[真卷]2018年重庆市中考数学预测试卷和答案
重庆市2018年中考数学黄金预测卷(二)及答案

2018年重庆中考黄金预测数学试题(预测卷二)(满分:150分 时间:120分钟)参考公式:抛物线y =ax 2+bx +c(a≠0)的顶点坐标为)44,2(2ab ac a b --,对称轴公式为a b x 2-=. 一、选择题(本大题12个小题,每小题4分,共48分) 1、2015-的相反数是( )A.2015B.-2015C. 20151D.20151-2、计算)(426a a -÷的结果是( )A.44a B.44-a C. 34-a D.34a3、在xx-1中,x 的取值范围为( ) A.01≠≥x x 且 B.0≠x C.01≠≤x x 且 D.1≤x 4、在0,-2,-1,3这四个数中,最小的数是( )A.3B.-1C.0D.-25、如图,AB ∥CD ,直线EF 分别交AB 、CD 于点E 、F ,HF 平分∠EFD ,若∠1=110°,则∠2的度数为( )A .55°B .40°C .35°D .45°(第5题) (第6题) (第9题) 6、如图,点A 、B 、C 在⊙O 上,若∠ABC =52°,则∠AOC 的度数为( ) A .128° B .104° C .50° D .52°7、甲、乙两人在相同的条件下各射靶10次,射击成绩的平均数都是8环,甲射击成绩的方差是1.2,乙射击成绩的方差是1.8,下列说法中不一定正确的是( ) A .甲、乙射击成绩的众数相同 B .甲射击成绩比乙稳定C .乙射击成绩的波动比甲较大D .甲、乙射中的总环数相同 8、若一次函数17+=kx y 的图象经过点(-3,2)上,则k 的值是( )A.-6 B .6 C .-5 D .59、如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,若∠ACB =30°,AB =2,则BD 的长为( )A .4B .3C .2D .110、如图所示,某公园设计节日鲜花摆放方案,其中一个花坛由一批花盆堆成六角垛,顶层一个,以下各层堆成六边形,逐层每边增加一个花盆,若这垛花盆底层最长的一排共有13个花盆,则底层的花盆的个数是( )层数 顶层 第二层 第三层 第四层摆放情况A .91B .127C .169D .25511、为了响应党的十八大建设“美丽重庆”的号召,巫山县积极推进“美丽新巫山”工程,购回一批紫色三角盆景安放在桥梁中央的隔离带内,将高速公路打造成漂亮的迎宾大道。
(完整版)2018年重庆市中考数学试卷(A卷)答案及解析(可编辑)

2018年重庆市中考数学试卷(A 卷)答案及解析一、选择题 (本大题12个小题,每小题4分,共48分。
)1.2的相反数是 A .2-B .12-C.12D .2【答案】A【解析】根据一个数的相反数就是在这个数的前面添加上“-”即可求解 【点评】本题考查了相反数的定义,属于中考中的简单题2.下列图形中一定是轴对称图形的是A.B.C.D.【答案】D【解析】A40°的直角三角形不是对称图形;B 两个角是直角的四边形不一定是轴对称图形;C 平行四边形是中心对称图形不是轴对称图形;D 矩形是轴对称图形,有两条对称轴【点评】此题主要考查基本几何图形中的轴对称图形和中心对称图形,难度系数不大,考生主要注意看清楚题目要求。
3.为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是 A.企业男员工 B.企业年满50岁及以上的员工 C.用企业人员名册,随机抽取三分之一的员工 D.企业新进员工【答案】C【解析】A 调查对象只涉及到男性员工;B 调查对象只涉及到即将退休的员工;D 调查对象只涉及到新进员工【点评】此题主要考查考生对抽样调查中科学选取样本的理解,属于中考当中的简单题。
4.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为A .12B .14C .16D .18 【答案】C 【解析】40°直角三角形四边形平行四边形矩形∵第1个图案中的三角形个数为:2+2=2×2=4;第2个图案中的三角形个数为:2+2+2=2×3=6;第3个图案中的三角形个数为:2+2+2+2=2×4=8;……∴第7个图案中的三角形个数为:2+2+2+2+2+2+2+2=2×8=16;【点评】此题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,从而计算出正确结果。
2018年重庆市中考数学试卷及解析(A)

2018年重庆市中考数学试卷(A卷)一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面.都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.(4分)2的相反数是()A.﹣2 B.﹣ C.D.22.(4分)下列图形中一定是轴对称图形的是()A.直角三角形B.四边形C.平行四边形D.矩形3.(4分)为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是()A.企业男员工B.企业年满50岁及以上的员工C.用企业人员名册,随机抽取三分之一的员工D.企业新进员工4.(4分)把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个角形第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为()A.12 B.14 C.16 D.185.(4分)要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm,6cm和9cm,另一个三角形的最短边长为2.5cm,则它的最长边为()A.3cm B.4cm C.4.5cm D.5cm6.(4分)下列命题正确的是()A.平行四边形的对角线互相垂直平分B.矩形的对角线互相垂直平分C.菱形的对角线互相平分且相等D.正方形的对角线互相垂直平分7.(4分)估计(2﹣)•的值应在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间8.(4分)按如图所示的运算程序,能使输出的结果为12的是()A.x=3,y=3 B.x=﹣4,y=﹣2 C.x=2,y=4 D.x=4,y=29.(4分)如图,已知AB是⊙O的直径,点P在BA的延长线上,PD与⊙O相切于点D,过点B作PD的垂线交PD的延长线于点C,若⊙O的半径为4,BC=6,则PA的长为()A.4 B.2 C.3 D.2.510.(4分)如图,旗杆及升旗台的剖面和教学楼的剖面在同一平面上,旗杆与地面垂直,在教学楼底部E点处测得旗杆顶端的仰角∠AED=58°,升旗台底部到教学楼底部的距离DE=7米,升旗台坡面CD的坡度i=1:0.75,坡长CD=2米,若旗杆底部到坡面CD的水平距离BC=1米,则旗杆AB的高度约为()(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.6)A.12.6米B.13.1米C.14.7米D.16.3米11.(4分)如图,在平面直角坐标系中,菱形ABCD的顶点A,B在反比例函数y=(k >0,x>0)的图象上,横坐标分别为1,4,对角线BD∥x轴.若菱形ABCD的面积为,则k的值为()A.B.C.4 D.512.(4分)若数a使关于x的不等式组有且只有四个整数解,且使关于y的方程=2的解为非负数,则符合条件的所有整数a的和为() A.﹣3 B.﹣2 C.1 D.2二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的的横线上.13.(4分)计算:|﹣2|+(π﹣3)0=.14.(4分)如图,在矩形ABCD中,AB=3,AD=2,以点A为圆心,AD长为半径画弧,交AB 于点E,图中阴影部分的面积是(结果保留π).15.(4分)春节期间,重庆某著名旅游景点成为热门景点,大量游客慕名前往,市旅游局统计了春节期间5天的游客数量,绘制了如图所示的折线统计图,则这五天游客数量的中位数为.16.(4分)如图,把三角形纸片折叠,使点B、点C都与点A重合,折痕分别为DE,FG,得到∠AGE=30°,若AE=EG=2厘米,则△ABC的边BC的长为厘米.17.(4分)A,B两地相距的路程为240千米,甲、乙两车沿同一线路从A地出发到B 地,分别以一定的速度匀速行驶.甲车先出发40分钟后,乙车才出发.途中乙车发生故障,修车耗时20分钟,随后,乙车车速比发生故障前减少了10千米/小时(仍保持匀速前行),甲、乙两车同时到达B地,甲、乙两车相距的路程y(千米)与甲车行驶时间x(小时)之间的关系如图所示,求乙车修好时,甲车距B地还有千米.18.(4分)为实现营养的合理搭配,某电商推出适合不同人群的甲、乙两种袋装混合粗粮.其中,甲种粗粮每袋装有3千克A粗粮,1千克B粗粮,1千克C粗粮;乙种粗粮每袋装有1千克A粗粮,2千克B粗粮,2千克C粗粮.甲、乙两种袋装粗粮每袋成本价分别为袋中的A,B,C三种粗粮的成本价之和.已知A粗粮每千克成本价为6元,甲种粗粮每袋售价为58.5元,利润率为30%,乙种粗粮的利润率为20%.若这两种袋装粗粮的销售利润率达到24%,则该电商销售甲、乙两种袋装粗粮的数量之比是.(商品的利润率=×100%)三、解答题:(本大题2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.(8分)如图,直线AB∥CD,BC平分∠ABD,∠1=54°,求∠2的度数.20.(8分)某初中学校举行毛笔书法大赛,对各年级同学的获奖情况进行了统计,并绘制了如下两幅不完整的统计图,请结合图中相关数据解答下列问题:(1)请将条形统计图补全;(2)获得一等奖的同学中有来自七年级,有来自八年级,其他同学均来自九年级,现准备从获得一等奖的同学中任选两人参加市内毛笔书法大赛,请通过列表或画树状图求所选出的两人中既有七年级又有九年级同学的概率.四、解答题:(本大题5个小题,每小题10分,共50分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.21.(10分)计算:(1)a(a+2b)﹣(a+b)(a﹣b)(2)(+x+2)22.(10分)如图,在平面直角坐标系中,直线y=﹣x+3过点A(5,m)且与y轴交于点B,把点A向左平移2个单位,再向上平移4个单位,得到点C.过点C且与y=2x平行的直线交y轴于点D.(1)求直线CD的解析式;(2)直线AB与CD交于点E,将直线CD沿EB方向平移,平移到经过点B的位置结束,求直线CD在平移过程中与x轴交点的横坐标的取值范围.23.(10分)在美丽乡村建设中,某县通过政府投入进行村级道路硬化和道路拓宽改造.(1)原计划今年1至5月,村级道路硬化和道路拓宽的里程数共50千米,其中道路硬化的里程数至少是道路拓宽的里程数的4倍,那么,原计划今年1至5月,道路硬化的里程数至少是多少千米?(2)到今年5月底,道路硬化和道路拓宽的里程数刚好按原计划完成,且道路硬化的里程数正好是原计划的最小值.2017年通过政府投人780万元进行村级道路硬化和道路拓宽的里程数共45千米,每千米的道路硬化和道路拓宽的经费之比为1:2,且里程数之比为2:1.为加快美丽乡村建设,政府决定加大投入.经测算:从今年6月起至年底,如果政府投入经费在2017年的基础上增加10a%(a>0),并全部用于道路硬化和道路拓宽,而每千米道路硬化、道路拓宽的费用也在2017年的基础上分别增加a%,5a%,那么道路硬化和道路拓宽的里程数将会在今年1至5月的基础上分别增加5a%,8a%,求a的值.24.(10分)如图,在平行四边形ABCD中,点O是对角线AC的中点,点E是BC上一点,且AB=AE,连接EO并延长交AD于点F.过点B作AE的垂线,垂足为H,交AC 于点G.(1)若AH=3,HE=1,求△ABE的面积;(2)若∠ACB=45°,求证:DF=CG.25.(10分)对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”.(1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;(2)如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数.若四位数m为“极数”,记D(m)=,求满足D(m)是完全平方数的所有m.五、解答题:(本大题1个小题,共12分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.26.(12分)如图,在平面直角坐标系中,点A在抛物线y=﹣x2+4x上,且横坐标为1,点B与点A关于抛物线的对称轴对称,直线AB与y轴交于点C,点D为抛物线的顶点,点E的坐标为(1,1).(1)求线段AB的长;(2)点P为线段AB上方抛物线上的任意一点,过点P作AB的垂线交AB于点H,点F为y轴上一点,当△PBE的面积最大时,求PH+HF+FO的最小值;(3)在(2)中,PH+HF+FO取得最小值时,将△CFH绕点C顺时针旋转60°后得到△CF′H′,过点F'作CF′的垂线与直线AB交于点Q,点R为抛物线对称轴上的一点,在平面直角坐标系中是否存在点S,使以点D,Q,R,S为顶点的四边形为菱形,若存在,请直接写出点S的坐标,若不存在,请说明理由.2018年重庆市中考数学试卷(A卷)参考答案与试题解析一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面.都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.【解答】解:2的相反数是﹣2.故选:A.2.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.3.【解答】解:为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是:用企业人员名册,随机抽取三分之一的员工.故选:C.4.【解答】解:∵第①个图案中三角形个数4=2+2×1,第②个图案中三角形个数6=2+2×2,第③个图案中三角形个数8=2+2×3,……∴第⑦个图案中三角形的个数为2+2×7=16,故选:C.5.【解答】解:设另一个三角形的最长边长为xcm,根据题意,得:=,解得:x=4.5,即另一个三角形的最长边长为4.5cm,故选:C.6.【解答】解:A、平行四边形的对角线互相垂直平分,是假命题;B、矩形的对角线互相垂直平分,是假命题;C、菱形的对角线互相平分且相等,是假命题;D、正方形的对角线互相垂直平分,是真命题;故选:D.7.【解答】解:(2﹣)•=2﹣2=﹣2,∵4<<5,∴2<﹣2<3,故选:B.8.【解答】解:A、x=3、y=3时,输出结果为32+2×3=15,不符合题意;B、x=﹣4、y=﹣2时,输出结果为(﹣4)2﹣2×(﹣2)=20,不符合题意;C、x=2、y=4时,输出结果为22+2×4=12,符合题意;D、x=4、y=2时,输出结果为42+2×2=20,不符合题意;故选:C.9.【解答】解:连接DO,∵PD与⊙O相切于点D,∴∠PDO=90°,∵∠C=90°,∴DO∥BC,∴△PDO∽△PCB,∴===,设PA=x,则=,解得:x=4,故PA=4.故选:A.10.【解答】解:如图延长AB交ED的延长线于M,作CJ⊥DM于J.则四边形BMJC是矩形.在Rt△CJD中,==,设CJ=4k,DJ=3k,则有9k2+16k2=4,∴k=,∴BM=CJ=,BC=MJ=1,DJ=,EM=MJ+DJ+DE=,在Rt△AEM中,tan∠AEM=,∴1.6=,解得AB≈13.1(米),故选:B.11.【解答】解:设AC与BD、x轴分别交于点E、F由已知,A、B横坐标分别为1,4∴BE=3∵四边形ABCD为菱形,AC、BD为对角线=4×AE•BE=∴S菱形ABCD∴AE=设点B的坐标为(4,y),则A点坐标为(1,y+)∵点A、B同在y=图象上∴4y=1•(y+)∴y=∴B点坐标为(4,)∴k=5故选:D.12.【解答】解:,不等式组整理得:,由不等式组有且只有四个整数解,得到0<≤1,解得:﹣2<a≤2,即整数a=﹣1,0,1,2,=2,分式方程去分母得:y+a﹣2a=2(y﹣1),解得:y=2﹣a,由分式方程的解为非负数以及分式有意义的条件,得到a为﹣1,0,2,之和为1.故选:C.二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的的横线上.13.【解答】解:|﹣2|+(π﹣3)0=2+1=3.故答案为:3.14.【解答】解:∵矩形ABCD,∴AD=2,∴S阴影=S矩形﹣S四分之一圆=2×3﹣π×22=6﹣π,故答案为:6﹣π15.【解答】解:将这5天的人数从小到大排列为21.9、22.4、23.4、24.9、25.4,所以这五天游客数量的中位数为23.4万人,故答案为:23.4万人.16.【解答】解:∵把三角形纸片折叠,使点B、点C都与点A重合,折痕分别为DE,FG,∴AD=DG,BD=AD,AG=GC,∵∠AGE=30°,AE=EG=2厘米,∴DE=2,DG=4,AG=4,∴BD=AD=DG=4,GC=AG=4,∴BC=BD+DG+GC=8+4,故答案为:8+4,17.【解答】解:由题意可得,甲车的速度为:30÷=45千米/时,甲车从A地到B地用的时间为:240÷45=5(小时),乙车刚开始的速度为:[45×2﹣10]÷(2﹣)=60千米/时,∴乙车发生故障之后的速度为:60﹣10=50千米/时,设乙车发生故障时,乙车已经行驶了a小时,60a+50×()=240,解得,a=,∴乙车修好时,甲车行驶的时间为:=小时,∴乙车修好时,甲车距B地还有:45×(5)=90千米,故答案为:90.18.【解答】解:∵甲种粗粮每袋装有3千克A粗粮,1千克B粗粮,1千克C粗粮,而A粗粮每千克成本价为6元,甲种粗粮每袋售价为58.5元,∴1千克B粗粮成本价+1千克C粗粮成本价=58.5﹣6×3=40.5(元),∵乙种粗粮每袋装有1千克A粗粮,2千克B粗粮,2千克C粗粮,∴乙种粗粮每袋售价为6+2×40.5=87(元).设该电商销售甲种袋装粗粮x袋,乙种袋装粗粮y袋,由题意,得58.5×30%x+87×20%y=24%(58.5x+87y),58.5×0.06x=87×0.04y,=.故答案为.三、解答题:(本大题2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.【解答】解:∵直线AB∥CD,∴∠1=∠3=54°,∵BC平分∠ABD,∴∠3=∠4=54°,∴∠2的度数为:180°﹣54°﹣54°=72°.20.【解答】解:(1)调查的总人数为10÷25%=40(人),所以一等奖的人数为40﹣8﹣6﹣12﹣10=4(人),条形统计图为:(2)画树状图为:(用A、B、C分别表示七年级、八年级和九年级的学生)共有12种等可能的结果数,其中所选出的两人中既有七年级又有九年级同学的结果数为4,所以所选出的两人中既有七年级又有九年级同学的概率==.四、解答题:(本大题5个小题,每小题10分,共50分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.21.【解答】解:(1)原式=a2+2ab﹣a2+b2=2ab﹣b2;(2)原式=•=.22.【解答】解:(1)把A(5,m)代入y=﹣x+3得m=﹣5+3=﹣2,则A(5,﹣2),∵点A向左平移2个单位,再向上平移4个单位,得到点C,∴C(3,2),∵过点C且与y=2x平行的直线交y轴于点D,∴CD的解析式可设为y=2x+b,把C(3,2)代入得6+b=2,解得b=﹣4,∴直线CD的解析式为y=2x﹣4;(2)当x=0时,y=﹣x+3=3,则B(0,3),当y=0时,2x﹣4=0,解得x=2,则直线CD与x轴的交点坐标为(2,0);易得CD平移到经过点B时的直线解析式为y=2x+3,当y=0时,2x+3=0,解的x=﹣,则直线y=2x+3与x轴的交点坐标为(﹣,0),∴直线CD在平移过程中与x轴交点的横坐标的取值范围为﹣≤x≤2.23.【解答】解:(1)设道路硬化的里程数是x千米,则道路拓宽的里程数是(50﹣x)千米,根据题意得:x≥4(50﹣x),解得:x≥40.答:原计划今年1至5月,道路硬化的里程数至少是40千米.(2)设2017年通过政府投人780万元进行村级道路硬化和道路拓宽的里程数分别为2x千米、x千米,2x+x=45,x=15,2x=30,设每千米的道路硬化和道路拓宽的经费分别为y千米、2y千米,30y+15×2y=780,y=13,2y=26,由题意得:13(1+a%)•40(1+5a%)+26(1+5a%)•10(1+8a%)=780(1+10a%),设a%=m,则520(1+m)(1+5m)+260(1+5m)(1+8m)=780(1+10m),10m2﹣m=0,m1=0.1,m2=0(舍),∴a=10.24.【解答】解:(1)∵AH=3,HE=1,∴AB=AE=4,又∵Rt△ABH中,BH==,=AE×BH=×4×=;∴S△ABE(2)如图,过A作AM⊥BC于M,交BG于K,过G作GN⊥BC于N,则∠AMB=∠AME=∠BNG=90°,∵∠ACB=45°,∴∠MAC=∠NGC=45°,∵AB=AE,∴BM=EM=BE,∠BAM=∠EAM,又∵AE⊥BG,∴∠AHK=90°=∠BMK,而∠AKH=∠BKM,∴∠MAE=∠NBG,设∠BAM=∠MAE=∠NBG=α,则∠BAG=∠45°+α,∠BGA=∠GCN+∠GBC=45°+α,∴AB=BG,∴AE=BG,在△AME和△BNG中,,∴△AME≌△BNG(AAS),∴ME=NG,在等腰Rt△CNG中,NG=NC,∴GC=NG=ME=BE,∴BE=GC,∵O是AC的中点,∴OA=OC,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠OAF=∠OCE,∠AFO=∠CEO,∴△AFO≌△CEO(AAS),∴AF=CE,∴AD﹣AF=BC﹣EC,即DF=BE,∴DF=BE=CG.25.【解答】解:(1)根据“极数”的意义得,1287,2376,8712,任意一个“极数”都是99的倍数,理由:设对于任意一个四位数且是“极数”n的个位数字为x,十位数字为y,(x是0到9的整数,y是0到8的整数)∴百位数字为(9﹣x),千位数字为(9﹣y),∴四位数n为:1000(9﹣y)+100(9﹣x)+10y+x=9900﹣990y﹣99x=99(100﹣10y﹣x),∵x是0到9的整数,y是0到8的整数,∴100﹣10y﹣x是整数,∴99(100﹣10y﹣x)是99的倍数,即:任意一个“极数”都是99的倍数;(2)设四位数m为“极数”的个位数字为x,十位数字为y,(x是0到9的整数,y是0到8的整数)∴m=99(100﹣10y﹣x),∴D(m)==3(100﹣10y﹣x),而m是四位数,∴99(100﹣10y﹣x)是四位数,即1000≤99(100﹣10y﹣x)<10000,∴30≤3(100﹣10y﹣x)≤303∵D(m)完全平方数,∴3(100﹣10y﹣x)既是3的倍数也是完全平方数,∴3(100﹣10y﹣x)只有36,81,144,225这五种可能,∴D(m)是完全平方数的所有m值为1188或2673或4752或7425.五、解答题:(本大题1个小题,共12分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.26.【解答】解:(1)由题意A(1,3),B(3,3),∴AB=2.(2)如图1中,设P(m,﹣m2+4m),作PN∥y轴J交BE于N.∵直线BE的解析式为y=x,∴N(m,m),=×2×(﹣m2+3m)=﹣m2+3m,∴S△PEB∴当m=时,△PEB的面积最大,此时P(,),H(,3),∴PH=﹣3=,作直线OG交AB于G,使得∠COG=30°,作HK⊥OG于K交OC于F,∵FK=OF,∴PH+HF+FO=PH+FH+Fk=PH+HK,此时PH+HF+OF 的值最小,∵•HG•OC=•OG•HK ,∴HK==+,∴PH+HF +OF的最小值为+.,QF=,CQ=1,(2)如图2中,由题意CH=,CF=①当DQ为菱形的边时,S1(﹣1,3﹣),S 2(﹣1,3+),②当DQ为对角线时,可得S3(﹣1,8),综上所述,满足条件的点S坐标为(﹣1,3﹣)或(﹣1,3+)或(﹣1,8).。
2018年重庆市中考数学试卷及解析(a卷)

2018年重庆市中考数学试卷(A卷)及解析一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面。
都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑。
1.(4分)2的相反数是()A.﹣2 B.﹣ C.D.22.(4分)下列图形中一定是轴对称图形的是()A.直角三角形B.四边形C.平行四边形D.矩形3.(4分)为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是()A.企业男员工B.企业年满50岁及以上的员工C.用企业人员名册,随机抽取三分之一的员工D.企业新进员工4.(4分)把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个角形第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为()A.12 B.14 C.16 D.185.(4分)要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm,6cm和9cm,另一个三角形的最短边长为2.5cm,则它的最长边为()A.3cm B.4cm C.4.5cm D.5cm6.(4分)下列命题正确的是()A.平行四边形的对角线互相垂直平分B.矩形的对角线互相垂直平分C.菱形的对角线互相平分且相等D.正方形的对角线互相垂直平分7.(4分)估计(2﹣)•的值应在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间8.(4分)按如图所示的运算程序,能使输出的结果为12的是()A.x=3,y=3 B.x=﹣4,y=﹣2 C.x=2,y=4 D.x=4,y=29.(4分)如图,已知AB是⊙O的直径,点P在BA的延长线上,PD与⊙O相切于点D,过点B作PD的垂线交PD的延长线于点C,若⊙O的半径为4,BC=6,则PA的长为()A.4 B.2 C.3 D.2.510.(4分)如图,旗杆及升旗台的剖面和教学楼的剖面在同一平面上,旗杆与地面垂直,在教学楼底部E点处测得旗杆顶端的仰角∠AED=58°,升旗台底部到教学楼底部的距离DE=7米,升旗台坡面CD的坡度i=1:0.75,坡长CD=2米,若旗杆底部到坡面CD的水平距离BC=1米,则旗杆AB的高度约为()(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.6)A.12.6米B.13.1米C.14.7米D.16.3米11.(4分)如图,在平面直角坐标系中,菱形ABCD的顶点A,B在反比例函数y=(k>0,x>0)的图象上,横坐标分别为1,4,对角线BD∥x轴.若菱形ABCD的面积为,则k的值为()A.B.C.4 D.512.(4分)若数a使关于x的不等式组有且只有四个整数解,且使关于y的方程=2的解为非负数,则符合条件的所有整数a的和为()A.﹣3 B.﹣2 C.1 D.2二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的的横线上。
【精校版】2018年重庆市中考数学试卷以及答案(a卷)(word解析版)(精品)

2018年重庆市中考数学试卷(A卷)一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面。
都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑。
1.(4分)2的相反数是()A.﹣2 B.﹣ C.D.22.(4分)下列图形中一定是轴对称图形的是()A.直角三角形B.四边形C.平行四边形D.矩形3.(4分)为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是()A.企业男员工B.企业年满50岁及以上的员工C.用企业人员名册,随机抽取三分之一的员工D.企业新进员工4.(4分)把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个角形第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为()A.12 B.14 C.16 D.185.(4分)要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm,6cm和9cm,另一个三角形的最短边长为2.5cm,则它的最长边为()A.3cm B.4cm C.4.5cm D.5cm6.(4分)下列命题正确的是()A.平行四边形的对角线互相垂直平分B.矩形的对角线互相垂直平分C.菱形的对角线互相平分且相等D.正方形的对角线互相垂直平分7.(4分)估计(2﹣)•的值应在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间8.(4分)按如图所示的运算程序,能使输出的结果为12的是()A.x=3,y=3 B.x=﹣4,y=﹣2 C.x=2,y=4 D.x=4,y=29.(4分)如图,已知AB是⊙O的直径,点P在BA的延长线上,PD与⊙O相切于点D,过点B作PD 的垂线交PD的延长线于点C,若⊙O的半径为4,BC=6,则PA的长为()A.4 B.2 C.3 D.2.510.(4分)如图,旗杆及升旗台的剖面和教学楼的剖面在同一平面上,旗杆与地面垂直,在教学楼底部E点处测得旗杆顶端的仰角∠AED=58°,升旗台底部到教学楼底部的距离DE=7米,升旗台坡面CD的坡度i=1:0.75,坡长CD=2米,若旗杆底部到坡面CD的水平距离BC=1米,则旗杆AB的高度约为()(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.6)A.12.6米B.13.1米C.14.7米D.16.3米11.(4分)如图,在平面直角坐标系中,菱形ABCD的顶点A,B在反比例函数y=(k>0,x>0)的图象上,横坐标分别为1,4,对角线BD∥x轴.若菱形ABCD的面积为,则k的值为()A.B.C.4 D.512.(4分)若数a使关于x的不等式组有且只有四个整数解,且使关于y的方程=2的解为非负数,则符合条件的所有整数a的和为()A.﹣3 B.﹣2 C.1 D.2二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的的横线上。
2018年重庆市中考数学试卷(a卷)答案及解析(word版)

2018年重庆市中考数学试卷(A 卷)(含答案解析)一、选择题 (本大题12个小题,每小题4分,共48分。
)1.2的相反数是 A .2- B .12-C.12D .2【答案】A【解析】根据一个数的相反数就是在这个数的前面添加上“-”即可求解 【点评】本题考查了相反数的定义,属于中考中的简单题2.下列图形中一定是轴对称图形的是A.40°直角三角形B.四边形C. 平行四边形D.矩形【答案】D【解析】A40°的直角三角形不是对称图形;B 两个角是直角的四边形不一定是轴对称图形;C 平行四边形是中心对称图形不是轴对称图形;D 矩形是轴对称图形,有两条对称轴【点评】此题主要考查基本几何图形中的轴对称图形和中心对称图形,难度系数不大,考生主要注意看清楚题目要求。
3.为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是 A.企业男员工 B.企业年满50岁及以上的员工 C.用企业人员名册,随机抽取三分之一的员工 D.企业新进员工【答案】C【解析】A 调查对象只涉及到男性员工;B 调查对象只涉及到即将退休的员工;D 调查对象只涉及到新进员工【点评】此题主要考查考生对抽样调查中科学选取样本的理解,属于中考当中的简单题。
4.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为A .12B .14C .16D .18【答案】C 【解析】∵第1个图案中的三角形个数为:2+2=2×2=4;第2个图案中的三角形个数为:2+2+2=2×3=6;第3个图案中的三角形个数为:2+2+2+2=2×4=8;……∴第7个图案中的三角形个数为:2+2+2+2+2+2+2+2=2×8=16;【点评】此题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,从而计算出正确结果。
2018年重庆市中考数学试卷及答案
数学试卷 第1页(共26页) 数学试卷 第2页(共26页)绝密★启用前重庆市2018年初中学业水平暨高中招生考试(A 卷)数学 ............................................... 1 重庆市2018年初中学业水平暨高中招生考试(A 卷)数学答案解析 . (5)重庆市2018年初中学业水平暨高中招生考试(A 卷)数学(本试卷满分150分,考试时间120分钟)参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标为24,24b ac b a a ⎛⎫-- ⎪⎝⎭,对称轴为2bx a =-. 第Ⅰ卷(选择题 共48分)一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.2的相反数是( )A .2-B .12-C .12D .2 2.下列图形中一定是轴对称图形的是( )ABCD3.为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是 ( )A .企业男员工B .企业年满50岁及以上的员工C .用企业人员名册,随机抽取三分之一的员工D .企业新进员工4.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为( )A .12B .14C .16D .185.要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5 cm ,6 cm 和9 cm ,另一个三角形的最短边长为2.5 cm ,则它的最长边为( )A .3 cmB .4 cmC .4.5 cmD .5 cm 6.下列命题正确的是( )A .平行四边形的对角线互相垂直平分B .矩形的对角线互相垂直平分C .菱形的对角线互相平分且相等D .正方形的对角线互相垂直平分 7.估计124)6的值应在 ( )A .1和2之间B .2和3之间C .3和4之间D .4和5之间 8.按如图所示的运算程序,能使输出的结果为12的是( )A .33x y ==,B .42x y =-=-,C .24x y ==,D .42xy==,毕业学校_____________ 姓名________________ 考生号________________________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共26页) 数学试卷 第4页(共26页)9.如图,已知AB 是O 的直径,点P 在BA 的延长线上,PD 与O 相切于点D ,过点B 作PD 的垂线交PD 的延长线于点C ,若O 的半径为4,6BC =,则PA 的长为 ( )A .4B .23 C .3D .2.510.如图,旗杆及升旗台的剖面和教学楼的剖面在同一平面上,旗杆与地面垂直,在教学楼底部E 点处测得旗杆顶端的仰角58AED ∠=,升旗台底部到教学楼底部的距离7DE =米,升旗台坡面CD 的坡度1:0.75i =,坡长2CD =米,若旗杆底部到坡面CD 的水平距离1BC =米,则旗杆AB 的高度约为( )(参考数据:sin580.85cos580.53tan58 1.6≈,≈,≈) A .12.6米B .13.1米C .14.7米D .16.3米11.如图,在平面直角坐标系中,菱形ABCD 的顶点,A ,B在反比例函数(00)ky k x x=>,>的图象上,横坐标分别为1,4,对角线BD x ∥轴.若菱形ABCD 的面积为452,则k 的值为( ) A .54B .154C .4D .5 12.若数a 使关于x 的不等式组11,2352x xx x a-+⎧⎪⎨⎪-+⎩<≥有且只有四个整数解,且使关于y 的方程2211y a a y y ++=--的解为非负数,则符合条件的所有整数a 的和为 ( ) A .3-B .2-C .1D .2第Ⅱ卷(非选择题 共102分)二、填空题(本大题共6小题,每小题4分,共24分.请把答案填在题中的横线上) 13.计算:0|2|(π3)-+-= .14.如图,在矩形ABCD 中,32AB AD ==,,以点A 为圆心,AD 长为半径画弧,交AB 于点E ,图中阴影部分的面积是 (结果保留π).15.春节期间,重庆某著名旅游景点成为热门景点,大量游客慕名前往,市旅游局统计了春节期间5天的游客数量,绘制了如图所示的折线统计图,则这五天游客数量的中位数为 .16.如图,把三角形纸片折叠,使点B ,点C 都与点A 重合,折痕分别为DE ,FG ,得到30AGE ∠=,若23AE EG ==厘米,则ABC △的边BC 的长为 厘米.17.A ,B 两地相距的路程为240千米,甲、乙两车沿同一线路从A 地出发到B 地,分别以一定的速度匀速行驶.甲车先出发40分钟后,乙车才出发.途中乙车发生故障,修车耗时20分钟,随后,乙车车速比发生故障前减少了10千米/小时(仍保持匀速前行),甲、乙两车同时到达B 地.甲、乙两车相距的路程y (千米)与甲车行驶时间x (小时)之间的关系如图所示,求乙车修好时,甲车距B 地还有 千米.数学试卷 第5页(共26页) 数学试卷 第6页(共26页)18.为实现营养的合理搭配,某电商推出适合不同人群的甲、乙两种袋装混合粗粮.其中,甲种粗粮每袋装有3千克A 粗粮,1千克B 粗粮,1千克C 粗粮;乙种粗粮每袋装有1千克A 粗粮,2千克B 粗粮,2千克C 粗粮.甲、乙两种袋装粗粮每袋成本价分别为袋中的A ,B ,C 三种粗粮的成本价之和.已知A 粗粮每千克成本价为6元,甲种粗粮每袋售价为58.5元,利润率为30%,乙种粗粮的利润率为20%.若这两种袋装粗粮的销售利润率达到24%,则该电商销售甲、乙两种袋装粗粮的数量之比是 .100%-⎛⎫=⨯ ⎪⎝⎭商品的售价商品的成本价商品的利润率商品的成本价 三、解答题(本大题共8小题,共78分.解答应写出必要的文字说明、证明过程或演算步骤)19.(本小题满分8分)如图,直线AB CD ∥,BC 平分ABD ∠,154∠=,求2∠的度数.20.(本小题满分8分)某初中学校举行毛笔书法大赛,对各年级同学的获奖情况进行了统计,并绘制了如下两幅不完整的统计图,请结合图中相关数据解答下列问题:(1)请将条形统计图补全; (2)获得一等奖的同学中有14来自七年级,有14来自八年级,其他同学均来自九年级.现准备从获得一等奖的同学中任选两人参加市内毛笔书法大赛,请通过列表或画树状图求所选出的两人中既有七年级又有九年级同学的概率. 21.(本小题满分10分,每题5分) 计算:(1)(2)()()a a b a b a b +-+-;(2)22442.33x x x x x x +-+++÷--()22.(本小题满分10分)如图,在平面直角坐标系中,直线3y x =-+过点(5)A m ,且与y 轴交于点B ,把点A 向左平移2个单位,再向上平移4个单位,得到点C .过点C 且与2y x =平行的直线交y 轴于点D .(1)求直线CD 的解析式;(2)直线AB 与CD 交于点E ,将直线CD 沿EB 方向平移,平移到经过点B 的位置结束,求直线CD 在平移过程中与x 轴交点的横坐标的取值范围.毕业学校_____________ 姓名________________ 考生号________________________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------。
2018年重庆市中考数学试卷-答案
2018年重庆市中考数学试卷-答案重庆市2018年初中学业⽔平暨⾼中招⽣考试(A 卷)数学答案解析第Ⅰ卷⼀、选择题 1.【答案】A【解析】根据题意,2(2)0+-=,∴2的相反数是-2,故选A. 【考点】相反数的概念. 2.【答案】D【解析】A 中的直⾓三⾓形不是轴对称图形;B 中的直⾓梯形不是轴对称图形;C 中的平⾏四边形是中⼼对称图形,不是轴对称图形;D 中的矩形是轴对称图形,故选D.【提⽰】判断⼀个图形是不是轴对称图形,要将这个图形沿某条直线对折,对折的两部分能完全重合,则这个图形是轴对称图形,常见的轴对称图形有线段、⾓、等腰三⾓形、菱形、矩形、正⽅形、圆、正多边形等。
【考点】轴对称图形的概念. 3.【答案】C【解析】根据题意,采取随机抽取的⽅法进⾏调查⽐较全⾯,结果也会⽐较真实有效,故选C. 【提⽰】选择抽取样本的恰当的⽅法是解答本题的关键. 【考点】调查中的样本选择. 4.【答案】C【解析】由题可知,每增加⼀个图案则增加2个三⾓形,∴第○n 个图案中有42(1)n +-个三⾓形,∴第⑦个图案中有16个三⾓形,故选C. 【考点】探索规律. 5.【答案】C【解析】根据题意可知两个三⾓形相似,设最长边为x cm ,则592.5x=,解得 4.5x =,即这个三⾓形的最长边为4.5 cm ,故选C .【提⽰】理解相似三⾓形的性质是解答本题的关键. 【考点】相似三⾓形的性质. 6.【答案】D【解析】平⾏四边形的对⾓线互相平分⽽不垂直,∴命题A 不正确;矩形的对⾓线相等且互相平分⽽不垂直,∴命题B 不正确;菱形的对⾓线互相垂直平分⽽不相等,∴命题C 不正确;正⽅形的对⾓线互相垂直平分且相等,∴命题D 正确,故选D.【提⽰】掌握特殊四边形的对⾓线的性质是解答本题的关键. 【考点】命题的判断. 7.【答案】B【解析】24255223==<∴<<,,,即在2和3之间,故选B .【考点】⼆次根式的运算、估算⽆理数. 8.【答案】C【解析】根据题意,当输⼊33x y ==,时,2021512y x y ∴+=≥,≠;当输⼊42x y =-=-,时,20,22012y x y ∴-=<≠;当输⼊24x y ==,时,20,212y x y ∴+=≥;当输⼊42x y ==,时,20,22012y x y ∴+=≥≠,故选C.【提⽰】根据y 的范围分情况求值是解答本题的关键。
2018年重庆市中考数学试卷及答案
2018年重庆市初中学业水平暨高中招生考试及答案数 学 试 题(全卷共五个大题,满分150分。
考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试卷上直接作答;2.作答前认真阅读答题卡上的注意事项;3.作图(包括作辅助线)请一律用黑色签字笔完成;4.考试结束,由监考人员将试题和答题卡一并收回。
参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标为24,24b ac b a a ⎛⎫- ⎪⎝⎭,对称轴为2b x a =。
一、选择题:(本大题12 个小题,每小题4分 ,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑。
1.下列四个数中,是正整数的是( ) A.-1 B.0 C.21 D.1 2下列图形中,是轴对称图形的是( )3.下列图形都是由同样大小的黑色正方形纸片组成,其中第①个图中有3张黑色正方形纸片,第②个图中有5张黑色正方形纸片,第③个图中有7张黑色正方形纸片,..,按此规律排列下去,第⑥个图中黑色正方形纸片的张数为( )A.11B.13C.15D.174.下列调查中,最适合采用全面调查(普查)的是( )A.对我市中学生每周课外阅读时间情况的调查B.对我市市民知晓“礼让行人”交通新规情况的调查C.对我市中学生观看电影(厉害了,我的国》情况的调查D.对我国首艘国产航母002型各零部件质量情况的调查5.制作一块m m 23⨯长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是( )A.360元B.720元C.1080元D.2160元6.下列命题是真命题的是( )A.如果一个数的相反数等于这个数本身,那么这个数一定是0 。
B.如果一个数的倒数等于这个数本身,那么这个数一定是1 。
C.如果一个数的平方等于这个数本身,那么这个数定是0 。
2018年重庆市中考数学试卷A卷答案及解析
2018年重庆市中考数学试卷A卷答案及解析2018年全国各地中考试题真题2018年重庆市中考数学试卷(A卷)答案及解析一、选择题(本大题12个小题,每小题4分,共48分。
)1.2的相反数是什么?A。
-2解析】根据一个数的相反数就是在这个数的前面添加上“-”即可求解。
点评】本题考查了相反数的定义,属于中考中的简单题。
2.下列图形中一定是轴对称图形的是哪个?D。
2解析】A40°的直角三角形不是对称图形;B两个角是直角的四边形不一定是轴对称图形;C平行四边形是中心对称图形不是轴对称图形;D矩形是轴对称图形,有两条对称轴。
点评】此题主要考查基本几何图形中的轴对称图形和中心对称图形,难度系数不大,考生主要注意看清楚题目要求。
3.为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是哪个?C。
用企业人员名册,随机抽取三分之一的员工解析】A调查对象只涉及到男性员工;B调查对象只涉及到即将退休的员工;D调查对象只涉及到新进员工。
点评】此题主要考查考生对抽样调查中科学选取样本的理解,属于中考当中的简单题。
4.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为多少?C。
16解析】第1个图案中的三角形个数为:2+2=2×2=4;第2个图案中的三角形个数为:2+2+2=2×3=6;第3个图案中的三角形个数为:2+2+2+2=2×4=8;……∴第7个图案中的三角形个数为:2+2+2+2+2+2+2+2=2×8=16.点评】此题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,从而计算出正确结果。
比较简单。
5.要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm,6cm和9cm,另一个三角形的最短边长为2.5cm,则它的最长边为多少?C。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年重庆市中考数学预测试卷一、选择题(本大题共12小题,每小题4分,共48分)1.(4分)在﹣,0,﹣π,﹣1这四个数中,最小的数是()A.﹣ B.0 C.﹣πD.﹣12.(4分)下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是()A.B.C.D.3.(4分)下列计算中,正确的是()A.(﹣a2)3=a6B.(ab2)3=ab6C.﹣a2•a3=a6D.(2a3)2=4a64.(4分)下列调查中,调查方式选择合理的是()A.调查你所在班级同学的身高,采用抽样调查方式B.调查市场上某品牌电脑的使用寿命,采用普查的方式C.调查嘉陵江的水质情况,采用抽样调查的方式D.要了解全国初中学生的业余爱好,采用普查的方式5.(4分)若a=﹣1,则下列结论中正确的是()A.1<a<2 B.2<a<3 C.3<a<4 D.4<a<56.(4分)如图,已知DE∥BC,CD和BE相交于点O,S△DOE:S△COB=9:16,则DE:BC为()A.2:3 B.3:4 C.9:16 D.1:27.(4分)方程x2+6x﹣5=0的左边配成完全平方后所得方程为()A.(x+3)2=14 B.(x﹣3)2=14 C.(x+3)2=4 D.(x﹣3)2=48.(4分)已知a是方程x2﹣3x﹣1=0的一个根,则代数式﹣2a2+6a﹣3的值是()A.﹣5 B.﹣6 C.﹣12﹣2 D.﹣12+29.(4分)如图,正方形ABCD中,AB=,点E是BC上一点,且BE=1,连接AE,以点A为圆心,AE为半径画弧,交CD于点F,交AD的延长线于点G,则图中阴影部分的面积是()A.﹣B.﹣ C.3﹣D.3﹣10.(4分)下列图形都是由相同大小的按一定规律组成的,其中第①个图形中一共有3个,第②个图形中一共有8个,第③个图形中一共有14个,…,按此规律排列下去,第⑨个图形中的个数为()A.54 B.61 C.71 D.7711.(4分)若数a使关于x的不等式组,有且仅有四个整数解,且使关于y的分式方程﹣=2有整数解,则所有满足条件的整数a的值之和是()A.﹣3 B.﹣2 C.2 D.312.(4分)如图,点A在反比例函数y=图象的第一象限的那一支上,AB垂直于y轴于点B,点C在x轴正半轴上,且OC=2AB,点E在线段AC上,且EC=AC,点D为OB的中点,若△ADE的面积为5,则k的值为()A.B.10 C.D.12二、填空题(本大题共6小题,每小题4分,共24分)13.(4分)重庆市区的地铁和轻轨全国闻名,世界有名.修建地铁每千米约耗资15230 0000元人民币,数据15230 0000用科学记数法可表示为.14.(4分)计算:3﹣2+(﹣2)0﹣|﹣4|=.15.(4分)如图,OA,OB是⊙O的半径,点C在⊙O上,连接AC,BC,若∠ACB=50°,则∠OAB=度.16.(4分)生命在于运动.运动渗透在生命中的每一个角落,运动的好处就在于让我们的身体保持在健康的状态.小明同学用手机软件记录了11月份每天健步走的步数(单位:万步),将记录结果绘制成了如图所示的统计图.在每天所走的步数这组数据中,中位数是万步.17.(4分)甲、乙两人骑自行车匀速同向行驶,乙在甲前面100米处,同时出发去距离甲1300米的目的地,其中甲的速度比乙的速度快.设甲、乙之间的距离为y米,乙行驶的时间为x秒,y与x之间的关系如图所示.甲到达目的地时,乙距目的地还有米.18.(4分)如图,面积为6的平行四边形纸片ABCD中,AB=3,∠BAD=45°,按下列步骤裁剪和拼图.第一步:如图①,将平行四边形纸片沿对角线BD剪开,得到△ABD和△BCD纸片,再将△ABD纸片沿AE剪开(E为BD上任意一点),得到△ABE和△ADE纸片;第二步:如图②,将△ABE纸片平移至△DCF处,将△ADE纸片平移至△BCG处;第三步:如图③,将△DCF纸片翻转过来使其背面朝上置于△PQM处(边PQ与DC重合,△PQM和△DCF在DC同侧),将△BCG纸片翻转过来使其背面朝上置于△PRN处,(边PR与BC重合,△PRN和△BCG在BC同侧).则由纸片拼成的五边形PMQRN中,BD=,对角线MN长度的最小值为.三、解答题(本大题共2小题,每小题8分,共16分)19.(8分)已知:如图,∠CDG=∠B,AD⊥BC于点D,EF⊥BC于点F,试判断∠1与∠2的关系,并说明理由.20.(8分)某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级.请根据两幅统计图中的信息回答下列问题:(1)本次抽样调查共抽取了名学生?测试结果为C等级的学生数是,并补全条形图;(2)若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两名恰好都是男生的概率.四、解答题(本大题共4小题,每小题10分,共40分)21.(10分)计算:(1)(y+2x)(y﹣2x)﹣4x(2y﹣x);(2)÷(x﹣)22.(10分)如图,为测量学校旗杆AB的高度,小明从旗杆正前方3米处的点C出发,沿坡度为i=1:的斜坡CD前进2米到达点D,在点D处放置测角仪,测得旗杆顶部A的仰角为37°,量得测角仪DE的高为1.5米.A、B、C、D、E在同一平面内,且旗杆和测角仪都与地面垂直.(1)求点D的铅垂高度(结果保留根号);(2)求旗杆AB的高度(精确到0.1).(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73.)23.(10分)“万州古红桔”原名“万县红桔”,古称丹桔(以下简称为红桔),种植距今至少已有一千多年的历史,“玫瑰香橙”(源自意大利西西里岛塔罗科血橙,以下简称香橙)现已是万州柑橘发展的主推品种之一.某水果店老板在2017年11月份用15200元购进了400千克红桔和600千克香橙,已知香橙的每千克进价比红桔的每千克进价2倍还多4元.(1)求11月份这两种水果的进价分别为每千克多少元?(2)时下正值柑橘销售旺季,水果店老板决定在12月份继续购进这两种水果,但进入12月份,由于柑橘的大量上市,红桔和香橙的进价都有大幅下滑,红桔每千克的进价在11月份的基础上下降了m%,香橙每千克的进价在11月份的基础上下降了m%,由于红桔和“玫瑰香橙”都深受库区人民欢迎,实际水果店老板在12月份购进的红桔数量比11月份增加了m%,香橙购进的数量比11月份增加了2m%,结果12月份所购进的这两种柑橘的总价与11月份所购进的这两种柑橘的总价相同,求m的值.24.(10分)已知,△ABC中,∠ACB=90°,AC=BC,点E是BC上一点,连接AE.(1)如图1,当∠BAE=15°,CE=时,求AB的长.(2)如图2,延长BC至D,使DC=BC,将线段AE绕点A顺时针旋转90°得线段AF,连接DF,过点B作BG⊥BC,交FC的延长线于点G,求证:BG=BE.五、解答题(本大题共2小题,第25小题10分,第26小题12分,共22分)25.(10分)根据阅读材料,解决问题.数n是一个三位数,各数位上的数字互不相同,且都不为零,从它各数位上的数字中任选两个构成一个两位数,这样就可以得到六个不同的两位数,我们把这六个不同的两位数叫做数n的“生成数”.数n的所有“生成数”之和与22的商记为G(n),例如n=123,它的六个“生成数”是12,13,21,23,31,32,这六个“生成数”的和12+13+21+23+31+32=132,132÷22=6,所以G(123)=6.(1)计算:G(125),G(746);(2)数s,t是两个三位数,它们都有“生成数”,a,1,4分别是s的百位、十位、个位上的数字,x,y,6分别是t的百位、十位、个位上的数字,规定:k=,若G(s)•G(t)=84,求k的最小值.26.(12分)如图1,在平面直角坐标系中,抛物线y=﹣x2﹣x﹣2与x 轴交于A,B两点(点A在点B的左侧),交y轴于点C.(1)求直线AC的解析式;(2)点P是直线AC上方抛物线上的一动点,过点P作PD⊥AC,垂足为D,当线段PD的长度最大时,点Q从点P出发,先以每秒1个单位的速度沿适当的路径运动到y轴上的点M处,再沿MC以每秒3个单位的速度运动到点C停止,当点Q在整个运动中所用时间t最少时,求点M的坐标;(3)如图2,将△BOC沿直线BC平移,平移后B,O,C三点的对应点分别是B′,O′,C′,点S是坐标平面内一点,若以A,C,O′,S为顶点的四边形是菱形,请直接写出所有符合条件的点S的坐标.2018年重庆市中考数学预测试卷参考答案与试题解析一、选择题(本大题共12小题,每小题4分,共48分)1.(4分)在﹣,0,﹣π,﹣1这四个数中,最小的数是()A.﹣ B.0 C.﹣πD.﹣1【分析】根据实数大小比较的方法进行比较即可求解.【解答】解:从小到大排列为:﹣π<﹣<0<1,最小的数是﹣π.故选:C.2.(4分)下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故错误;B、不是轴对称图形,故错误;C、不是轴对称图形,故错误;D、是轴对称图形,故正确.故选:D.3.(4分)下列计算中,正确的是()A.(﹣a2)3=a6B.(ab2)3=ab6C.﹣a2•a3=a6D.(2a3)2=4a6【分析】根据幂的乘方和积的乘方的运算方法,以及同底数幂的乘法的运算方法,逐项判断即可.【解答】解:∵(﹣a2)3=﹣a6,∴选项A不符合题意;∵(ab2)3=a3b6,∴选项B不符合题意;∵﹣a2•a3=﹣a5,∴选项C不符合题意;∵(2a3)2=4a6,∴选项D符合题意.故选:D.4.(4分)下列调查中,调查方式选择合理的是()A.调查你所在班级同学的身高,采用抽样调查方式B.调查市场上某品牌电脑的使用寿命,采用普查的方式C.调查嘉陵江的水质情况,采用抽样调查的方式D.要了解全国初中学生的业余爱好,采用普查的方式【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、调查你所在班级同学的身高,采用抽样调查方式,方法不合理,故此选项错误;B、调查市场上某品牌电脑的使用寿命,采用普查的方式,方法不合理,故此选项错误;C、查嘉陵江的水质情况,采用抽样调查的方式,方法合理,故此选项正确;D、要了解全国初中学生的业余爱好,采用普查的方式,方法不合理,故此选项错误;故选:C.5.(4分)若a=﹣1,则下列结论中正确的是()A.1<a<2 B.2<a<3 C.3<a<4 D.4<a<5【分析】先根据平方数估计:3<<4,从而得出a的范围.【解答】解:∵32=9,∴3<<4,∴2<﹣1<3,即2<a<3,故选:B.6.(4分)如图,已知DE∥BC,CD和BE相交于点O,S△DOE:S△COB=9:16,则DE:BC为()A.2:3 B.3:4 C.9:16 D.1:2【分析】根据相似三角形的面积比即可求出答案.【解答】解:∵DE∥BC,∴△DOE∽△BOC,∴=()2∴故选:B.7.(4分)方程x2+6x﹣5=0的左边配成完全平方后所得方程为()A.(x+3)2=14 B.(x﹣3)2=14 C.(x+3)2=4 D.(x﹣3)2=4【分析】根据配方法的步骤进行配方即可.【解答】解:移项得:x2+6x=5,配方可得:x2+6x+9=5+9,即(x+3)2=14,故选:A.8.(4分)已知a是方程x2﹣3x﹣1=0的一个根,则代数式﹣2a2+6a﹣3的值是()A.﹣5 B.﹣6 C.﹣12﹣2 D.﹣12+2【分析】根据方程的根的定义,把a代入方程求出a2﹣3a的值,然后整体代入代数式进行计算即可得解.【解答】解:∵a是方程x2﹣3x﹣1=0的一个根,∴a2﹣3a﹣1=0,整理得,a2﹣3a=1,∴﹣2a2+6a﹣3=﹣2(a2﹣3a)﹣3,=﹣2×1﹣3,=﹣5.故选:A.9.(4分)如图,正方形ABCD中,AB=,点E是BC上一点,且BE=1,连接AE,以点A为圆心,AE为半径画弧,交CD于点F,交AD的延长线于点G,则图中阴影部分的面积是()A.﹣B.﹣ C.3﹣D.3﹣【分析】根据正方形的性质、勾股定理以及特殊角的三角函数值可得AE=2,∠BAE=30°,进而求得AF=AE=2,DF=1,∠DAF=30°,再根据S阴影FDG=S扇形AFG﹣S△ADF,S阴影ECF=S梯形ABCF﹣S△ABE﹣S扇形AEF列式计算即可得解.【解答】解:∵在△ABE中,∠B=90°,AB=,BE=1,∴AE==2,∠BAE=30°.由题意,可得AF=AE=2,∠ADF=90°,AD=AB=,∴DF==1,∠DAF=30°,∴FC=﹣1,∠EAF=90°﹣∠BAE﹣∠DAF=30°,∴S=S扇形AEF.扇形AFG∵S阴影FDG=S扇形AFG﹣S△ADF,S阴影ECF=S梯形ABCF﹣S△ABE﹣S扇形AEF,∴S阴影=S阴影FDG+S阴影ECF=S扇形AFG﹣S△ADF+S梯形ABCF﹣S△ABE﹣S扇形AEF=S梯形ABCF﹣S△ABE﹣S△ADF=(﹣1+)×﹣××1﹣××1=3﹣.故选:D.10.(4分)下列图形都是由相同大小的按一定规律组成的,其中第①个图形中一共有3个,第②个图形中一共有8个,第③个图形中一共有14个,…,按此规律排列下去,第⑨个图形中的个数为()A.54 B.61 C.71 D.77【分析】观察图形特点,从中找出规律,图形中的个数分别是2+1=3,2+3+3=8,2+3+4+5=14,2+3+4+5+7=21,…,由此得出第n个图形中的个数为+2n ﹣1,再把n=9代入计算即可.【解答】解:第①个图形中的个数是2+1=3,3=+2×1﹣1;第②个图形中的个数是(2+3)+3=8,8=+2×2﹣1;第③个图形中的个数是(2+3+4)+5=14,14=+2×3﹣1;第④个图形中的个数是(2+3+4+5)+7=21,21=+2×4﹣1;…,则第n个图形中的个数为+2n﹣1,当n=9时,即第⑨个图形中的个数为+2×9﹣1=71.故选:C.11.(4分)若数a使关于x的不等式组,有且仅有四个整数解,且使关于y的分式方程﹣=2有整数解,则所有满足条件的整数a的值之和是()A.﹣3 B.﹣2 C.2 D.3【分析】根据不等式的解集,可得a的范围,根据方程的解,可得a的值,根据有理数的加法,可得答案.【解答】解:,解①得x<5,解②得x≥,不等式组的解集是≤x<5.∵仅有四个整数解,∴﹣6≤a<5,﹣=2有整数解,得y=.∵y≠﹣2,∴a≠﹣5,又y=有整数解,∴a=﹣2,a=4,a=1,所有满足条件的整数a的值之和是﹣2+4+1=3,故选:D.12.(4分)如图,点A在反比例函数y=图象的第一象限的那一支上,AB垂直于y轴于点B,点C在x轴正半轴上,且OC=2AB,点E在线段AC上,且EC=AC,点D为OB的中点,若△ADE的面积为5,则k的值为()A.B.10 C.D.12【分析】由AE=3EC,△ADE的面积为3,得到△CDE的面积为1,则△ADC的面积为4,设A点坐标为(a,b),则k=ab,AB=a,OC=2AB=2a,BD=OD=b,利用S=S△ABD+S△ADC+S△ODC得(a+2a)×b=a×b+7+×2a×b,整理梯形OBAC可得ab=,即可得到k的值.【解答】解:连DC,如图,∵EC=AC,△ADE的面积为5,∴△CDE的面积为2,∴△ADC的面积为7,设A点坐标为(a,b),则AB=a,OC=2AB=2a,而点D为OB的中点,∴BD=OD=b,=S△ABD+S△ADC+S△ODC,∵S梯形OBAC∴(a+2a)×b=a×b+7+×2a×b,∴ab=,把A(a,b)代入双曲线y=,∴k=ab=.故选:A.二、填空题(本大题共6小题,每小题4分,共24分)13.(4分)重庆市区的地铁和轻轨全国闻名,世界有名.修建地铁每千米约耗资15230 0000元人民币,数据15230 0000用科学记数法可表示为 1.523×108.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:数据15230 0000用科学记数法可表示为1.523×108,故答案为:1.523×108.14.(4分)计算:3﹣2+(﹣2)0﹣|﹣4|=﹣.【分析】原式第一项利用负整数指数幂法则计算,第二项零指数幂法则计算,第三项利用绝对值意义计算即可得到结果.【解答】解:3﹣2+(﹣2)0﹣|﹣4|,=+1﹣4,=﹣.故答案为:﹣.15.(4分)如图,OA,OB是⊙O的半径,点C在⊙O上,连接AC,BC,若∠ACB=50°,则∠OAB=40度.【分析】先根据圆周角定理求出∠AOB的度数,再由等腰三角形的性质即可得出结论.【解答】解:∵∠ACB=50°,∴∠AOB=100°,∵OA=OB,∴∠OAB==40°,故答案为:40.16.(4分)生命在于运动.运动渗透在生命中的每一个角落,运动的好处就在于让我们的身体保持在健康的状态.小明同学用手机软件记录了11月份每天健步走的步数(单位:万步),将记录结果绘制成了如图所示的统计图.在每天所走的步数这组数据中,中位数是 1.3万步.【分析】中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),据此判断即可.【解答】解:∵共有2+8+7+10+3=30个数据,∴其中位数是第15、16个数据的平均数,而第15、16个数据的平均数均为1.3万步,则中位数是1.3万步,故答案为:1.3.17.(4分)甲、乙两人骑自行车匀速同向行驶,乙在甲前面100米处,同时出发去距离甲1300米的目的地,其中甲的速度比乙的速度快.设甲、乙之间的距离为y米,乙行驶的时间为x秒,y与x之间的关系如图所示.甲到达目的地时,乙距目的地还有米.【分析】根据300秒时,乙到达目的地求出乙的速度,根据50秒时,甲追上乙求出甲的速度,再求出甲走完全程所需的时间,得出这段时间乙行驶的路程,进而求解即可.【解答】解:∵300秒时,乙到达目的地,∵乙的速度为:=4(米/秒).设甲的速度为x米/秒,∵50秒时,甲追上乙,∴50x﹣50×4=100,解得x=6,∴甲走完全程所需的时间为:=(秒),∴甲到达目的地时,乙距目的地还有:1300﹣100﹣×4=(米).故答案为.18.(4分)如图,面积为6的平行四边形纸片ABCD中,AB=3,∠BAD=45°,按下列步骤裁剪和拼图.第一步:如图①,将平行四边形纸片沿对角线BD剪开,得到△ABD和△BCD纸片,再将△ABD纸片沿AE剪开(E为BD上任意一点),得到△ABE和△ADE纸片;第二步:如图②,将△ABE纸片平移至△DCF处,将△ADE纸片平移至△BCG处;第三步:如图③,将△DCF纸片翻转过来使其背面朝上置于△PQM处(边PQ与DC重合,△PQM和△DCF在DC同侧),将△BCG纸片翻转过来使其背面朝上置于△PRN处,(边PR与BC重合,△PRN和△BCG在BC同侧).则由纸片拼成的五边形PMQRN中,BD=,对角线MN长度的最小值为.【分析】根据平移和翻折的性质得到△MPN是等腰直角三角形,于是得到当PM 最小时,对角线MN最小,即AE取最小值,当AE⊥BD时,AE取最小值,过D 作DF⊥AB于F,根据平行四边形的面积得到DF=2,根据等腰直角三角形的性质得到AF=DF=2,由勾股定理得到BD==,根据三角形的面积得到AE===,即可得到结论.【解答】解:∵△ABE≌△CDF≌△PMQ,∴AE=DF=PM,∠EAB=∠FDC=∠MPQ,∵△ADE≌△BCG≌△PNR,∴AE=BG=PN,∠DAE=∠CBG=∠RPN,∴PM=PN,∵四边形ABCD是平行四边形,∴∠DAB=∠DCB=45°,∴∠MPN=90°,∴△MPN是等腰直角三角形,当PM最小时,对角线MN最小,即AE取最小值,∴当AE⊥BD时,AE取最小值,过D作DF⊥AB于F,∵平行四边形ABCD的面积为6,AB=3,∴DF=2,∵∠DAB=45°,∴AF=DF=2,∴BF=1,∴BD==,∴AE===,∴MN=AE=.故答案为:,.三、解答题(本大题共2小题,每小题8分,共16分)19.(8分)已知:如图,∠CDG=∠B,AD⊥BC于点D,EF⊥BC于点F,试判断∠1与∠2的关系,并说明理由.【分析】根据平行线的判定推出DG∥AB和AD∥EF,根据平行线的性质得出∠1=∠BAD和∠2=∠BAD,即可得出答案.【解答】解:∠1=∠2,理由:∵∠CDG=∠B,∴DG∥BA(同位角相等,两直线平行),∴∠1=∠BAD(两直线平行,内错角相等),∵AD⊥BC,EF⊥BC(已知),∴AD∥EF(在同一平面内,垂直于同一直线的两条直线平行),∴∠2=∠BAD(两直线平行,同位角相等),∴∠1=∠2(等量代换).20.(8分)某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级.请根据两幅统计图中的信息回答下列问题:(1)本次抽样调查共抽取了50名学生?测试结果为C等级的学生数是16,并补全条形图;(2)若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两名恰好都是男生的概率.【分析】(1)用A等级的频数除以它所占的百分比即可得到样本容量,用总人数分别减去A、B、D等级的人数得到C等级的人数,然后补全条形图;(2)画树状图展示12种等可能的结果数,再找出抽取的两人恰好都是男生的结果数,然后根据概率公式求解.【解答】解:(1)本次抽样调查抽查的人数为10÷20%=50人,C等级人数为50﹣(10+20+4)=16,补全图形如下:故答案为:50、16;(2)画树状图为:共有12种等可能的结果数,其中抽取的两人恰好都是男生的结果数为2,所以抽取的两人恰好都是男生的概率==.四、解答题(本大题共4小题,每小题10分,共40分)21.(10分)计算:(1)(y+2x)(y﹣2x)﹣4x(2y﹣x);(2)÷(x﹣)【分析】(1)利用平方差公式和单项式乘多项式的法则计算后,再合并同类项即可得;(2)将被除式分子、分母因式分解,同时计算括号内的减法,将除法转化为乘法同时对分母因式分解,最后约分即可得.【解答】解:(1)原式=y2﹣4x2﹣8xy+4x2=y2﹣8xy;(2)原式=÷=•=.22.(10分)如图,为测量学校旗杆AB的高度,小明从旗杆正前方3米处的点C出发,沿坡度为i=1:的斜坡CD前进2米到达点D,在点D处放置测角仪,测得旗杆顶部A的仰角为37°,量得测角仪DE的高为1.5米.A、B、C、D、E在同一平面内,且旗杆和测角仪都与地面垂直.(1)求点D的铅垂高度(结果保留根号);(2)求旗杆AB的高度(精确到0.1).(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73.)(1)延长ED交BC延长线于点H,则∠CHD=90°,Rt△CDH中求得CH=CDcos 【分析】∠DCH=2×=3、DH=CD=;(2)作EF⊥AB,可得EH=BF=1.5+、EF=BH=BC+CH=6,根据AF=EFtan∠AEF≈4.5、AB=AF+BF可得答案.【解答】解:(1)延长ED交射线BC于点H.由题意得DH⊥BC.在Rt△CDH中,∠DHC=90°,tan∠DCH=i=1:.∴∠DCH=30°.∴CD=2DH.∵CD=2,∴DH=,CH=3.答:点D的铅垂高度是米.(2)过点E作EF⊥AB于F.由题意得,∠AEF即为点E观察点A时的仰角,∴∠AEF=37°.∵EF⊥AB,AB⊥BC,ED⊥BC,∴∠BFE=∠B=∠BHE=90°.∴四边形FBHE为矩形.∴EF=BH=BC+CH=6.FB=EH=ED+DH=1.5+.在Rt△AEF中,∠AFE=90°,AF=EFtan∠AEF≈6×0.75≈4.5.∴AB=AF+FB=6+≈6+1.73≈7.7.答:旗杆AB的高度约为7.7米.23.(10分)“万州古红桔”原名“万县红桔”,古称丹桔(以下简称为红桔),种植距今至少已有一千多年的历史,“玫瑰香橙”(源自意大利西西里岛塔罗科血橙,以下简称香橙)现已是万州柑橘发展的主推品种之一.某水果店老板在2017年11月份用15200元购进了400千克红桔和600千克香橙,已知香橙的每千克进价比红桔的每千克进价2倍还多4元.(1)求11月份这两种水果的进价分别为每千克多少元?(2)时下正值柑橘销售旺季,水果店老板决定在12月份继续购进这两种水果,但进入12月份,由于柑橘的大量上市,红桔和香橙的进价都有大幅下滑,红桔每千克的进价在11月份的基础上下降了m%,香橙每千克的进价在11月份的基础上下降了m%,由于红桔和“玫瑰香橙”都深受库区人民欢迎,实际水果店老板在12月份购进的红桔数量比11月份增加了m%,香橙购进的数量比11月份增加了2m%,结果12月份所购进的这两种柑橘的总价与11月份所购进的这两种柑橘的总价相同,求m的值.【分析】(1)可设11月份红桔的进价为每千克x元,香橙的进价为每千克y元,根据等量关系:①用15200元购进了400千克红桔和600千克香橙;②香橙的每千克进价比红桔的每千克进价2倍还多4元;列出方程组求解即可;(2)根据等量关系:12月份所购进的这两种柑橘的总价与11月份所购进的这两种柑橘的总价相同,列出方程求解即可.【解答】解:(1)设11月份红桔的进价为每千克x元,香橙的进价为每千克y 元,依题意有,解得.答:11月份红桔的进价为每千克8元,香橙的进价为每千克20元;(2)依题意有8(1﹣m%)×400(1+m%)+20(1﹣m%)×600(1+2m%)=15200,解得m1=0(舍去),m2=49.6.故m的值为49.6.24.(10分)已知,△ABC中,∠ACB=90°,AC=BC,点E是BC上一点,连接AE.(1)如图1,当∠BAE=15°,CE=时,求AB的长.(2)如图2,延长BC至D,使DC=BC,将线段AE绕点A顺时针旋转90°得线段AF,连接DF,过点B作BG⊥BC,交FC的延长线于点G,求证:BG=BE.【分析】(1)依据∠BAC=45°,∠BAE=15°,可得∠CAE=30°,进而得到Rt△ACE 中,AE=2CE=2,再根据勾股定理可得AC==3,BC=3,即可在Rt△ABC中,由勾股定理可得AB的长;(2)先连接AD,依据AAS判定△ADF≌△ABE,得到DF=BE,再判定△BCG≌△DCF,得出DF=BG,进而得到BG=BE.【解答】解:(1)∵∠ACB=90°,AC=BC,∴△ABC是等腰直角三角形,∴∠BAC=45°,∠BAE=15°,∴∠CAE=30°,∵CE=,∴Rt△ACE中,AE=2CE=2,∴由勾股定理可得,AC==3,∴BC=3,∴Rt△ABC中,由勾股定理可得,AB==3;(2)如图所示,连接AD,线段AE绕点A顺时针旋转90°得线段AF,则AE=AF,∠EAF=90°,∵AC⊥BD,DC=BC,∴AD=AB,∠ABE=∠ADC=45°,又∵DF⊥DC,∴∠ADF=45°=∠ABE,∵∠AFD+∠AED=180°=∠AEB+∠AED,∴∠AFD=∠AEB,∴△ADF≌△ABE,∴DF=BE,∵BG⊥BC,∴∠CBG=∠CDF=90°,又∵BC=DC,∠BCG=∠DCF,∴△BCG≌△DCF,∴DF=BG,∴BG=BE.五、解答题(本大题共2小题,第25小题10分,第26小题12分,共22分)25.(10分)根据阅读材料,解决问题.数n是一个三位数,各数位上的数字互不相同,且都不为零,从它各数位上的数字中任选两个构成一个两位数,这样就可以得到六个不同的两位数,我们把这六个不同的两位数叫做数n的“生成数”.数n的所有“生成数”之和与22的商记为G(n),例如n=123,它的六个“生成数”是12,13,21,23,31,32,这六个“生成数”的和12+13+21+23+31+32=132,132÷22=6,所以G(123)=6.(1)计算:G(125),G(746);(2)数s,t是两个三位数,它们都有“生成数”,a,1,4分别是s的百位、十位、个位上的数字,x,y,6分别是t的百位、十位、个位上的数字,规定:k=,若G(s)•G(t)=84,求k的最小值.【分析】(1)根据G(n)的定义式,分别将n=125和n=746代入G(n)中,即可求出结论;(2)由s=100a+10+4,t=100x+10y+6结合G(s)•G(t)=84和k=即可得出k 关于a的函数,求得a的取值,从而求得k的最小值.【解答】解:(1)G(125)=(12+15+21+25+51+52)÷22=8,G(746)=(74+76+47+46+64+67+)÷22=17;(2)G(s)=(10a+1+10a+4+10+a+14+40+a+41)÷22=(22a+110)÷22=a+5,G(t)=(10x+y+10x+6+10y+x+10y+6+60+x+60+y)÷22=(22x+22y+132)÷22=x+y+6,∴G(s)•G(t)=(a+5)•(x+y+6)=84又∵k===∴k=∵a≥1∴当a=1时k的最小值是:26.(12分)如图1,在平面直角坐标系中,抛物线y=﹣x2﹣x﹣2与x 轴交于A,B两点(点A在点B的左侧),交y轴于点C.(1)求直线AC的解析式;(2)点P是直线AC上方抛物线上的一动点,过点P作PD⊥AC,垂足为D,当线段PD的长度最大时,点Q从点P出发,先以每秒1个单位的速度沿适当的路径运动到y轴上的点M处,再沿MC以每秒3个单位的速度运动到点C停止,当点Q在整个运动中所用时间t最少时,求点M的坐标;(3)如图2,将△BOC沿直线BC平移,平移后B,O,C三点的对应点分别是B′,O′,C′,点S是坐标平面内一点,若以A,C,O′,S为顶点的四边形是菱形,请直接写出所有符合条件的点S的坐标.【分析】(1)利用y=0解方程可得A的坐标,令x=0,可得C的坐标,利用待定系数法可得直线AC的解析式;(2)作辅助线,设P(a,﹣),则点E(a,﹣﹣2),表示PE的长,根据勾股定理求AC=2,证明△PDE∽△AOC,得PD=PE,代入可得新的二次函数,确定其对称轴可得P的坐标;在x轴上取点F(1,0),连接CF并延长,证明△CHM∽△COF,可得t==PM+MH,当P、M、H在同一直线上时,t的值最小,计算KM的长,可得M的坐标;(3)分S在四个象限,画图形讨论各种情况,利用勾股定理列方程解决问题即可.【解答】解:(1)当y=0时,﹣x2﹣x﹣2=0,解这个方程,得:x1=﹣6,x2=﹣1,∴点A(﹣6,0),B(﹣1,0),当x=0时,y=﹣2,∴C(0,﹣2),设直线AC的解析式为:y=ax+b(a≠0),将点A(﹣6,0),C(0,﹣2)代入得:,∴,∴直线AC的解析式为:y=﹣x﹣2;(3分)(2)如图1,过点P作PE∥y轴交直线AC于点E,设P(a,﹣),则点E(a,﹣﹣2),∴PE=(﹣)﹣(﹣﹣2)=﹣﹣2a,∵AO=6,OC=2,∴AC===2,∵∠PDE=∠AOC=90°,∠PED=∠ACO,∴△PDE∽△AOC,∴=,∴PD=PE==﹣﹣,对称轴是:a=﹣3,∵﹣,∴当a=﹣3时,PD的长度最大,此时点P的坐标为(﹣3,2),如图1所示,在x轴上取点F(1,0),连接CF并延长,∴CF===3,∴sin∠OCF==,点M是y轴上一点,过点M作MH⊥CF于点H,由△CHM∽△COF,可知:=,∵t==PM+MH,如图2,当P、M、H在同一直线上时,t的值最小,此时,过P作PK⊥y轴于K,由△PKM∽△COF,可知:=2,∴KM=,∴M(0,),(7分)(3)如图3,当四边形ACSO'是菱形时,过S作SG⊥y轴于G,延长O'C'交x轴于H,∵四边形ACSO'是菱形,∴AO'=AC=SC,AO'∥SC,∴∠AMC=∠BCS,∴∠AO'H+∠MC'O'=∠BCO+∠OCS,∵∠MC'O'=∠BCO,∴∠AO'H=∠OCS,∵∠AHO'=∠CGS,∴△O'AH≌△CSG,∴AH=SG,O'H=CG,Rt△OCB中,sin∠OCB==,∴sin∠BC'H==,设BH=x,则BC'=3x,∴C'H=2x,∴AH=SG=5﹣x,∵O'C'=OC=2,∴C'H=OG=2x,由勾股定理得:AC2=O'A2,∴AO2+OC2=O'H2+AH2,∴=(5﹣x)2+(2+2x)2,解得:x=,当x=时,SG=5﹣x=,OG=2x=,当x=<0时,不符合题意,舍去,SG=5﹣x=,OG=2x=,此时S的坐标为:或;②如图4,过S作SH⊥AO于H,延长O'B'到y轴交于G,∵SE∥CF,EC∥SF,∴四边形SECF是平行四边形,∴∠ESF=∠ECF,∵四边形ASO'C是菱形,∴∠ASO'=∠ACO',∴∠ASH=∠O'CG,同理得:△ASH≌△O'CG,∴AH=O'G,SH=CG,sin∠GCB'==,设GB'=x,则CB'=3x,CG=2x,∴O'G=1+x,由勾股定理得:AC2=O'C2,∴62+(2)2=(2x)2+(x+1)2解得:x=,当x=时,SH=CG=2x=,OH=6﹣AH=6﹣O'G=5﹣x=,当x=<0时,不符合题意,舍去,此时,点S的坐标为:(,);③如图5,AC为对角线时,同理可得S(,)④如图6,过S作SE⊥x轴于E,延长B'O'交y轴于H,延长O'C'交x轴于G,设GB'=x,则CB'=3x,CG=2x,∴O'G=O'H=1+x,∵∠HO'D=∠O'DA=∠EAS,易得△SEA≌△CHO',同理可得S(,);⑤如图7,过S作SH⊥x轴于H,过O'作O'E⊥SH于E,延长C'O'交x轴于G,设OG=x,则BG=1+x,∵O'B'∥BG,∴,∴,∴C'G=2(1+x),∴O'G=C'G﹣C'O'=2x,∴AG=1+x,同理得:62+(2)2=(1+x)2+(2x)2,解得:x1=,x2=(舍),可得S;综上所述,S的坐标为:或或(,)或(,)或(,).(12分)。