【输电杆塔及基础设计】杆塔基本尺寸
第八章杆塔结构设计基础

第八章杆塔结构设计基础第一节杆塔结构型式及外形尺寸一、杆塔的型式及分类架空线路使用的杆塔按使用材料分为钢筋混凝土电杆和铁塔;按受力特点和用途分为直线杆塔、耐张杆塔、转角杆塔和终端杆塔。
直线杆用于线路的直线段上,线路正常运行时有垂直荷载及水平荷载,能支持断线或其它顺线路方向的张力。
在顺线路方向的张力作用下,直线杆塔的悬垂绝缘子允许偏斜,杆塔也允许有一定的挠度。
耐张杆塔除承受垂直荷载及水平荷载之外,还能承受更大的顺线路方向的张力,如支持断线时的张力或施工紧线时的张力。
耐张杆塔使用耐张绝缘子串,在断线时能耐受断线张力,限制断线事故范围,起隔离事故的作用。
直线杆塔和耐张杆塔,一般均用于线路的直线段上,不兼转角.但在特殊情况下需要兼转角时,其转角度数对直线杆塔不应超过3°,耐张杆塔不应超过5°,否则应按转角杆塔设计。
转角杆塔用于线路转角处,其受力特点与耐张杆塔相同,但其水平荷载包括角度合力,所以水平荷载值较大。
终端杆塔用于线路首末端,可以是耐张型或转角型的,受力特点与耐张或转角杆塔相同,但在正常运行情况下需承受单侧顺线路张力.图8—1 35kV等径拉线单杆图8—2 110kV等径拉线单杆图8—3 35kV拔梢单杆图8—4 110kV拔梢单杆 8-5 110kV A型直线杆图8-6 110kV 门型直线杆1.常用直线杆的杆型.35~110kV线路,广泛使用带拉线的和不带拉线的上字型钢筋混凝土单杆,有的地区还采用A型钢筋混凝土电杆。
212带拉线的直线杆,一般采用φ300mm等径钢筋混凝土杆段,杆的基础采用浅埋式,杆型如图8-1、图8—2所示.在雷电活动强烈的南方地区使用时,可在上横担反侧加装对称的耦合地线横担和吊杆,如图8—2虚线所示,以便悬挂耦合地线,提高电杆的耐雷水平。
不打拉线的直线单杆,常用梢径φ190 ~φ230mm的拔梢钢筋混凝土电杆,杆型如图8—3、图8-4所示.由于不带拉线,电杆的基础采用深埋式,抗风能力和杆高的利用比拉线单杆差,故使用档距较小。
输电杆塔设计

1、杆塔的各种类型、结构特点以及优缺点 和选用原则; 2、杆塔的荷载分析计算
输电杆塔及基础设计 第三页,共31页。
3、杆塔尺寸确定和验算 4、杆塔的强度校核
5、杆塔基础的设计计算和稳定计算
三、先修课程
材料力学 钢结构
钢筋砼
架空输电线路设计
土力学
四、成绩评定?
平时成绩30分. 考试成绩70分.
产生纵向不平衡张力,或者承受因施工、检修时用
以锚固导线和避雷线引起的荷载的杆塔)称耐张型
杆塔。
特点: (1)除具有直线型杆塔承受荷载能力外,还要承受纵向 水平荷载。 (2)采用耐张绝缘子串
输电杆塔及基础设计 第二十七页,共31页。
(3)在发生事故断线时,导线悬挂点不产生位移。以 限制事故断线影响范围(见图1)。
输电杆塔及基础设计 第三十页,共31页。
4.终端杆塔 用于发电厂及变电所的第一座杆塔。终端杆塔用来承 受杆塔一侧的导线拉力。终端杆塔必须是耐张型杆塔。
输电杆塔及基础设计 第三十一页,共31页。
(2)可以设计较高的杆塔,以满足跨越人行道、树木的要求; (3)易实现多回路,从而大大减少城市走廊的拥挤对输电 线路的限制; (4)不用打拉线,占地面积小,减少占用城市走廊; (5)钢管杆可以实现全镀锌,使用寿命长;
(6)造型美观,利于城镇规划和建设,美化环境;
(7)多边形截面钢管杆采用套接方式,安装方便。
输电杆塔及基础设计 第六页,共31页。
缺点:自重大,运输不方便 又可分为:
(1)普通钢筋混凝土电杆 (2)预应力混凝土电杆:预应力混凝土电杆具有节约钢 材、自重轻、抗裂性好等优点,它将取代普通钢筋混凝土电 杆。
(3)薄壁钢管混凝土电杆(简称钢管混凝土电杆)
输电杆塔及基础设计

输电杆塔及基础设计随着电气设备的普及和城市化进程的加速,越来越多的电力输电线路需要建设。
因此,输电杆塔的设计成为了一项十分重要的工程项目,它关系到整个电力工程的安全可靠性。
本文将从输电杆塔及基础设计的角度出发,详细介绍输电杆塔的设计过程、设计要点和设计流程。
一、设计过程设计输电杆塔的过程是一个复杂的系统工程,需要结合选址、材料、制造、运输、安装等多方面因素,完成电力工程的目标。
其主要分为以下几个阶段:1、需求分析需求分析是设计输电杆塔的第一步。
在需求分析的过程中,需要将客户的需求和电力工程的技术要求进行整合分析,并确定产生设计的根本基础。
这一步非常重要,因为整个设计的方向和目标都将从这里开始确定。
2、设计方案制定依据需求分析所得的结果,确定输电杆塔的功能、特点、结构,设计出合理的方案,并进行若干方案比较,确定最佳的设计方案。
3、材料选用由于输电杆塔需要承受较大的风、雨、火等外力,所以材料的选择必须充分考虑材料的强度、抗腐蚀性等因素。
常用的材料有钢、混凝土等。
4、制造与加工制造与加工是设计过程中的一个非常重要的环节。
这个环节的主要目的是根据设计方案制造出质量稳定、可靠耐用的输电杆塔。
5、运输输电杆塔通常是由运输车辆运送到工程现场。
因此,运输过程必须充分考虑安全和稳定性,保证输电杆塔到达现场时不会损坏或变形。
6、安装输电杆塔的安装是一个非常关键的步骤,需要注意保证安全、稳定和可靠性。
需要按照设计方案固定杆塔,将配件正确安装在杆塔上,并对输电线路进行必要的检测和测试。
二、设计要点设计输电杆塔时,需要充分考虑以下要点,以确保输电杆塔在使用过程中能够正常工作。
1、结构设计输电杆塔需要在承受外部力的情况下,保持结构的稳定性和安全性。
因此,在设计中需要合理设置杆塔的支撑点和配重点,并根据输电线路的需求,设计合理的杆塔结构。
2、设计荷载输电杆塔需要承受如风、雨、火等自然因素的力量,因此在设计中,需要考虑实际情况下的荷载。
输电杆塔及基础设计第三章杆塔选型及校验

、fmax=H--hx-h 联立求LJ
式中 导线最大弧垂时的应力; r导线最大弧垂时的比载; HJ-经济呼称高度。
第二节 导线间距离计算
一、单回路两相导线水平排列线间距的确定 1000m以下的档距可按下式计算
DmKi1U100.65fmax(见图1)
式中 Dm导线水平线间距,m; Ki-悬垂绝缘子串系数(I-I、I-V取0.4, V-V取0) 悬垂绝缘子串长度,m; U线路电压等级,kV; fmax导线最大弧垂,m。
输电杆塔及基础设计
主讲:陈祥和 电话:13972603361
影响总高的因素: (1)档距:档距↑,弧埀↑,呼称高度↑, 总高↑。 (2)地理条件:影响导线对地面的垂直距离( 跨越物) (3)电压等级: (4)气象:温度(高温,弧埀大),冰(重冰 弧埀大)。 (5)电气条件;各种电气安全距离。
五、要求: 要满足各种运行条件(电气要求) 结构的合理性 经济性好 外形的美观。
第六节 杆塔校验
一、塔型选用
1、已知条件 (1)设计条件
电压等级 导线规格 气象条件 理地条件 回路数
(2)计算条件 根据杆塔定位得到的呼称高度
2、选择杆塔
(1)根据已知设计条件先选择相应模块, (2)根据呼称高度在本模块中选择杆塔 (3)列出杆塔的使用参数
二、杆塔呼称高度
杆塔下横担的下弦边缘线到地面的垂直距离H
称为杆塔呼称高度(见图) H=+fmax+hx+h
式中 λ绝缘子串的长度(包括金具的长 度);
fmax导线的最大弧垂; hx导线到地面、水面及被跨越物的安
全距离(查《线路设计规范》;
h考虑测量、施工误差等所预留宽度。
1.悬垂绝缘子串长度的确定 由电压等级、污秽级别确定;
输电线路杆塔设计

三峡大学电气与新能源学院输电线路35KV电杆设计说明书学期:专业:输电线路工程课程名称:输电杆塔及基础设计班级学号:姓名:指导老师:文中《输电线路杆塔设计》课程设计一、设计题目:35KV门型直线电杆设计(自立式带叉梁)二、设计参数:电压等级:35kV避雷线型号:GJ一35电杆锥度:1/75电杆根部埋深:3m顶径:270mm气象条件:Ⅳ级绝缘子:7片×一4.5地质条件:粘土,γs=16 kN/m3,α=20°,β=30°,三、设计成果要求:1.设计说明书一份(1.5万字,含设计说明书插图)2.图纸若干(1)电杆尺寸布置图(2)电气间隙效验图(2)正常运行情况下的抵抗弯矩图(3)事故时的弯矩图目录一、整理设计用相关数据 (1)1 任务书参数 (1)2 气象条件列表 (1)3 导线LGJ-150/35相关参数表 (1)4 导线比载计算 (1)5 地线相关参数 (3)6 地线比载计算 (3)7 绝缘子串和金选择 (3)8 地质条件 (4)9 杆塔结构及材料 (4)二、电杆外形尺寸的确定 (4)1 杆的呼称高度 (4)2 导线水平距离 (5)3 间隙圆校验 (5)4 地线支架高度确定 (6)5 杆塔总高度 (7)三、杆塔荷载计算 (7)1 标准荷载 (7)2 设计荷载 (9)四、电杆杆柱的强度验算及配筋计算 (11)1 配筋计算 (11)2 主杆弯矩计算 (11)3 事故情况下的弯矩计算 (12)4 裂缝计算 (13)5 单吊点起吊受力计算 (13)五、基础设计 (14)1 土壤特性 (14)2 抗压承载力计算 (15)3 底盘强度计算 (15)八、参考文献 (16)九、附图附图1尺寸布置图 (17)附图2间隙圆校验图 (18)附图3正常运行最大风情况下的抵抗弯矩图 (19)附图4事故时弯矩图 (20)m MPa /1087.65310)75.117512.36()0,5(333--⨯=⨯+=γ)/(1012.5361062.1810665.89.267610)0,0(3331m MPa Aqg ---⨯=⨯⨯=⨯=γ)/(1075.117102.6181)5.517(5728.27)0,5(332m MPa --⨯=⨯+⨯=γ)/(10625.0),0(324m MPa Av d v sc f -⨯=μαγmMpa /1024.66102.618110.5171.10.1625.0)10,0(3324--⨯=⨯⨯⨯⨯⨯=γm Mpa /1079.111102.618115.5171.175.0625.0)15,0(3324--⨯=⨯⨯⨯⨯⨯=γ一、 整理设计用相关数据1、任务书所给参数:2、 气象条件列表:3、 根据任务书提供导线LGJ-150/35的参数,(参考书二)整理后列下表:4、 计算导线的比载: (1)导线的自重比载:(2)冰重比载:(3)垂直总比载:(4) 无冰风压比载:假设风向垂直于线路方向0.1v 110;190sin ,90==︒==c K βθθ线路可以得出下式:1) 外过电压,安装有风:v=10m/s, f α=1.0,sc μ=1.12) 内过电压 v=15m/s, f α=0.75,sc μ=1.1m Mpa /102.19351062.18125.5171.185.0625.0)25,0(3324--⨯=⨯⨯⨯⨯⨯=γm Mpa /1056.225102.618125.5171.161.0625.0)25,0(3324--⨯=⨯⨯⨯⨯⨯=γm Mpa /1056.311102.618110)52.517(2.10.1625.0)10,5(3325--⨯=⨯⨯⨯+⨯⨯⨯=γ3) 最大风速 v=25m/s,设计强度时,f α=0.85,sc μ=1.14)最大风速 v=25m/s,计算风偏时,f α=0.61,sc μ=1.1(5)覆冰风压比载计算: v=10m/s,计算强度和强度时,f α=1.0,sc μ=1.2 (6)无冰综合比载1) 外过电压,安装有风:m Mpa v /10108.3710624.6512.3600,0)10,0(332224216--⨯=⨯+=+=),()(γγγ 2) 内过电压 :m Mpa /1015.8381079.111512.36)15,0(33226--⨯=⨯+=γ3) 最大风速计算强度时:m Mpa /10711.501092.135512.36)25,0(33226--⨯=⨯+=γ4)最大风速计算风偏时:m Mpa /1096.3441056.225512.36)25,0(33226--⨯=⨯+=γ(7)覆冰综合比载:m Mpa /1075.8541056.31187.65310,50,5)10,5(332225237--⨯=⨯+=+=)()(γγγ 将有用比载计算结果列表:表 4 - 2 单位:5、计算比值0/σγ,将计算的结果列入下表:由于最大风速和覆冰有风比载和气温都相同,故比载小的不起控制作用。
输电线路基础杆塔受力分析特杆塔外形尺寸确定

第18页/共34页
表4-2-5 相邻的上下层导线或导线与避雷线之间的最小水平偏移 单位:m
电压等级(kV)
35
66
110
220
330
500
750
设计冰厚
10mm
0.20
0.35
0.50
1.00
1.50
1.75
2.0
设计冰厚 15mm
0.35‘
0.50
0.70
1.50
2.00
2.50
3.0
➢设计冰厚5mm的地区,上下层导线之间和导线与避雷线之间的水平偏移,可以根据运行 经验适当减小。
Ds
Dh2
4 3
DV
2
式中 Dh、Dv,——导线间距离的水平投影和垂直投影。
5、多回路杆塔的线间距离
(4-2-5)
➢对于多回路线路杆塔,不同回路导线间的闪络将影响两个以上回路的供电安全。
➢规程规定:多回路杆塔上不同回路的导线之间的距离(水平距离和垂直距离),应较式(42-3)和式(4-2-4)计算的线距增大0.5m,且不应小于表4-2-6所列数值。
➢杆塔定位档距增大,则每公里杆塔基数减少,但杆塔的呼称高增高;杆塔定位档距减小, 杆塔的呼称高降低,但每公里杆塔基数增多。
➢如果用每公里线路造价来衡量线路的经济情况,一定存在某一档距,使线路造价最为经 济。这样的档距称为经济档距,对应的呼称高称为经济呼称高。
第7页/共34页
目前,35kV~220kV线路已有定型设计的杆塔,工程中按照电压等级,选取经济呼称高, 按式(4-2-1)反推最大弧垂fm为
fm H h h
➢根据所选用导线和弧垂公式
,算fm 出 杆g8l 2高允许档距[L]H,在杆塔排位时,尽可能
【输电杆塔设计培训】07、第七章 铁塔结构
坡度小:与上相反 2、斜材、辅助材:保证铁塔主柱的几何不变 性,和杆件的稳定性及减少构件的长细比 斜材的布置有:单斜材、叉型(双)斜材和K型
斜材。 3、横隔材:用于铁塔分段 4、节点:
斜材与主材的连接或斜材与辅助材连接的 连结处称为节点,各杆件纵向中心线的交点称为 节点中心,相邻两节间的杆件部分称为节间。两 节点中心间的距离称节间长度
4、猫头型铁塔多用于导线要求三角形布置的强 度较高的杆塔。
5、地基承载能力较差及基础施工条件较差的地 区一般采用根开较大或者宽基铁塔。
输电杆塔及基础设计
第七章 铁塔的型式及结构布置
铁塔优缺点:
优点:强度高、重量轻、制造简单等优点,
缺点:维护费用高和造价高等缺点,因此受
一定限制。
第一节 铁塔的分类
一、按根开分
根开b与高度h之比,分为宽基与窄基铁塔
宽基型铁塔
耐张型1/4~l/5
∑P
直线型1/6~1/8;
优点:宽基型铁塔由于底座宽,因此 h
对主材、斜材和基础的作用力
较小(如图N=∑Ph/b)
b
N
N
缺点:但主材间相隔太宽,使斜材与辅助材的布 置复杂。
窄基型铁塔。 1/12~1/14 (b/h) 。
优缺点与宽基相反 选用原则: 宽基铁塔:宽基铁塔相对可以减轻塔身荷载和基 础受力,这对基础土方开挖量大且运输不方便的山 区,地耐力较差的地区较适用。 窄基塔塔:窄基塔塔与宽基铁塔相比,结构较简 单,重量较轻,对线路通过人口稠密的狭窄地段, 窄基铁塔尤为适宜。窄基铁塔为整体基础,需混凝土用量较大。
(2)按头部型式分 单回路: 上字型、猫头型、“干”字型(如图)
特点:导线呈三角形排列 酒杯型、门型(如图)
输电杆塔及基础设计
受压基础可取基础边缘处最大地基土单位面积净反
力。
冲切承载力应满足以下公式:
Vc 0.7np ftbmh0
式中
np -受冲切承载力截面高度影响系数,
当h≤800mm时,取1.0; 当h≥2000mm时,取0.9,其间按线性内插法取用;
ft -混凝土抗拉强度设计值;
bm-冲切破坏锥体最不利一侧计算边长, 用下式计算
Asy
H xh1 nyex f y
②当有纵向水平力Hy作用时,与x轴平行的 单根钢筋截面面积为:
Asx
H yh1 nxey f y
③当有Hx与Hy同时作用时,四个角落处单 根钢筋截面为
Asy
1 ( Hxh1 H yh1 ) f y nyex nxey
(2)底板的配筋
当为刚性基础时,底板不需配筋
式中 A—带阴影线的梯形面积,
a1—梯形短边长,一般 和电杆腿直径相近, 即按电杆直径折算
A
1 4
(a2
a12 )
a1
D2
4
e—梯形面积形心点至计算截面Ⅰ-Ⅰ的距离
e 1 (a a1)(2a a1)
6
a a1
2.作用在在底盘上弯矩
将A 、 q、e代入上式得
M
q 24
b2a 6
(2)下压稳定验算
} P≤fa/γrf
Pmax=σmax≤1.2fa/γrf
同时满足
式中 γrf—地基承载力调整系数,取γrf =0.75。
fa—修正后的地形时
(ex
a) 6
公式略
工程中设计受压基础时,一般不宜出现压应 力呈三角形分布,除非基础底宽受到限制时才采 用。
输电线路设计—杆塔设计
➢ 1、杆塔型式 ➢ 2、杆塔荷载 ➢ 3、杆塔材料与构件形式 ➢ 4、铁塔的基本计算方法 介绍 ➢ 5、铁塔的变形 ➢ 6、铁塔图纸识图 ➢ 7、标准设计图纸的应用
1、杆塔型式
按照杆塔的构件材料分类
A 钢筋混凝土电杆
B 铁塔 拉线铁塔 自立式铁塔 钢管杆
杆塔按其受力性质
N/m·mm2; S—导线或避雷线截面,mm2; —垂直档距,m; Gj—绝缘子串总重量,N。
2)水平荷载—杆塔风压荷载
当风向与线路方向垂直时,杆塔风压荷载按下式计算
Pp
CF v 2 1.63
式中Pp—风向与线路方向垂直时的杆或塔身风压,N; v—设计风速,m/s; C—风载体形系数,对环形截面电杆取0.6,矩形截面
模块划分及命名规定
模块划分及命名规定
典型图
典型图
典型图
典型图
两相导线水平排列其线间距离的确定
在正常运行电压气象条件下,由于风荷的作用,使整个档距导 线发生摇摆,档距中央的导线摆动的幅度最大。当导线发生不 同步摇摆时, 档距中央导线部分接近,会导 致线间空气间隙击穿,从而发 生线间闪络。为此,规程中指 出:导线的水平线间距离,可 根据运行经验确定。1000m以 下的档距可按下式计算。
杆取1.4,角钢铁塔取1.4(1+η),圆钢铁塔取1.2(1+η); F—风压方向杆、塔身侧面构件的投影面积m2; η—空间桁架背面的风压荷载降低系数,其值见教材表
4—10所示。
2)水平荷载—导线、避雷线的风压荷载
P
gSlh
cos2
2
pj
式中 m;
P—导线或避雷线的风压荷载,N, θ—线路转角(°); g—导线或避雷线的风压比载,N/m·mm2; lh—水平档距(断线时,断线相计算水平档距取/2),
输电杆塔及基础设计2:一般规定
实 用
文 档 1 1.一般规定
(1) 直线型杆塔应计算与线路方向成00、450(或600)及900的三种最大
风速的风向;
(2)一般耐张型杆塔可只计算900一个风向;
(3)终端杆塔,除计算900风向外,还需计算00风向;
(4)悬垂转角杆塔和耐张型杆塔转角度数较小时,还应考虑与导、地线张力的横向分力相反的风向;
(5)特殊杆塔应计算最不利风向;
(6)风向与导、地线方向或塔面成夹角时,导线、地线风载在垂直和顺线条方向的分量,塔身和横担风载在塔面两垂直方向的分量,按表2-13选用。
(7)各类杆塔均应计算线路正常运行情况、断线(含分裂导线时纵向不平衡张力)情况和安装下的组合,必要时尚应验算地震等稀有情况;
(8)终端杆塔应考虑变电所侧导、地线已架设和未架设两种情况,对双回路及多回路杆塔应按实际情况考虑分期架设的情况。