳波"(1.中车青岛四方车辆研究所有限公司,266111,青岛;2.中国铁路济南局集团有限公司青岛机车车辆监造项目部,266111,青岛//第一作者,高级工程师)摘要对列车发生空转或滑行的机理进行了详细分析!基于车辆黏着控制技术的研究应用现状"提出了一种消除空转或滑行与保持空转或滑行相结合的优化黏着控制方法!详细阐述了该控制方法的控制原理及实现方法"并进行了试验验证。

试验结果表明:该控制方法结构简单、易于实现"能够充分利用黏着,使转矩波动较小、列车运行平稳,能有效提高乘坐舒适度!关键词城市轨道交通;牵引系统;黏着控制中图分类号U260.11&5D01:10.16037//1007-869x.2020.08.019Optimization and Application of Adhesion Control for Urban Rail Vehicle Traction Sys-iemGE Hongyong,LIU Chengbo,MA Fayun, ZHANG JiaboAbstract In this paper,the mechanism of vehicle slip and slide is analyzed in detaii.Based on the research and applica­tion status of vehicle adhesion control technology,an optimal adhesion control method is proposed by combining the slip/ slide elimination with the slip/slide state maintenance.The principle and implementation of the controi method are de­scribed and verified through experiment.The results show that the structure of the controi method is simpi and easy to impi-ment,it can make ful i uss of adhesion,cducc the torque fluc­tuation,keep the train running smoothly,and thus improving the ride comfort effectively.Key words urban raii tansit;traction system;adhesion con-troFFirrt-author@s addrrss CRRC Qingdao Sifang Rolling Stock Research Institutr Co.,Ltd.,266111,Qingdao,China城市轨道交通线路地面段多为露天铺设,当遇到雨雪霜雾等恶劣天气时,列车极易发生空转或滑行现象,若不能及时调节,则将引起轮轨剧烈摩擦,造成轮对及轨面的,发生,对造成的&,城市轨道交通车辆牵引技术国产化的进程中,黏着利用、防空转或滑行控制术是不的技术&目前,研究的黏着控制方法有组台、蠕滑、黏着及等[1]&现方及工程化等,及生方法为主&传统方有空转或滑行方,及空转或滑行方法[23)&当空转或滑行方法时,转,黏着利高,;当空转或滑行方时,空转或滑行进行调节,但转,黏着利&本文详细分析黏着机理,并针对上述方法的优,一空转或滑行空转或滑行的方法,不空转或滑行;及时动作,转、黏着利用高&1黏着机理列车的引的通轮轨间的黏着作成的&在轨面一定的1下,黏着系数“与轮轨之间的蠕滑有着对应的关系&轮轨黏着通常解为轮轨的摩擦&当引电机通过齿轮箱将转矩!作用在车辆轮对时,由于黏着作用,在钢轨和轮对的接触点处产生水平方向的切向力",从而使车轮滚动前进&此时的车轮受力如图1所示&轮轨间能传递的最大水平切向力"ma垂向黏着重力#的比值为轮轨最大黏着系数!ma⑷:$(1)-80-其中,G=$为垂向黏着质量,%为重力加在动轮正压力的作用下,轮轨接触处会产生弹性变形,形成椭圆形的接触面。

改善现有公共交通或建设新的铁路线英语作文

Improving Existing Public Transportation and Constructing New Railway LinesIn today's fast-paced world, the need for efficient and reliable public transportation systems has become paramount. The growth of urban centers and the increasing congestionon roads have made it imperative to improve existing public transportation systems or construct new railway lines to cater to the demands of commuting. This essay explores the need for enhancing current public transportation systemsand building new railway lines, discussing their benefits, challenges, and potential solutions.Improving existing public transportation systemsinvolves optimizing routes, increasing frequency of services, upgrading vehicles, and enhancing infrastructure. One effective way to achieve this is through theintegration of technology. For instance, the implementation of smart card systems can allow for easier ticketing and tracking of ridership, which in turn helps in planning and managing services more efficiently. Additionally, the useof data analytics can provide insights into ridershippatterns, enabling authorities to adjust services accordingly.Moreover, investing in clean and sustainable modes of transportation, such as electric buses and light rail systems, can reduce environmental pollution and improve air quality. This not only benefits the environment but also enhances the riding experience for commuters.On the other hand, constructing new railway lines can significantly reduce travel time and congestion, especially in densely populated areas. Railway systems offer areliable and cost-effective mode of transportation that can cater to the needs of both commuters and freight. However, the construction of new railway lines often faces challenges such as land acquisition, environmental impact, and cost.To overcome these challenges, it is crucial to involve all stakeholders, including government, private sector, and the community, in the planning and implementation process. Collaborative efforts can ensure that the projects are feasible, sustainable, and beneficial to all parties involved. Additionally, innovative financing models, suchas public-private partnerships, can help in mobilizing funds for these projects.In conclusion, improving existing public transportation and constructing new railway lines are crucial for addressing the transportation challenges faced by urban centers. By leveraging technology, investing in clean and sustainable modes of transportation, and involving all stakeholders, we can create efficient and reliable public transportation systems that cater to the needs of commuters and contribute to the overall development of our cities.**改善现有公共交通与建设新铁路线**在当今快节奏的社会中,高效可靠的公共交通系统变得至关重要。

列车自动驾驶(ATO)季节性调节方案探讨

列车自动驾驶(ATO)季节性调节方案探讨张 帆(卡斯柯信号有限公司,北京 100070)摘要:A T O目前已广泛应用到地铁列车的车载信号系统,提高地铁列车的运行效率,而列车的制动性能对ATO控制精准停车有比较大的影响。

列车制动性能,特别是气制动性能可能存在一定的不稳定性,对ATO发出制动指令的响应会出现较大的偏差,其中一个较重要因素就是季节以及气温的影响。

探讨针对列车制动季节性变化进行相应的优化、增加自动驾驶系统的自适应能力的方法。

结合制动性能变化,对每一个制动变化时段做出单独的制动驾驶控制策略组,在相应的时间段(或其他设定条件)自动切换、调节,使在不同的列车制动性能下,自动驾驶系统均能实现精准停靠站台,提高乘客上下车效率。

关键词:AT0;ATO控车方案;ATO停车精度季节性变化中图分类号:U231+.7 文献标志码:A 文章编号:1673-4440(2024)01-0087-05 Discussion on Seasonal Regulation Scheme of Automatic Train OperationZhang Fan(CASCO Signal Ltd., Beijing 100070, China)Abstract: Automatic Train Operation (ATO) has been widely applied to the onboard signaling system of subway trains, which improves the operation effi ciency of subway trains. The braking performance of the train has a greater impact on the precise stop controlled by ATO. The train braking performance, especially the air braking performance, may be unstable to a certain extent, and the response to ATO's braking command may have a large deviation. One of the more important factors is the infl uence of season and temperature. This paper explores the method of optimizing the seasonal deviation of train braking and adding the adaptive ability of ATO system. In combination with the braking performance change of a certain line, a separate braking control strategy group is made for each braking change period, and switch and adjust is conducted automatically in the corresponding time period (or other setting conditions), so that under diff erent train braking performance, ATO system can achieve precise stopping at the platform and improve the effi ciency of passengers getting on and off .Keywords: ATO; control strategy by ATO; seasonal variation of ATO stopping accuracyDOI: 10.3969/j.issn.1673-4440.2024.01.016收稿日期:2022-12-23;修回日期:2023-12-04基金项目:卡斯柯信号有限公司工程项目(A5.AW115329)作者简介:张帆(1988—),男,工程师,本科,主要研究方向:ATC列车自动控制,邮箱:******************.cn。

交通管理类词汇英汉互译词汇

城市公共交通和汽车运输管理城市公共交通urban public transport公共交通方式public transport mode城市公共交通系统urban public transport system大运量客运系统mass transit system快速轨道交通rail rapid transit (RRT)地铁subway单轨运输系统monorail transit system垂直运输系统vertical transit system应急公共交通系统emergency pulbic transport system 公共交通优先public transport priority公共汽车优先通行系统bus priority sytem城市公共交通标志urban public transport sign公共交通工具public transport means公共交通线路public transport line公共交通线路设施public transport line facilities公共交通线路网public transport network公共交通车站public transport stop(station )公共交通停车场public transport parking place公共交通枢纽public transport junction城市公共交通规划urban public transport planning公共交通线路布局public transport network distribution 公共交通站场布局public transport yard and station arr angement城市公共交通客流预测urban public transport passenger fo w forecast城市公共交通客流调查urban public transport passenger fo w survey城市公共交通票价制urban public transport fare structure 城市公共交通运行调度urban public transport scheduling公共交通工具及设备public transportation means and devi ce公共汽车bus priority sytem小公共汽车minibus长途公共汽车long-distance bus旅游车touring bus单车single bus通道式公共汽车articulated bus双层公共汽车double-deck bus低地板式公共汽车low-floor bus出租汽车taxi无轨电车trolley bus通道式无轨电车articulated trolly bus有轨电车tram快速有轨电车light rail rapid transit car轨道车rail car车列car row列车train地下铁道列车subway train单轨车monorail car磁垫车magnetic levitated vehicle 行人传送带passenger belt车厢carriage客舱cabin车门service door安全门emergency exit车窗window车顶通风窗ventilator安全监视窗curb window地板floor踏板step车内通道passage铰接装置articulated equipment司机座椅driver seat乘务员座椅attendant seat乘客座椅passenger seat扶手handrail车厢顶灯roof light 门灯door light服务台service table废票箱invalidated ticket box路牌Iine number plate前路牌front number plate后路牌rear number plate侧路牌side number plate出租汽车标志taxi sign车厢空调设备air-conditioning equipment车用直流电度表vehicle D.C kilowatt-hour meter 车用扩音机vehicle microphone车用播音机vehicle broadcaster车用计费器taxi meter乘客计数器passenger counter自动售票器passimeter自动检票机automatic ticket checker集电装置power collector接地链grounding chanin车内净高interior height车厢通道宽度passage width车门开度door opening degree车厢地板高度floor height一级踏板高度first step height踏板级间高度step spacing座位间距seat spacing车厢站立面积standing area座位数seating capacity定员rated passenger capacity最大载客量maximum passenger capacity 运营管理operation management市区线路urban line郊区线路suburban line长途线路intercity line地面线路ground line地下线路underground line高峰线路peak-hour line昼夜线路day and night line夜间线路night line快车线路express line固定线路fixed line临时线路temporary line游览线路touring line环形线路loop line高架线路elevated line 干线artery支线branch折返线turn line正线main line站线siding段管线section line岔线branch line特别用途线special line单向行驶线段one-way section轨距gauge调度站control station调度中心control center中途调度站intermediate control office 起点站origin station终点站terminal中途站stop(station )始发站origin stop快车站express bus stop招呼站request stop定时车站timed stop换乘站transfer stop枢扭站junction station港湾式车站bus bay长途公共汽车站long distance bus sto出租汽车站taxi statio站名sto name站号stop number站牌stop board夜班车站牌night-bus stop board路别line number候车亭bus shelter售票厅waiting room检票口ticket entrance验票口ticket exit站台platform岛式站台island platform侧式站台side platform自动扶梯escalator换乘停车场park-and-ride place多层停车场parking lot牵引供电系统tractive power supply system 直流牵引变电站D.C traction substation馈线feeder馈线网feeder network 触线网trolly wire network供电方式power supply mode供电分区power supply zone供电臂supply arm分线器frog并线器trailing frog交叉器crossover客源passenger origin客流流向passenger flow direction客流passenger flow客流量passenger flow volume城市客流urban passenger flow市区客流city passenger flow郊区客流suburban passenger flow高峰时间peak time非高峰时间off-peak time早高峰morning peak晚高峰evenign peak高峰小时peak hour高峰主流向main flow during the peak period 乘客passenger普通乘客revenue passenger月票乘客commuter持证乘客passholder留候乘客remainder换乘乘客transfer passenger包车乘客passenger chartered违章乘客violated passenger调车idpatching vehicle线路车regular vehicle备用车reserved vehicle专线车special vehicle包车chartered vehicle行车方式running mode快车express bus慢车local bus直达车through vehicle区间车inter-zone vehicle跨线车trans-line bus高峰车vehicle during the peak period 加班车extra vehicle夜班车night bus昼夜车day and night vehicle出场车pull-over vehicle 回场车pull-in vehicle下线车off-line vehicle 首班车first -run vehicle 末班车final run vehicle 运行running正点on schedule正点率on schedule rate 早点running hot晚点behind schedule 压点decelerated run 赶点accelerated run 行车时刻表timetable运行图running chart票务ticket business 票价fare全程票价full fare计程票制metered fare分段票制sectional fare计时票制time fare system 单一票制flat fare票类fare ticket type 票价里程fare-kilometre车票ticket普通票cash fare月票monthly ticket市区月票city monthly ticket郊区月票suburban monthly ticket专线月票one-line monthly ticket学生月票student monthly ticket通用月票general monthly ticket公用月票service monthly ticket本票ticket book往返票round-trip ticket磁性月票magnetic tickeet代用币token废票invalid ticket查票ticket checking查票补票compensation fare罚票penalty fare车票有效期ticket validity time免费乘车zero fare汽车运输管理transportation management 运输系统transportation system 运输业transport service(carrying trade)汽车运输企业automobile transportation enterprise 运输网络transportation network网络单元network element建树法(网络分析法应用例)tree building method最优路线optimization of route汽车运输车辆vehicle of auto-transportation运输基地transportation base运行方案operation plan车辆完好率coefficient of availability of vehicle出车率coefficient of utilization of automobil e拖运率rate of utilization of trailer平均吨(客)位average tonnage (passenger seat) 车吨(客)位产量vehicle ton(seat )production运输量transportation volume运输里程transport mileage货物运输freight transportation集中运输centralized transportation分散运输decentralized transportation集装箱运输container transport联合运输inter-mode transport定时运输transportation on schedule整车运输transportation of truck-load零担运输sporadic freight transportation包车运输rent automobile transportation迂回运输round about transportation相向运输inter-transportation of freight in opp osite direction重复运输repeated transportation甩挂运输transportation with dumping trailers 旅客运输passenger transportation货物运输goods transportation市区运输city transposrtation郊区运输suburban transportatiojn区间运输inter-region transportatin长途运输long distance transportation干线汽车运输truck-road transportation货流flow of freight货流图freight flow diagram运次transportatin cycle车次(单程)trip(one way)运程段journey运程voyage周转circulation 载货行程loading mileage不载货行程no-loading mileage调空行程switching mileage货物周围量goods-circulating quantity吨公里利用系数coefficient of utilization of ton-kilome ters运输费用transportation cost装卸费用loading and unloading charge运费率freight rate运费表freight tariff运费单freight bill(freight notes)路单route-list货卡card of goods计件货物packing goods散装货物bulk goods普通货物common goods长型货物long goods轻泡货物light cargo过境货物transit goods货物发送点dispatch point for goods货物接收点receiving point for goods。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档