半导体物理知识整理
半导体物理归纳总结

半导体物理归纳总结半导体物理是研究半导体材料及其在电子器件中的应用特性的学科领域。
在过去几十年里,半导体技术的飞速发展对我们的生活产生了巨大的影响。
本文将对半导体物理的一些重要概念和原理进行归纳总结,帮助读者更好地理解半导体器件的工作原理及其应用。
1. 半导体的基本概念半导体是介于导体和绝缘体之间的一类物质,具有中等电导率。
它的导电性质可以通过控制掺杂和温度来进行调节。
常见的半导体材料有硅和锗,它们的物理性质决定了半导体器件的性能。
2. 半导体材料的能带结构半导体材料的能带结构直接影响其导电性质。
能带是描述电子能量和电子分布的概念。
在半导体中,价带是最高的填满电子的能带,而导带是电子可以自由移动的能带。
半导体的导电性取决于导带和价带之间的能隙大小。
3. 掺杂与载流子掺杂是将某种杂质引入到半导体材料中,以改变半导体的导电特性。
掺杂可以分为施主掺杂和受主掺杂两种。
施主掺杂会引入额外的自由电子,增加半导体的导电性,而受主掺杂引入额外的空穴,减少导电性。
掺杂后产生的自由电子和空穴被称为载流子,它们在半导体中的运动导致了电流的流动。
4. pn结及其特性pn结是由p型半导体和n型半导体相接触形成的结构。
在pn结中,p区富含空穴,n区富含自由电子。
当p区和n区相接触时,会发生空穴和自由电子的复合过程,形成耗尽区。
耗尽区内形成了电场,阻止了进一步的复合。
这种特殊的结构使得pn结具有整流特性,即在正向偏置下电流可以流动,而在反向偏置下电流几乎不流动。
5. 半导体器件的应用半导体器件包括二极管、场效应晶体管、晶体管等,它们在各种电子设备中起着重要作用。
二极管是一种具有单向导电性的器件,广泛应用在电源供电和信号处理中。
场效应晶体管是一种高度可控的电流放大器,常用于放大和开关电路。
晶体管则是一种功率放大器,被广泛应用在音频和无线通讯领域。
总结:半导体物理是一门涉及半导体材料特性和器件应用的重要学科。
通过对半导体的能带结构、掺杂与载流子、pn结特性以及器件应用的介绍,我们对半导体器件的工作原理有了更深入的理解。
半导体物理知识点总结

半导体物理知识点总结5、半导体中电子的准动量:经典意义上的动量是惯性质量与速度的乘积,即v。
根据教材式(1-1)和式(1-10),对于自由电子v=hk,这是自由电子的真实动量,而在半导体中hk=v;有效质量与惯性质量有质的区别,前者隐含了晶格势场的作用(虽然有质量的量纲)。
因为v与v具有相同的形式,因此称v为准动量。
6、本征激发:共价键上的电子激发成为准自由电子,亦即价带电子吸收能量被激发到导带成为导带电子的过程,称为本征激发。
这一概念今后经常用到。
7、载流子:晶体中荷载电流(或传导电流)的粒子。
金属中为电子,半导体中有两种载流子即电子和空穴,而影响半导体导电性的主要是导带电子和价带空穴。
8、回旋共振实验:目的是测量电子的有效质量,以便采用理论与实验相结合的方法推出半导体的能带结构。
为能观测出明显的共振吸收峰,就要求样品纯度要高,而且实验一般在低温下进行,交变电磁场的频率在微波甚至在红外光的范围。
实验中常是固定交变电磁场的频率,改变磁感应强度以观测吸收现象。
磁感应强度约为零点几T。
等能面的形状与有效质量密切相关,对于球形等能面,有效质量各向同性,即只有一个有效质量;对于椭球等能面,有效质量各向异性,即在不同的波矢方向对应不同的有效质量。
9、横向有效质量沿椭球短轴方向,纵向有效质量沿椭球长轴方向。
10、直接带隙半导体是指导带极小值与价带极大值对应同一波矢;间接带隙半导体是指导带极小值与价带极大值对应不同的波矢。
本章要求掌握的内容及考点:——本章要求熟练掌握基本的物理原理和概念——考题主要涉及填空、名词解释和简答题(物理过程的解释)1、以上基本概念和名词术语的解释。
2、熟悉金刚石型结构与闪锌矿型结构晶胞原子的空间立体分布及硅、锗、砷化镓晶体结构特点,晶格常数,原子密度数量级(1022个原子/立方厘米)。
3、掌握能带形成的原因及电子共有化运动的特点;掌握实际半导体的能带的特点。
4、掌握有效质量的意义及计算公式,速度的计算方法,正确理解半导体中电子的加速度与外力及有效质量的关系,正确理解准动量及其计算方法,准动量的变化量应为。
半导体物理知识点总结(最新最全)

一、半导体物理知识大纲➢核心知识单元A:半导体电子状态与能级(课程基础——掌握物理概念与物理过程、是后面知识的基础)→半导体中的电子状态(第1章)→半导体中的杂质和缺陷能级(第2章)➢核心知识单元B:半导体载流子统计分布与输运(课程重点——掌握物理概念、掌握物理过程的分析方法、相关参数的计算方法)→半导体中载流子的统计分布(第3章)→半导体的导电性(第4章)→非平衡载流子(第5章)➢核心知识单元C:半导体的基本效应(物理效应与应用——掌握各种半导体物理效应、分析其产生的物理机理、掌握具体的应用)→半导体光学性质(第10章)→半导体热电性质(第11章)→半导体磁和压阻效应(第12章)二、半导体物理知识点和考点总结第一章半导体中的电子状态本章各节内容提要:本章主要讨论半导体中电子的运动状态。
主要介绍了半导体的几种常见晶体结构,半导体中能带的形成,半导体中电子的状态和能带特点,在讲解半导体中电子的运动时,引入了有效质量的概念。
阐述本征半导体的导电机构,引入了空穴散射的概念。
最后,介绍了Si、Ge和GaAs的能带结构。
在1.1节,半导体的几种常见晶体结构及结合性质。
(重点掌握)在1.2节,为了深入理解能带的形成,介绍了电子的共有化运动。
介绍半导体中电子的状态和能带特点,并对导体、半导体和绝缘体的能带进行比较,在此基础上引入本征激发的概念。
(重点掌握)在1.3节,引入有效质量的概念。
讨论半导体中电子的平均速度和加速度。
(重点掌握)在1.4节,阐述本征半导体的导电机构,由此引入了空穴散射的概念,得到空穴的特点。
(重点掌握)在1.5节,介绍回旋共振测试有效质量的原理和方法。
(理解即可)在1.6节,介绍Si、Ge的能带结构。
(掌握能带结构特征)在1.7节,介绍Ⅲ-Ⅴ族化合物的能带结构,主要了解GaAs的能带结构。
(掌握能带结构特征)本章重难点:重点:1、半导体硅、锗的晶体结构(金刚石型结构)及其特点;三五族化合物半导体的闪锌矿型结构及其特点。
半导体物理知识总结

单电子近似假设每个电子是在周期性排列且固定不动的原子核势场及其他电子的平均势场中运动。
该势场是具有与晶格同周期的周期性势场共有化运动由于电子壳层的交叠,电子不再完全局限在某一个原子上,可以由一个原子转移到相邻的原子上去,因而,电子将可以在整个晶体中运动空穴通常把价带中空着的状态看成是带正电的例子电子有效质量有效质量概括了半导体内部势场作用,使得在解决半导体中电子在外力作用的运动规律时,可以不涉及到半导体内部势场的作用。
特点:1.有效质量由材料确定的2.有效质量可以用实验来测定3. 由于晶体各向异性,有效质量也各向异性。
半导体中的载流子:能够导电的自由粒子。
电子:带负电的导电载流子,是价电子脱离原子束缚后形成的自由电子,对应于导带中占据的电子。
空穴:带正电的导电载流子,对应于价带中的电子空位。
本征导电是由相同数目的电子和空穴所构成的混合导电性。
直接带隙硅和锗的导带底和价带顶在k空间处于不同的k值。
简介带隙GaAs的导带的极小值点和价带的极大值点为于K空间的同一点。
间隙式杂质杂质原子位于晶格原子之间的间隙位置。
替位式杂质杂质原子取代晶格原子而位于格点位置。
杂质的补偿作用施主和受主之间相互抵消的作用。
深、浅能级杂质杂质能级距离导带底,价带顶都比较远、近。
热平衡状态在一定温度下,这两个相反的过程之间将建立起动态平衡。
热平衡载流子半导体中的导电电子浓度和空穴浓度都保持一个稳定的数值,这种处于热平衡状态下的导电电子和空穴成为~。
非平衡状态一定温度下,在外界作用下(光照、电场),半导体载流子浓度发生变化,偏离热平衡状态,这种状态就是非平衡状态。
非平衡载流子比平衡状态多出来的这部分载流子。
非热平衡载流子寿命非平衡载流子在半导体中的生存时间称为非子寿命。
复合几率一个非平衡子,在单位时间内发生复合的次数。
准平衡态非平衡态体系中,通过载流子与晶格的相互作用,导带电子子系和价带空穴子系分别很快与晶格达到平衡。
准费米能级E F n , E F P—用以替代E F ,描述导带电子子系和价带空穴子系局部的费米能级引入意义。
半导体物理知识要点总结

第一章 半导体的能带理论1. 基本概念✧ 共有化运动:原子组成晶体后,由于电子壳层的交叠,电子不在局限在某一个原子上,可以由一个原子转移到相邻的原子上去,因而电子可以在整个晶体中运动,这种运动称为电子的共有化运动。
✧ 单电子近似:假设每个电子是在大量周期性排列且固定不动的原子核势场及其他电子的平均势场中运动。
该势场也是周期性变化的。
✧ 能带的形成:原子相互接近,形成壳层交替→电子共有化运动→能级分裂(分成允带、禁带)→形成能带✧ 能带:晶体中,电子的能量是不连续的,在某些能量区间能级分布是准连续的,在某些区间没有能及分布。
这些区间在能级图中表现为带状,称之为能带。
✧ 价带:P6✧ 导带:P6✧ 禁带:P5✧ 导体✧ 半导体✧ 绝缘体的能带✧ 本征激发:价带上的电子激发成为准自由电子,即价带电子激发成为导带电子的过程,称为本征激发。
✧ 空穴:具有正电荷q 和正有效质量的粒子✧ 电子空穴对✧ 有效质量:有效质量是在描述晶体中载流子运动时引进的物理量。
它概括了周期性势场对载流子运动的影响,从而使外场力与加速度的关系具有牛顿定律的形式。
其大小由晶体自身的E-k 关系决定。
✧ 载流子及载流子浓度2. 基本理论✧ 晶体中的电子共有化运动✧ 载流子有效质量的物理意义 :当电子在外力作用下运动时,它一方面受到外电场力f的作用,同时还和半导体内部原子、电子相互作用着,电子的加速度应该是半导体内部势场和外电场作用的综合效果。
但是,要找出内部势场的具体形式并且求得加速度遇到一定的困难,引进有效质量后可使问题变得简单,直接把外力f 和电子的加速度联系起来,而内部势场的作用则由有效质量加以概括,使得在解决半导体中电子在外力作用下的运动规律时,可以不涉及半导体内部势场的作用。
第二章 半导体中的杂质与缺陷能级1. 基本概念✧ 杂质存在的两种形式:间隙式杂质:杂质原子位于晶格原子间的间隙位置。
替位式杂质:杂质原子取代晶格原子而位于晶格点处。
半导体物理学知识重点总结

(4 分)
2m 3.1 已知半导体导带底的状态密度函数的表达式为 g ( E ) 4V
c
h
3
E Ec 1 2
(3 分)
试证明非简并半导体导带中电子浓度为 n0 证明:对于非简并半导导,由于
2m 2
n
k0T h3
*
32
Ec EF exp k T 0
当晶体受到电磁波辐射时, 在频率为 c 时便观测到共振吸收现象。 1.6 直接带隙材料 如果晶体材料的导带底和价带顶在 k 空间处于相同的位置,则本征跃迁属直接跃迁,这样的材料即是所谓的直 接带隙材料。 1.6 间接带隙材料 如果半导体的导带底与价带顶在 k 空间中处于不同位置,则价带顶的电子吸收能量刚好达到导带底时准动量还 需要相应的变化 第二章 半导体杂质和缺陷能级 2.1 施主杂质受主杂质 某种杂质取代半导体晶格原子后,在和周围原子形成饱和键结构时,若尚有一多余价电子,且该电子受杂质束
5
半導體物理知識點總結附重要名詞解釋
半導體物理知識點總結附重要名詞解釋
半導體物理知識點要點
第一章 半导体电子状态 1.1 半导体 通常是指导电能力介于导体和绝缘体之间的材料,其导带在绝对零度时全空,价带全满,禁带宽度较绝缘体 的小许多。 1.2 能带 晶体中,电子的能量是不连续的,在某些能量区间能级分布是准连续的,在某些区间没有能及分布。这些 区间在能级图中表现为带状,称之为能带。 1.2 能带论是半导体物理的理论基础,试简要说明能带论所采用的理论方法。 答:能带论在以下两个重要近似基础上,给出晶体的势场分布,进而给出电子的薛定鄂方程。通过该方程和周期性 边界条件最终给出 E-k 关系,从而系统地建立起该理论。 单电子近似: 将晶体中其它电子对某一电子的库仑作用按几率分布平均地加以考虑,这样就可把求解晶体中电子波函数的复杂的 多体问题简化为单体问题。 绝热近似:近似认为晶格系统与电子系统之间没有能量交换,而将实际存在的这种交换当作微扰来处理。 1.金刚石 1) 结构特点: a. 由同类原子组成的复式晶格。其复式晶格是由两个面心立方的子晶格彼此沿其空间对角线位移 1/4 的长度形成 b. 属面心晶系,具立方对称性,共价键结合四面体。 c. 配位数为 4,较低,较稳定。(配位数:最近邻原子数) d. 一个晶体学晶胞内有 4+8*1/8+6*1/2=8 个原子。 2) 代表性半导体:IV 族的 C,Si,Ge 等元素半导体大多属于这种结构。 2.闪锌矿 1) 结构特点: a. 共价性占优势,立方对称性; b. 晶胞结构类似于金刚石结构,但为双原子复式晶格; c. 属共价键晶体,但有不同的离子性。 2) 代表性半导体:GaAs 等三五族元素化合物均属于此种结构。 3.电子共有化运动: 原子结合为晶体时,轨道交叠。外层轨道交叠程度较大,电子可从一个原子运动到另一原子中,因而电子可在 整个晶体中运动,称为电子的共有化运动。 k ( x) uk ( x)ei 2kx 4.布洛赫波: 晶体中电子运动的基本方程为: ,K 为波矢,uk(x)为一个与晶格同周期的周期性 uk ( x) uk ( x na) 函数, 5.布里渊区: 禁带出现在 k=n/2a 处,即在布里渊区边界上; 允带出现在以下几个区: 第一布里渊区:-1/2a<k<1/2a (简约布里渊区) 第二布里渊区:-1/a<k<-1/2a,1/2a<k<1/a E(k)也是 k 的周期函数,周期为 1/a,即 E(k)=E(k+n/a),能带愈宽,共有化运动就更强烈。 1.2 导带与价带 1.3 有效质量 有效质量是在描述晶体中载流子运动时引进的物理量。它概括了周期性势场对载流子运动的影响,从而使外场 力与加速度的关系具有牛顿定律的形式。其大小由晶体自身的 E-k 关系决定。
半导体物理知识点汇总总结

半导体物理知识点汇总总结一、半导体物理基本概念半导体是介于导体和绝缘体之间的材料,它具有一些导体和绝缘体的特性。
半导体是由单一、多层、回交或互相稀释的混合晶形的二元、三元或多元化合物所组成。
它的特点是它的电导率介于导体和绝缘体之间,是导体的电导率∗101~1015倍,是绝缘体的电导率÷102~103倍。
半导体材料具有晶体结构,对它取决于结晶度的大小,织排效应特别大。
由于它的电导率数值在半导体晶体内并不等同,所以它是隔离的,具有相当大的飞行束度,并且不容易受到外界的干扰。
二、半导体晶体结构半导体是晶体材料中最均匀最典型的材料之一,半导体的基本结构是一个由原子排成的一种规则有序的晶体结构。
半导体原子是立方体的晶体,具有600个原子的立方体晶体结构,又称之为立方的晶体结构。
半导体晶体结构的代表性六面体晶体结构,是一种由两个或两个以上的六面全部说构成的立方晶体。
半导体晶体的界面都是由两个或两个以上的六面全部说构成的晶体包围构成,是由两个或两个以上的六面全部说构成的立方晶体。
半导体晶体的界面都是由两个或两个以上的六面全部说构成的晶点构成,是由两个或两个以上的六面全部说构成的晶点构成。
三、半导体的能带结构半导体的能带“带”是指其电子是在“带”中运动的,是光电子带,又称作价带,当其中的自由电子都填满时另一种平面,又称导电带,当其中的自由电子并不填满时其另一种平面在有一些能够使电子轻易穿越的东西。
半导体的能带是由两个非常临近的能带组成的,其中价带的最上一层电子不足,而导电带的下一层电子却相当到往动能,这一些动能可能直到加到电子摆脱它自己体原子,变成自由电子,并且在整体晶体里自由活动。
四、半导体的导电机理半导体的导电机理是在外加电压加大时一部分自由电子均可以在各自能带中加速骚扰,从而增加在给导电子处所需要的电压增大并最终触碰到另一种平面上产生电流就可以。
五、半导体的掺杂掺杂是指在纯净半导体中加入某些以外杂质元素的行为。
半导体物理知识点梳理

半导体物理知识点梳理简介半导体物理学是研究半导体材料的电子结构、载流子动力学和半导体器件工作原理的学科。
它是现代微电子工业的基础和前提,包含了多种复杂的物理过程和电子器件设计原理。
在集成电路中,半导体物理学的研究对于我们理解电子器件的工作原理和提高器件性能至关重要。
一、半导体材料的电子结构1. 能带能带是指材料中的能量电子集合,可以被电子占据或空出来。
常见的能带包括价带和导带。
价带中的电子与原子核共享一个价电子对,导带则含有未占据的电子。
导带和价带之间的区域称为禁带,其中没有可用的能级,这使得该区域没有自由电子。
禁带宽度决定了材料的导电性质。
2. 牛顿力学与量子力学经典物理学,如牛顿力学,不能完全描述电子在原子中的行为,因此计算价带和导带的能量需要借助量子力学。
量子力学通过考虑波粒二象性和不确定性原理,说明电子存在于这两个能带中,以及它们的位置和能量。
3. 材料的类型半导体凭借其调谐电子运动的能力而成为电子器件的主要材料之一。
半导体材料通常可以划分为晶体(单晶或多晶)和非晶体,前者由规则排列的原子构成,后者则表现为无序空间结构。
二、载流子动力学1. 载流子类型在材料中,载流子是指负电荷(电子)或正电荷(空穴),它们的运动是电流传导的主要过程。
半导体中的载流子种类包括电子和空穴。
这些载流子的输运以及它们的沟通将直接影响材料的电学行为。
2. 拉曼散射与荷质比拉曼散射是一种通过材料中的声子色散特性筛选其材料类型和结构的方法。
这可以帮助确定载流子的荷质比,荷质比是电荷与带负荷的质量之比。
荷质比是半导体的一个关键参数,它决定了载流子的涵盖区域和速度。
3. 面掺杂多数半导体材料中的电子和空穴浓度是非常低的,这导致了它们的电导率较低。
通过面掺杂,半导体的电导率可以得到提高。
面掺杂涉及向材料表面引入杂质原子,这些原子具有带电性质以及能影响材料电荷载流子浓度的能力。
三、半导体器件工作原理1. 篱截型场效应晶体管篱截型场效应晶体管(MESFET)是一种单极型晶体管器件,它是通过在材料中形成门结构,控制源引线到漏引线通道上电子流的芯片。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
根底知识1.导体,绝缘体和半导体的能带结构有什么不同?并以此说明半导体的导电机理〔两种载流子参与导电〕与金属有何不同?导体:能带中一定有不满带半导体:T=0K,能带中只有满带和空带;T>0K,能带中有不满带禁带宽度较小,一般小于2eV绝缘体:能带中只有满带和空带禁带宽度较大,一般大于2eV在外场的作用下,满带电子不导电,不满带电子可以导电总有不满带的晶体就是导体,总是没有不满带的晶体就是绝缘体半导体不时最容易导电的物质,而是导电性最容易发生改变的物质,用很方便的方法,就可以显著调节半导体的导电特性金属中的电子,只能在导带上传输,而半导体中的载流子:电子和空穴,却能在两个通道:价带和导带上分别传输信息2.什么是空穴?它有哪些根本特征?以硅为例,对照能带结构和价键结构图理解空穴概念。
当满带附近有空状态k’时,整个能带中的电流,以及电流在外场作用下的变化,完全如同存在一个带正电荷e和具有正有效质量|m n* | 、速度为v(k’)的粒子的情况一样,这样假想的粒子称为空穴3.半导体材料的一般特性。
电阻率介于导体与绝缘体之间对温度、光照、电场、磁场、湿度等敏感〔温度升高使半导体导电能力增强,电阻率下降;适当波长的光照可以改变半导体的导电能力〕性质与掺杂密切相关〔微量杂质含量可以显著改变半导体的导电能力〕4.费米统计分布与玻耳兹曼统计分布的主要差异是什么?什么情况下费米分布函数可以转化为玻耳兹曼函数。
为什么通常情况下,半导体中载流子分布都可以用玻耳兹曼分布来描述。
费米分布受到了泡利不相容原理的限制,而在E-EF>>k0T的条件下,泡利原理失去作用,可以化简为玻尔兹曼分布。
在半导体中,最常遇到的情况是费米能级EF位于禁带内,而且与导带底和价带顶的距离远大于k0T,所以,对导带中的所有量子态来说,被电子占据的概率一般都满足f(E)<<1,故半导体导带中的电子分布可以用电子的玻尔兹曼分布函数描写5.由电子能带图中费米能级的位置和形态〔如,水平、倾斜、分裂〕,分析半导体材料特性。
水平:热平衡倾斜:费米能级朝哪边下倾斜,电子就往哪个方向流动,而电流的流动就是相反的方向,倾斜越大,电子流动程度越强,电流越大分裂:掺杂〔准费米能级〕6.何谓准费米能级?它和费米能级的区别是什么?当外界有很大能量注入,或者很多载流子注入时,载流子的数量会发生突然的变化,不再遵循费米-狄拉克分布,费米能级的调控暂时失灵当半导体的平衡态被破坏,而且存在非平衡载流子时,分别就价带和导带中的电子讲,他们各自根本上处于平衡态,而导带和价带之间处于不平衡态,因而,费米能级和统计分布函数对导带和价带各自仍然是适用的,它们都是局部费米能级,成为“准费米能级〞电子和空穴的准费米能级的差反映了半导体偏离平衡态的程度。
当电子的准费米能级和空穴的准费米能级相重合时,形成统一费米能级,系统处于热平衡状态7.比拟Si,Ge,GaAs能带结构的特点,并说明各自在不同器件中应用的优势。
硅的价带顶在中心点k=0处,导带底不在中心点k=0处,而是沿[100]轴,位于布里渊区中心至边缘0.85倍处锗的价带顶在中心点k=0处,导带底也不在中心点k=0处,而是沿[111]轴,导带极小值正好位于布里渊区边界砷化镓的价带顶在中心点k=0处,,导带能量的最小值位于k=0处,在[111]和[100]方向布里渊区边界L和X处还各有一个极小值。
砷化镓的导带底和价带顶对应的k值相同硅和锗是间接带隙半导体,砷化镓是直接带隙半导体砷化镓用于制备发光器件时,其内部量子效率较高8.重空穴,轻空穴的概念。
硅、锗、砷化镓存在极大值相重合的两个价带重空穴:外能带曲率小,对应的有效质量大轻空穴:内能带曲率大,对应的有效质量小9.有效质量、状态密度有效质量、电导有效质量概念。
10.什么是本征半导体和本征激发?本征半导体:没有杂质和缺陷的纯洁的半导体本征激发:T>0K时,电子从价带激发到导带,同时价带中产生空穴本征半导体的费米能级Ei根本位于禁带中央11.何谓施主杂质和受主杂质?浅能级杂质与深能级杂质?各自的作用。
V族元素在硅、锗中电离时能够释放电子而产生导电电子并形成正电中心,称此类杂质为施主杂质或n型杂质被施主杂质束缚的电子的能量状态称为施主能级,记为ED。
施主杂质电离后成为不可移动的带正电的施主离子,同时向导带提供电子,使半导体成为电子导电的n型半导体III族元素在硅、锗中电离时能够接受电子而产生导电空穴并形成负电中心,称此类杂质为受主杂质或p型杂质被受主杂质束缚的空穴的能量状态称为受主能级,记为EA。
受主杂质电离后成为不可移动的带负电的受主离子,同时向价带提供空穴,使半导体成为空穴导电的p型半导体电离能小的杂质称为浅能级杂质。
施主能级靠近导带底,受主能级靠近价带顶。
室温下,掺杂浓度不很高的情况下,浅能级杂质几乎可以全部电离。
浅能级杂质电离能比禁带宽度小得多,杂质种类对半导体的导电性影响很大优点:室温下有很低的电离能,可以进行追加式的浓度控制非III、V族元素在硅、锗的禁带中产生的施主能级距离导带底较远和受主能级距离价带顶较远,形成深能级,称为深能级杂质。
有些深能级杂质会发生屡次电离,在禁带中产生对应的多个能级,有的深能级杂质既能引入施主能级,又能引入受主能级特点:不容易电离,对载流子浓度影响不大;深能级杂质能够产生屡次电离,每次电离均对应一个能级,甚至既产生施主能级也产生受主能级;深能级杂质的复合作用比浅能级杂质强,可作为复合中心12.何谓杂质补偿?举例说明有何实际应用。
半导体中存在施主杂质和受主杂质时,它们的共同作用会使载流子减少,这种作用称为杂质补偿在制造半导体器件的过程中,通过采用杂质补偿的方法来改变半导体某个区域的导电类型或电阻率利用杂质的补偿作用,根据扩散或离子注入的方法来改变半导体某一区域的导电类型,制成各种器件。
例如:在一块n 型半导体基片的一侧掺入较高浓度的受主杂质,由于杂质的补偿作用,该区就成为p型半导体13.金原子的带电状态与浅能级杂质的关系?14.画出〔a〕本征半导体、〔b〕n型半导体、〔c〕p型半导体的能带图,标出费米能级、导带底、价带顶、施主能级和受主能级的位置15.重掺杂的半导体其能带结构会发生何种变化?能带图中,杂质能级就不再是一根根分立的曲线,而是一条具有一定宽度的杂质能带。
如果掺杂浓度过高,杂质能带会进入导带或价带,与导带或价带相连形成新的简并能带,使半导体变成简并半导体,能带状态密度变化,禁带宽度变窄16.何谓非简并半导体、简并半导体?简并化条件?当费米能级距导带和价带位置都较远时,导带/价带上的电子/空穴数量很少,因此不太容易出现多个能态电子处于同一能级的简并情况,利用玻尔兹曼分布近似费米分布,称这种半导体为非简并半导体繁殖如果费米能级靠近导带或价带,那么会出现电子/空穴拥挤,发生载流子煎饼华,被迫使用泡利不相容原理对电子/空穴加以限制,因此不可用玻尔兹曼分布近似费米分布,称为简并半导体E C -EF >2k 0T 非简并0< E C -E F <2k 0T 弱简并E C -EF <0 简并17.写出热平衡时, 非简并半导体 的表达式,n 0、p 0用n i 表示的表达式。
18.n 型、p 型〔包括同时含有施主和受主杂质〕半导体的电中性方程。
19.解释载流子浓度随温度的变化关系,并说明为什么高温下半导体器件无法工作。
一定的半导体材料,其本征载流子浓度随温度T 的升高而迅速增加一般半导体器件中,载流子主要来源于杂质电离,本征激发忽略不计,而当温度足够高,本征激发占主要地位,器件就不能正常工作〔极限工作温度〕20.温度、杂质浓度对费米能级位置的影响。
21.热平衡态、非平衡态、稳态概念.22.非平衡状态下载流子浓度表达式〔用准费米能级表示〕,比拟平衡与非平衡-+AD p n p n ,,,00下电子浓度n和空穴浓度p的乘积。
载流子的各种运动1.何谓直接复合?间接复合?载流子的产生和复合:电子和空穴增加和消失的过程直接复合:导带电子与价带空穴直接复合间接复合:通过位于禁带中的杂质或缺陷能级的中间过渡外表复合:在半导体外表发生的复合过程2.推导直接复合的非平衡载流子寿命公式,从直接复合的非平衡载流子寿命公式出发说明小注入条件下,寿命为定值。
3.了解间接复合的净复合率公式中各参量代表的意义,并从间接复合的净复合率公式出发说明深能级是最有效的复合中心。
E t=E i时,净复合率U取最大值,偏离越多,U越小。
这意味着复合中心能级的位置越靠近禁带中央,复合中心的复合作用越强。
当复合中心偏离禁带中央时,假设靠近导带一侧,俘获电子的能力会增强,但是对空穴的俘获能力却下降了,这样使得总的复合作用减弱,反之也然。
当复合中心能级处禁带中央时,复合中心的复合作用最强,这是非平衡载流子的寿命到达极小值。
因此,通过掺入深能级杂质来降低非平衡载流子寿命4.间接复合的非平衡载流子寿命公式的一般形式,会化简不同费米能级位置下的寿命公式。
5. 半导体的主要散射机制?温度对它们的影响,原因?散射是指运动粒子受到力场〔或势场〕的作用时运动状态发生变化的一种现象晶格振动散射:温度越高,晶格振动越强,晶格散射越强电离杂质散射:温度越高,载流子速度越高,越容易掠过杂质中心,散射越弱对于杂质含量较多的半导体,温度很低时,晶格振动产生的声子数很少,因此电离杂质散射起主要作用,随着温度的升高,晶格振动产生的声子越来越多,晶格振动散射将呈现主导作用载流子的散射决定了载流子的平均自由时间,从而决定了载流子迁移率和电导率载流子的复合决定了非平衡载流子的寿命6. 何谓漂移运动?外加一定电场后,就会使载流子在电场方向的速度分量比其他方向大,从而呈现定向运动的态势,产生电流。
由电场引起的载流子的定向运动称为漂移运动,定向运动的速度成为漂移速度,由此产生的电流称为漂移电流7. 迁移率的定义、量纲。
影响迁移率的因素。
在弱电场范围内,平均漂移速度的大小与电场强度成正比,比例系数用μ表示,称为迁移率,表示单位场强下电子的平均漂移速度,单位是m2/V*s,习惯上只取正值。
迁移率的大小反映了载流子迁移的难易程度有效质量,散射。
载流子本身的有效质量越大,移动就越困难;载流子运动时遭受的散射越频繁,移动也会越困难8. 解释迁移率与杂质浓度、温度的关系。
杂质浓度升高,电离杂质散射上升,迁移率下降掺杂很轻,忽略电离杂质散射温度↑,晶格振动散射↑,μ↓一般情况下:低温:电离杂质散射为主温度↑,电离杂质散射↓,μ↑高温:晶格振动散射为主温度↑,晶格振动散射↑,μ↓随温度升高,晶格振动散射增强,载流子的平均自由时间变小,由此迁移率下降对于掺杂半导体,两种散射机制都必须考虑,温度很低时,晶格振动微弱,这是电离杂质散射占主导地位,电离杂质散射随温度升高反而减小,因此迁移率随温度升高增大的。