核医学最新整理

合集下载

核医学汇总

核医学汇总

核医学汇总1、核医学的定义:是一门研究核素和核射线在医学中的应用及其理论的学科,即应用放射性核素及其标记化合物或生物制品进行疾病诊治和生物医学研究。

在反映脏器或组织的血流、受体密度和活性、代谢、功能变化方面有独特的优势。

2、核医学的分类:实验核医学和临床核医学3、实验核医学:利用核技术探索生命现象的本质和物质变化规律,其内容主要包括核衰变测量、标记、示踪、体外放射分析、活化分析和放射自显影等。

4、临床核医学:是利用开放型放射性核素诊断和治疗疾病的临床医学学科,由诊断和治疗两部分组成。

5、临床核医学分类:诊断核医学和治疗核医学6、诊断核医学:包括以脏器显像和功能测定为主要内容的体内(in vivo)诊断法和以体外放射分析为主要内容的体外(in vitro)诊断法。

7、治疗核医学:是利用放射性核素发射的核射线对病变进行高度集中照射治疗。

8、核医学的特点:1、安全、无创2、分子功能现象3、超敏感和特异性强4、定量分析5、同时提供形态解剖和功能代谢信息。

9、分子功能影像:核医学功能代谢显像是现代医学影像的重要组成内容之一,其显像原理与X线、B超、计算机体层摄影(CT)和核磁共振(MR)等检查截然不同,它通过探测接收并记录引入体内靶组织或器官的放射性示踪物发射的γ射线,并以影像的方式显示出来,这不仅可以显示脏器或病变的位置、形态、大小等解剖学结构,更重要的是可以同时提供有关脏器和病变的血流、功能、代谢甚至是分子水平的化学信息,有助于疾病的早期诊断。

单光子发射型计算机断层仪(SPECT)和正电子发射型计算机断层仪(PET)10、锝-99m(99mTc)特点:核性能优良,为纯γ光子发射体,能量140keV,T1/2为6.02h,99mT c是现象检查中最常用的放射性核素。

11、氟[18F]脱氧葡萄糖(18F-FDG)是目前临床应用最为广泛的正电子放射性药物。

131I是治疗甲状腺疾病最常用的放射性药物12、放射核素发生器是从长半衰期的核素(称为母体)中分离短半衰期的核素(称为子体)的装置。

(完整版)核医学重点

(完整版)核医学重点

核医学第一章1。

放射性核素:是一类原子核能自发的,不受外界影响也不受元素所处状态的影响,只和时间有关而转变成其它原子核的核素。

2放射性活度:单位时间内发生衰变的原子核数。

3元素:指质子数、核外电子数和化学性质都相同的同一类原子.4核素:质子数,中子数,能量状态均相同的原子称为核素。

5同位素:质子数相同,中子数不同的元素互称同位素。

6同质异能素:质子数相同,中子数相同,而处于不同能量状态的元素.7电离:带电粒子通过物质时和物质原子的核外电子发生静电作用,使电子脱离原子轨道而形成自由电子的过程。

8激发:原子的电子所获得的能量不足以使其脱离原子,而只能从内层轨道跳到外层轨道,是原子从稳定状态变成激发状态的作用。

9湮灭辐射:正电子衰变产生的正电子,在介质中运行一定距离,当其能量耗尽时可与物质中的自由电子结合,而转化为两个方向相反、能量各自为0。

511MeV的y光子而自身消失的现象。

10光电效应:y光子和原子中的内层壳层电子相互作用,将全部能量交给电子,使其脱离原子成为自由光子的过程。

11康普顿效应:能量较高的y光子与原子核中的核外电子作用时,只将部分能量传递给核外电子,使其脱离原子核束缚成为高速运行的自由电子,而y光子本身能量降低、运行方向发生改变的现象.12有效半衰期:由于物理衰变与生物代谢共同作用而使体内放射性核素减少一半所需要的时间。

13放射性核素的特点是什么?放射性核素具有核衰变和物理半衰期两个特点。

(1)核衰变是指不稳定的核素自发放出射线转变成另一种核素的过程,包括a,B+,B—,y衰变。

(2)物理半衰期是指放射性核素从No衰变到No的一半所需要的时间.14核衰变的方式?a衰变:不稳定原子核放出a粒子(即一个氦核)转变成另一个核素的过程。

每次衰变母核便失去两个质子和两个中子。

B+衰变:指放射性核素放出B+的衰变。

每次衰变时核中一个质子转化为中子,同时释放出一个正电子及一个中微子。

B—衰变:指放射性核素放出B-的衰变。

核医学知识点整理

核医学知识点整理

核医学整理核医学显像核医学的PET、SPECT显像侧重于显示功能、血流、代谢、受体、配体等的改变,能早期为临床、科研提供有用的信息。

1.通过放射性核素显像仪(如SPECT)对选择性聚集在或流经特定脏器或病变的放射性核素或其标记物发射出的具一定穿透力的射线进行探测后以一定的方式在体外成像,借以判断脏器或组织的形态、位置、大小、代谢及其功能变化,从而对疾病实现定位、定性、定量诊断的目的。

2.基本条件:用于示踪的放射性核素能够在靶组织或器官中与邻近组织之间形成放射性分布的差异。

3.用于显像的放射性核素或其标记物通称为显像剂(imaging agent),显像剂在机体内的生物学特性决定了显像的主要机制4.诊断和治疗用(含正电子)体内放射性药品浓集原理1)合成代谢2)细胞吞噬3)循环通路:血管、蛛网膜下腔或消化道,暂时性嵌顿。

4)选择性浓聚5)选择性排泄6)通透弥散7)离子交换和化学吸附8)被动扩散9)生物转化10)特异性结合11)竞争性结合12)途径和容积指示5.核医学仪器的基本结构:探头、前置放大器、主放大器、甄别器、定标电路、数字显示器常用显像仪器:γ照相机、SPECT、PET等。

二、分为诊断用放射性药物(显像剂和示踪剂)和治疗用放射性药物。

放射性药品指含有放射性核素供医学诊断和治疗用的一类特殊药品。

γ射线能量为:141KeV三、SPECT显像方法:1.每例检查均需使用显像剂2.给药方式:iv,po,吸入,灌肠,皮下注射等3.仪器:SPECT4.给药后等待检查时间:即刻,20--30min, 1h, 2--3h5.每次机器检查时间:1—20min6.检查次数:1—10次(一)显像的方式和种类1、静态显像:当显像剂在脏器内和病变处的浓度处于稳定状态时进行的显像,可采集足够的放射性计数用以成像,影像清晰可靠,可详细观察脏器和病变的位置、形态、大小和放射性分布;脏器的整体功能和局部功能;计算出一些定量参数, 如局部脑血流量、局部葡萄糖代谢率(参数影像或称功能影像).2、动态显像:显像剂引入体内后,迅速以设定的显像速度动态采集脏器多帧连续影像或系列影像,即电影显示;利用感兴趣区技术提取每帧影像中同一个感兴趣区域内的放射性计数,生成时间--放射性曲线。

核医学成像技术的最新进展

核医学成像技术的最新进展

核医学成像技术的最新进展核医学成像技术作为现代医学领域的重要组成部分,为疾病的诊断和治疗提供了关键的信息。

近年来,随着科技的不断进步,核医学成像技术取得了一系列令人瞩目的新进展,为医疗实践带来了更强大的工具和更精准的诊断能力。

一、正电子发射断层扫描(PET)技术的改进PET 是核医学成像中最常用的技术之一。

近年来,PET 技术在探测器材料、图像重建算法和临床应用方面都有了显著的改进。

在探测器材料方面,新型的闪烁晶体材料如硅酸镥(LSO)和硅酸钇镥(LYSO)的应用,大大提高了探测器的灵敏度和时间分辨率。

这使得 PET 能够更快速地采集图像,减少患者的扫描时间,并提高图像质量。

图像重建算法的不断优化也是 PET 技术发展的重要方向。

先进的迭代重建算法能够更好地处理噪声和散射,提高图像的对比度和分辨率,从而更清晰地显示病变组织的细节。

在临床应用方面,PET 与计算机断层扫描(CT)或磁共振成像(MRI)的融合技术(PET/CT 和 PET/MRI)已经成为常规。

这些融合技术将功能代谢信息与解剖结构信息完美结合,为肿瘤、心血管疾病和神经系统疾病的诊断和分期提供了更全面、更准确的依据。

二、单光子发射计算机断层扫描(SPECT)技术的创新SPECT 技术虽然不如 PET 那么热门,但也在不断创新和发展。

探测器技术的改进使得 SPECT 的空间分辨率得到了提高。

新型的半导体探测器和多针孔准直器的应用,能够更精确地定位放射性核素的分布,从而提高图像的质量。

同时,SPECT 与 CT 的融合技术(SPECT/CT)也在逐渐普及。

CT提供的解剖结构信息有助于更准确地解释SPECT 图像,特别是在骨骼、心脏和肾脏等部位的成像中具有重要意义。

此外,新的放射性药物的研发也为 SPECT 技术的应用拓展了新的领域。

例如,针对特定肿瘤标志物的放射性药物能够提高 SPECT 对肿瘤的诊断特异性。

三、新型放射性药物的研发放射性药物是核医学成像的关键组成部分。

医学核医学知识点

医学核医学知识点

医学核医学知识点1. 介绍医学核医学是一门应用核技术在医学领域的学科,通过注射放射性物质,利用放射性同位素在人体内发出的射线进行成像和诊断。

它在疾病的早期诊断、治疗计划的确定以及治疗效果的评估中发挥着重要作用。

本文将介绍一些重要的医学核医学知识点。

2. 放射性同位素放射性同位素是一种具有放射性衰变的同位素,常用于核医学成像。

例如,技技术常用的放射性同位素有碘-131、锝-99m、氟-18等。

不同的放射性同位素在体内的分布和代谢方式不同,用于检查不同的组织和器官。

3. 单光子发射计算机体层摄影(SPECT)单光子发射计算机体层摄影是一种核医学成像技术,通过放射性同位素发出的单个光子来获取图像。

它可以用于诊断心血管疾病、骨骼疾病以及其他一些器官的异常。

SPECT能提供关于组织和器官功能的信息,并对疾病进行评估。

4. 位置发射计算机体层摄影(PET)位置发射计算机体层摄影是一种通过注射放射性同位素追踪代谢活性的核医学成像技术。

它可以用于诊断和评估肿瘤、脑血流以及心脏疾病等。

与传统的成像技术相比,PET可以提供更准确的病灶定位和代谢活性信息,有助于医生做出更准确的诊断和治疗方案。

5. 放射性同位素治疗除了作为成像工具,放射性同位素也可以用于治疗。

在核医学中,放射性同位素治疗被广泛应用于甲状腺疾病、骨骼疾病和肿瘤治疗等方面。

例如,碘-131可用于治疗甲状腺癌,锝-99m可用于治疗风湿性关节炎等。

6. 医学核医学的安全性医学核医学的安全性是非常重要的。

在进行核医学检查或治疗之前,医生会评估患者的病情,并谨慎选择适合的放射性同位素和剂量。

医学核医学操作人员需要具备专业的知识和技能,严格遵循操作规程,确保患者和操作人员的安全。

7. 未来发展医学核医学在影像学领域发挥着越来越重要的作用,并在不断发展。

随着技术的进步,新的放射性同位素和成像设备的应用也不断涌现。

例如,混合成像技术结合了PET和MRI或CT的优势,为诊断提供更全面的信息。

核医学知识总结

核医学知识总结

核医学知识总结一、核医学基本概念核医学是一门利用核技术来研究生物和医学问题的科学。

它涉及到核辐射、放射性核素、核素标记化合物以及相关的仪器和测量技术。

核医学在临床诊断、治疗和科研方面都有着广泛的应用。

二、核辐射与防护核辐射是指原子核在发生衰变时释放出的能量。

核辐射可以分为电离辐射和非电离辐射两类。

在核医学中,主要涉及的是电离辐射,它可以对生物体产生不同程度的损伤。

因此,在核医学实践中,必须采取有效的防护措施,确保工作人员和患者的安全。

三、放射性核素与标记化合物放射性核素是指具有不稳定原子核的元素,它们能够自发地释放出射线。

在核医学中,放射性核素可以用于显像、功能研究、体外分析和治疗等多种应用。

标记化合物是指将放射性核素标记到特定的化合物上,使其具有放射性,以便进行测量和分析。

四、核医学成像技术核医学成像技术是指利用放射性核素发出的射线,通过相应的仪器和测量技术,获得生物体内的图像。

目前常用的核医学成像技术包括SPECT、PET和PET/CT等。

这些技术可以在分子水平上对生物体进行无创、无痛、无损的检测,对于疾病的早期发现和治疗具有重要的意义。

五、核素显像与功能研究核素显像是核医学中的一种重要应用,它可以用于显示生物体内的生理和病理过程。

通过注射放射性核素标记的显像剂,利用相应的成像技术,可以获得器官或组织的图像,进而了解其功能状态。

核素显像在心血管、神经、肿瘤等多个领域都有广泛的应用。

六、体外分析技术体外分析技术是指利用放射性核素标记的化合物,通过测量其放射性强度,来分析生物体内的成分或生理过程。

体外分析技术具有高灵敏度、高特异性和定量准确等优点。

常用的体外分析技术包括放射免疫分析、受体结合试验等,它们在临床诊断和科研中都有着广泛的应用。

七、放射性药物与治疗放射性药物是指将放射性核素标记到特定的药物上,使其具有治疗作用。

放射性药物可以用于治疗肿瘤等疾病,通过射线的作用,破坏病变组织或抑制其生长。

核医学的现状和前沿问题

核医学的现状和前沿问题

核医学的现状和前沿问题核医学,是介于医学和核科学之间的一个重要学科领域。

它涉及到放射性同位素在医学上的应用,包括放射性示踪、放射性治疗、核素成像和辐射生物学等方面。

在现代医学中,核医学已经成为医学诊断和治疗中非常重要的一个手段,它的发展和进步已经为医学带来了巨大的贡献。

核医学的现状在传统医学诊断和治疗中,人们往往采用X射线、磁共振成像(MRI)、计算机体层扫描(CT)等方法,这些方法既有一定的优点,也存在一些缺点。

X射线辐射对人体有一定的危害,而且其成像效果并不十分理想,容易产生图像模糊、重叠等问题,因此需要辅助其他手段来诊断疾病。

核医学正是为这些问题提供了有力的解决方法。

核医学的主要应用方式是核素成像,通过人体内摄入或注射含放射性同位素的化合物,利用放射性衰变产生的特殊的电磁波或粒子辐射和探测器相互作用,产生图像。

与其他成像方法相比,核素成像的分辨率和灵敏度更高,可以显示出更为微小细节的器官和组织,也因此可提供更为准确、直接的医学诊断信息。

同时,核素成像对患者伤害小,不产生任何镭射等能量辐射而使人体增加辐射剂量,而放射性医用物品的半衰期相对较短,可以快速代谢和排出患者体内,对患者造成的影响及时减少。

在目前的核医学临床应用中,最常用的核素是技術核素,如甲状腺扫描的碘-131、骨扫描的氧化铊-201、脑扫描的半胱氨酸-99mTc 等等。

同时,随着核医学的发展和技术进步,现代核医学已经发展出多种先进的技术和器具,包括正电子发射断层扫描(PET-CT)、单光子发射计算机体层扫描(SPECT-CT)等,进一步拓展了核医学应用的范围。

这些技术正在推动核医学的发展,为临床医学带来更加精确、高效的医学诊断和治疗手段。

核医学的前沿问题随着科技的进步和医学研究的不断深入,核医学也面临着一些前沿科学问题和挑战。

其中,最大的挑战就是如何进一步提高核医学成像技术的精度和灵敏度,探索新的分子成像和在早期检测疾病时的发挥作用。

核医学重点知识整理

核医学重点知识整理

第一章核医学:是一门研究核技术在医学中的应用及其理论的学科,是用放射性核素诊断,治疗疾病和进行医学研究的医学学科。

我国核医学分为临床核医学和实验核医学。

核素(nuclide):具有相同的质子数、中子数和核能态的一类原子同位素(isotope):是表示核素间相互关系的名称,凡具有相同的原子序数(质子数)的核素互称为同位素,或称为该元素的同位素。

同质异能素(isomer):具有相同质子数和中子数,处于不同核能态的核素互称为同质异能素。

稳定性核素(stable nuclide):原子核极为稳定而不会自发地发生核内成分或能态的变化或者变化的几率极小放射性核素(radionuclide):原子核不稳定,会自发地发生核内成分或能态的变化,而转变为另一种核素,同时释放出一种或一种以上的射线核衰变(nuclear decay):放射性核素自发地释放出一种或一种以上的射线并转变为另一种核素的过程,核衰变实质上就是放射性核素趋于稳定的过程衰变类型:α衰变(产生α粒子);β–衰变(产生β¯粒子(电子));β+衰变(正电子衰变)与电子不同的是带有正电荷;电子俘获;γ衰变。

α粒子的电离能力极强,故重点防护内照射。

β-粒子的射程较短,穿透力较弱,而电离能力较强,因此不能用来作显像,但可用作核素内照射治疗。

γ衰变(γdecay):核素由激发态向基态或由高能态向低能态跃迁时发射出γ射线的衰变过程,也称为γ跃迁。

γ衰变只是能量状态改变,γ射线的本质是中性的光子流。

电子俘获衰变:一个质子俘获一个核外轨道电子转变成一个中子和放出一个中微子。

电子俘获时,因核外内层轨道缺少了电子,外层电子跃迁到内层去补充,外层电子比内层电子的能量大,跃迁中将多余的能量,以光子形式放出,称其为特征x射线,若不放出特征x射线,而把多余的能量传给更外层的电子,使其成为自由电子放出,此电子称为俄歇电子内转换(internal conversation)核素由激发态向基态或由高能态向低能态跃迁时,除发射γ射线外也可将多余的能量直接传给核外电子(主要是K层电子),使轨道电子获得足够能量后脱离轨道成为自由电子,此过程称为内转换,这种自由电子叫做内转换电子衰变公式:Nt=No e衰变常数:某种放射性核素的核在单位时间内自发衰变的几率它反映该核素衰变的速度和特性;λ值大衰变快,小则衰变慢,不受任何影响不同的放射性核素有不同的λ一定量的放射性核素在一很短的时间间隔内发生核衰变数除以该时间间隔,即单位时间的核衰变次数;A=dN/dt放射性活度是指放射性元素或同位素每秒衰变的原子数,目前放射性活度的国际单位为贝克(Bq),也就是每秒有一个原子衰变,一克的镭放射性活度有3.7×1010Bq。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

核医学最新整理总论概念1、基本概念:①核医学:是用放射性核素诊断、治疗疾病和进行医学研究的医学学科。

②核素n uclide :指质子数和中子数均相同,并且原子核处于相同能态的原子称为一种核素。

③同位素isotope:具有相同质子数而中子数不同的核素互称同位素。

同位素具有相同的化学性质和生物学特性,不同的核物理特性。

④同质异能素isomer:质子数和中子数都相同,处于不同核能状态的原子称为同质异能素。

⑤放射性活度radioactivity简称活度:单位时间内原子核衰变的数量。

⑥放射性药物(radiopharmaceutical)指含有放射性核素供医学诊断和治疗用的一类特殊药物。

⑦SPECT:即单光子发射型计算机断层仪,是利用注入人体内的单光子放射性药物发出的γ射线在计算机辅助下重建影像,构成断层影像。

⑧PET:即正电子发射型计算机断层仪,利用发射正电子的放射性核素及其标记物为显像剂,在计算机辅助下重建影像构成断层影像。

⑨小PET:即经济型PET,也叫SPECT_PET_CT,是对SPECT进行稍加工后,使其可行使PET的功能。

⑩放射性核素(radionuclide):是指原子核处于不稳定状态,需通过核内结构或能级调整才能趋于稳定的核素。

⑾放射性核素纯度:也称放射性纯度,指所指定的放射性核素的放射性活度占总放射性活度的百分比,放射性纯度只与其放射性杂质的量有关;⑿放射化学纯度:指以特定化学形式存在的放射性活度占总放射性活度的百分比。

“闪烁现象(flare phenomenon): 在肿瘤病人放疗或化疗后,临床表现有显著好转,骨影像表现为原有病灶的放射性聚集较治疗前更为明显,再经过一段时间后又会消失或改善,这种现象称为“闪烁”现象。

前哨淋巴结:肿瘤区域内淋巴引流的第一站淋巴结称为该肿瘤的前哨淋巴结(sentinel lymph node, SLN)。

术前明确SN内有无肿瘤转移对决定肿瘤的手术方式及淋巴清扫范围有着重要意义。

2、人工放射性核素的来源:加速器生产11C、13N、15O、18F,67Ga,111 In ,,123 I,,201Tl,、反应堆生产或者从裂变产物中提取(131 I,.133Xe,,89Sr)、放射性核素发生器淋洗(99mTc钼锝发生器)3、核衰变的类型和用途:①α衰变:放射性核衰变时释放出α射线的衰变,射程短,穿透力弱,对局部的电离作用强,因此在放射性核素治疗方面有潜在优势;②β衰变:指原子核释放出β射线的衰变,穿透力弱,可用于治疗;③正电子衰变:原子核释放出正电子(β+射线)的衰变,可用于PET显像;④电子俘获:原子核俘获一个核外轨道电子使核内一个质子转变成一个中子和放出一个中微子的过程,电子俘获导致核结构的改变可能伴随放出多种射线,因此可用于核医学显像、体外分析和放射性核素治疗;⑤γ衰变:原子核从激发态回复到基态时,以发射γ光子的形式释放过剩的能量,这一过程称为…,穿透力强,电离作用小,适合放射性核素显像。

3、核医学的定义及核医学的分类.答:核医学是研究核技术在医学的应用及其理论的学科,是用放射性核素诊断、治疗疾病和进行医学研究的医学学科。

核医学包括实验核医学和临床核医学。

实验核医学主要包括放射性核素示踪技术、体外放射分析、活化分析技术、放射自显影技术和动物PET的应用.临床诊断学是利用开放型放射性核素诊断和治疗疾病的临床医学学科.由诊断和治疗两部分组成.治疗核医学是利用放射性核素发射的核射线对病变进行高密度集中治疗。

(如I131治疗甲亢)诊断核医学包括以脏器显像和功能测定为主要内容的体内诊断法和以体外放射分析为主要内容的体外诊断法(如放免分析测定T3T4TSH).体内包括显像法(如心肌灌注显像)和非显像法(甲状腺摄I131率)5、射线和物质的相互作用1.带电粒子和物质的相互作用电离与激发、韧致辐射、散射、吸收2.γ射线和物质的相互作用光电效应、康普顿效应和电子对生成效应放射性核素显像原理:放射性核素或其标记化合物与天然元素或其化合物一样,引入体内后根据其化学及生物学特性有其一定的生物学行为,它们选择性地聚集在特定脏器、组织或受检病变部位中的主要机制有:①合成代谢:131碘甲状腺显像②细胞吞噬:肝胶体显像③循环通路:99mTc-DTPA脑脊液间隙显像④选择性浓聚:99mTc-焦磷酸盐心肌梗死组织显像⑤选择性排泄:99mTc-DTPA肾动态显像⑥通透弥散:脑血流灌注显像⑦离子交换和化学吸附:骨显像⑧特异性结合:放射免疫显像及反义显像放射性药物放射性药物:含有放射性核素,用于医学诊断和治疗的一类特殊药物。

、放射性药物的特点:1. 具有放射性;2. 其生理、生化特性取决于被标记物的固有特性;3. 不恒定性(具有特定的物理半衰期和有效半衰期);4. 脱标及辐射自分解;5. 引入量少,计量单位不同(以活度为计量单位);6. 治疗作用基础不同于普通药物放射性药物分类:离子型,胶体型,放射性标记化合物,放射性标记生物活性物质人工放射性核素的来源:加速器生产11C、13N、15O、18F,67Ga,111 In ,,123 I,,201Tl,、反应堆生产或者从裂变产物中提取(131 I,.133Xe,,89Sr)、放射性核素发生器淋洗(99mTc钼锝发生器)第二章核医学工作中的辐射防护知识radiation protection1核医学辐射的特点(1)对病人主要是内照射(即放射性核素进入人体内产生的照射),对医务人员主要是外照射(即放射性核素从人体外发射的射线对人体产生的照射),但管理不当也可产生内照射。

(2)由于放射性药物在体内的特殊分布,病人全身受照剂量小,个别器官、组织受照剂量高。

2确定性效应确定性效应是指辐射损伤的严重程度与所受剂量呈正相关,有明显的阈值,剂量未超过阈值不会发生有害效应。

一般是在短期内受较大剂量照射时发生的急性损害3随机效应随机效应研究的对象是群体,是辐射效应发生的几率(或发病率而非严重程度)与剂量相关的效应,不存在具体的阈值4辐射损伤的化学基础\\1.直接作用:放射线与物质的相互作用导致的生物分子的电离和激发\\2.间接作用:电离和激发产生的自由基导致的继发作用。

主要是水自由基对生物分子的损伤作用5辐射防护的原则和措施1)辐射防护的目的防止有害的确定性效应,限制随机效应的发生率,使之达到可以接受的水平。

总之是使一切具有正当理由的照射保持在可以合理做到的最低水平。

2)辐射防护的原则实践的正当化放射防护最优化个人剂量限值3)外照射防护措施时间防护距离防护屏蔽防护4)内照射防护1放射性核素分组和对放射性工作场所分类2围封:放射性工作必须在指定的区域进行,避免放射性向环境扩散3保洁和去污4个人防护5通过严格的环境监测来建立内照射监测系统6放射性废物处理体外分析技术(最常用碘125)1、体外放射分析原理(in vitro radioassay):指在体外实验条件下,以结合反应为基础,以放射性核素标记物为示踪剂,以放射性测量为定量手段,对微量物质进行定量检测的一类核技术的总称。

反应条件(1).标记抗原和未标记抗原免疫活性一致,共同竞争性与抗体相结合;(2).标记抗原、抗体量恒定,且标记抗原与未标记抗原量之和大于抗体上有效结合点的数目。

(3).反应呈双向进行,当反应达到平衡时,反应式两端的摩尔浓度相对稳定;(4).标记抗原抗体复合物的生成量取决于未标记抗原的浓度,两者呈逆相关函数关系放射免疫分析法(RIA)概念:是利用标记抗原和非标记抗原竞争结合限量的特异性抗体,给予充分的反应时间,使反应达到平衡,然后分离并分别测定结合的抗原抗体复合物放射性(B)和游离抗原的放射性(F)来计算出非标记抗原含量的一种超微量分析技术。

3、RIA基本步骤:加样(Ag *Ag Ab) 温育(反应达到平衡)分离放射性测量数据处理质量控制(评价)4、RIA基本试剂:1.标准品(Standard preparation):是放射免疫分析定量的依据,要求其与待测物化学结构免疫活性一致、性能稳定、不含干扰免疫反应物质。

标准品浓度选择应满足生理病理范围。

2.标记抗原(labelled antigen):a.放射性核素的选择--125I ,3H,14C ;b.标记抗原与未标记抗原免疫活性一致;c.标记抗原有一定比度(比度指单位质量物质所具有的放射性强度KBq/ug);d.放射化学纯度(标记抗原放射性占总放射性的百分比):要求大于95%。

3.特异性抗体(specific antibody):要求特异性强、亲和力大、合适的滴度。

4. 合适的分离技术(separation method) :要求:a.使结合、游离部分分离完全;b.分离过程不破坏原平衡体系;c.分离方法简便迅速,非特异结合少,适合大批样品检测。

4,分离试剂5、放射免疫分析(RIA)试剂盒质控指标:①精密度:又称重复性,是指同一样品在多次重复测定中所得结果的一致程度。

②灵敏度:是指测定方法的最小可检出量。

③准确度:指测定值与已知真实值在数量上的符合程度,可用回收率来表示。

④特异性:主要取决于抗体的特异性,交叉反应越少,特异性越好。

⑤稳定性:指试剂盒在适宜的温度等条件下,在有效期内保持原有性能不变的能力。

⑥健全性:又称可靠性,用于评价标准品与被测物的免疫活性是否相同。

6、RIA放免分析与IRMA免放分析的异同点:(1)相同点:均以抗原抗体免疫反应为基础。

(2)不同点:①I RMA用放射性核素标记抗体,RIA则是标记抗原;②IRMA是待测物与过量抗体发生反应,为非竞争性的免疫反应;RIA是标记抗原和未标记抗原与有限抗体竞争反应。

③IRMA中,标记抗原抗体复合物的生成量与抗原浓度呈正相关函数关系;RIA中,标记抗原抗体复合物的生成量取决于未标记抗原的浓度,两者呈逆相关函数关系。

非放射免疫分析种类:酶标记免疫分析,化学发光免疫分析,时间分辨荧光免疫分析,胶体金标记免疫分析放射性核素示踪技术放射性核素示踪技术的基本原理①同一性:放射性核素标记化学分子和相应的非标记化学分子具有相同的化学及生物学性质。

②放射性核素的可探测性:放射性核素能自发地放射出射线。

利用高灵敏度的仪器能进行定量、定位、定性探测。

动态观察各种物质在生物体内的量变规律。

四、内分泌系统1,血清TT3,TT4:甲亢甲减的诊断以及指导其治疗2 TSH的测定临床意义:1、甲亢的诊断TSH ↓2、甲减的鉴别诊断原发性甲低或亚临床甲低TSH ↑继发性甲减(垂体、丘脑)TSH ↓甲状腺激素抵抗综合征TSH ↑3、指导甲亢和甲减患者的药物治疗】、TSH恢复时间较长4、先天性甲减的筛查5、异位TSH的分泌3、TPOAb被作为慢性淋巴细胞性甲状腺炎诊断最有价值的血清学指标4、甲状腺球蛋白(HTG)分化型甲状腺癌术后复发指标1、甲亢sTSH >FT3 >FT4 >TT3 >TT42、甲减sTSH >FT4 >FT3 >TT4 >TT31、甲状腺摄131碘试验:(1)原理:碘是合成甲状腺激素的主要原料,所以碘能被甲状腺摄取和浓聚,被摄取的量和摄取速度直接与甲状腺功能相关。

相关文档
最新文档