七年级数学同步测试题及答案
全国初一初中数学同步测试带答案解析

全国初一初中数学同步测试班级:___________ 姓名:___________ 分数:___________一、选择题1.既是方程的解,又是方程的解是()A.B.C.D.2.甲、乙两数这和为,甲数的倍等于乙数的倍,若设甲数为,乙数为,则方程组(1)(2)(3)(4)中,正确的有()A.组B.组C.组D.组3.某校名学生参加竞赛,平均分为分,其中及格学生平均分为分,不及格学生平均分为分,则不及格学生的人数为()A.B.C.D.4.已知方程组的解是正整数,则的值为()A.B.C.D.5.已知一个两位数,它的十位上的数字比个位上的数字大,若颠倒个位数字与十位数字的位置,得到的新数比原数小,求这个两位数所列的方程组正确的是()A.B.C.D.6.在一家三口人中,每两个人的平均年龄加上余下一人的年龄分别得到,,,那么这三个人中最大年龄与最小年龄的差是()A.B.C.D.二、填空题1.在方程中,如果是它的一个解,那么的值为______.2.大数和小数的差为,这两个数的和为,则大数是______,小数是______.3.买支铅笔和本练习本,共用元.若铅笔每支元,练习本每本元,写出以和为未知数的方程为______.4.甲、乙两人速度之比是,则他们在相同时间内走过的路程之比是______,他们在走相同路程所需时间之比是______.5.羊圈里白羊的只数比黑羊的脚数少,黑羊的只数比白羊的脚数少,则白羊有______只,黑羊有______只.6.若和是方程的两组解,则_____,_____.7.把面值为元的纸币换为角或角的硬币,则换法共有_____种.8.两个水池共贮水吨,如果甲池再注进水吨,乙池再注进水吨,则两池的水一样多,那么两池原来有水分别为_____.9.用一根绳子环绕一棵大树,若环绕大树周,则绳子还多尺;若环绕大树周,则绳子少了尺,这根绳子长_____尺.10.古算题:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.问多少房间多少客?”(题目大意是:一些客人到李三公的店中住宿,若每间房里住人,就分有人没地方住;若每间房住人,则空出一间房.问有多少房间多少客人.)答:_______________.三、解答题1.根据下图提供的信息,求每件恤衫和每瓶矿泉水的价格.2.据研究,当洗衣机中洗衣粉的含量在0.2%~0.5%之间时,衣服的洗涤效果较好,因为这时表面活性较大.现将4.94kg的衣服放入最大容量为15kg的洗衣机中,欲使洗衣机中洗衣粉的含量达到,那么洗衣机中需要加入多少千克水,多少匙洗衣粉?(1匙洗衣粉约0.02kg,假设洗衣机以最大容量洗涤)3.某中学现有学生人,计划一年后初中在校生增加,高中在校生增加,这样会使该中学在校生增加,这所中学现在的初、高中在校生分别是多少人?4.长沙市某公园的门票价格如下表所示:购票人数1~50人51~100人100人以上某校七年级甲、乙两班共多人去该公园举行联欢活动,其中甲班多人,乙班不足人.如果以班为单位分别买票,两个班一共应付元;如果两个班联合起来作为一团体购票,一共只要付元.问:甲、乙两班分别有多少人?5.有甲、乙、丙三种规格的钢条,已知甲种根,乙种根,丙种根,共长米;甲种根,乙种根,丙种根共长米,问甲根,乙根,丙根共长多少?6.小明和小亮两个人做加法,小明将其中一个加数后面多写了一个,得和为,小亮将同一个加数后面少写了一个,所得和为.求原来的两个加数.7.某工程由甲乙两队合做天完成,厂家需付甲乙两队共元;乙丙两队合做天完成,厂家需付乙丙两队共元;甲丙两队合做天完成全部工程的,厂家需付甲丙两队共元.(1)求甲、乙、丙各队单独完成全部工程各需多少天?(2)若要求不超过天完成全啊工程,问可由哪队单独完成此项工程花钱最少?全国初一初中数学同步测试答案及解析一、选择题1.既是方程的解,又是方程的解是()A.B.C.D.【答案】B【解析】本题主要考查了二元一次方程组的解. 根据题意即可得到方程组:,解方程组即可求解解:根据题意得:①×4+②得:x=2,把x=2代入①得:y=1.则方程组的解是:.故选B.2.甲、乙两数这和为,甲数的倍等于乙数的倍,若设甲数为,乙数为,则方程组(1)(2)(3)(4)中,正确的有()A.组B.组C.组D.组【答案】C【解析】本题主要考查了由实际问题抽象出二元一次方程组.如果若设甲数为x,乙数为y,那么根据“甲、乙两数之和为16”,可得出方程为x+y=16;根据“甲数的3倍等于乙数的5倍”可得出方程为3x=5y,故(1)正确;再观察给出的其余三个方程组,除了(2),其余分别是(1)方程组里两个方程的不同变形,都正确,所以正确的有3组.解:设甲数为x,乙数为y.则列出方程组正确的有:(1)(3)(4)故选C.3.某校名学生参加竞赛,平均分为分,其中及格学生平均分为分,不及格学生平均分为分,则不及格学生的人数为()A.B.C.D.【答案】D【解析】本题考查了平均数的概念. 只要运用求平均数公式即可求出.设不及格的人数为X人,列方程即可解解:设不及格的人数为X人,由题意得,=55,解得X=110故选D.4.已知方程组的解是正整数,则的值为()A.B.C.D.【答案】C【解析】本题考查了解二元一次方程组. 先用加减消元法消去x,把m当做已知表示出y,再把四个选项代入检验选出符合条件的m的值即可.解:②×2-①得,y=,把A代入得,y==6,代入②得,x+4×6=8,解得,x=-16,不合题意舍去;把B代入得,y==3,代入②得,x+4×3=8,解得,x=-4,不合题意舍去;把C代入得,y==1,代入②得,x+4=8,解得,x=4,符合题意;把D代入得,y==2,代入②得,x+4×2=8,解得,x=0,不合题意舍去;故选C.5.已知一个两位数,它的十位上的数字比个位上的数字大,若颠倒个位数字与十位数字的位置,得到的新数比原数小,求这个两位数所列的方程组正确的是()A.B.C.D.【答案】D【解析】本题主要考查了由实际问题抽象出二元一次方程组.等量关系为:①十位上的数字=个位上的数字+1;②原数=新数+9.解:根据十位上的数字x比个位上的数字y大1,得方程x=y+1;根据对调个位与十位上的数字,得到的新数比原数小9,得方程10x+y=10y+x+9.列方程组为.故选D.6.在一家三口人中,每两个人的平均年龄加上余下一人的年龄分别得到,,,那么这三个人中最大年龄与最小年龄的差是()A.B.C.D.【答案】A【解析】本题主要考查了极差和方程组. 根据题意,求得三人的年龄,再根据极差的公式:极差=最大值-最小值求值.解:设三人的年龄为x、y、z则有+z=47+y=61+x=60可将上三式变化为:x+y+2z=94 (1)x+z+2y=122 (2)y+z+2x=120 (3)(2)-(3)y-x=2 (4)2×(3)-(1)y+3x=146 (5)(5)-(4)4x=144∴x=36由(4)可得y=38把x、y代入(1)中得z=10.∴极差为38-10=28.故选A.二、填空题1.在方程中,如果是它的一个解,那么的值为______.【答案】-3【解析】本题主要考查的是二元一次方程的解. 将x,y的值直接代入,即可求出a的值解:把代入,得6-a=9解得a=-3.2.大数和小数的差为,这两个数的和为,则大数是______,小数是______.【答案】,【解析】本题主要考查了二元一次方程组的应用.等量关系:大数-小数=12;大数+小数=60.根据这两个等量关系就可列出方程组.解:设大数为x,小数为y.则解得.故填36,24.3.买支铅笔和本练习本,共用元.若铅笔每支元,练习本每本元,写出以和为未知数的方程为______.【答案】【解析】本题主要考查了由实际问题抽象出二元一次方程. 等量关系为:14支铅笔总价钱+6本练习本总价钱=5.4,把相关量代入即可.解:铅笔每支x元,14支铅笔需14x元;练习本每本y元,6本练习本需付6y元,共用5.4元,可列方程为:14x+6y=5.4.4.甲、乙两人速度之比是,则他们在相同时间内走过的路程之比是______,他们在走相同路程所需时间之比是______.【答案】,【解析】本题主要考查了由实际问题抽象出二元一次方程. 根据路程=速度×时间,得当时间一定时,则路程之比等于速度之比;当路程一定时,时间之比和速度之比成反比.解:∵甲、乙两人速度之比是2:3,∴他们在相同时间内走过的路程之比等于速度之比,即为2:3;走相同路程所需时间之比是3:2.5.羊圈里白羊的只数比黑羊的脚数少,黑羊的只数比白羊的脚数少,则白羊有______只,黑羊有______只.【答案】,【解析】本题主要考查了由实际问题抽象出二元一次方程. 每只羊有一个头,四只脚.本题两个等量关系为:黑羊脚数-白羊头数=2;白羊脚数-黑羊头数=187解:设白羊有x头,黑羊有y头.则解得故填50,13.6.若和是方程的两组解,则_____,_____.【答案】,【解析】本题主要考查了二元一次方程的解. 将两组解分别代入方程,得m,n的方程组,解方程组求m,n的值.解:把和分别代入方程mx+ny=3,得解得.7.把面值为元的纸币换为角或角的硬币,则换法共有_____种.【答案】3【解析】本题主要考查了由实际问题抽象出二元一次方程. 设1角的有x个,5角的有y个,先根据题意列出二元一次方程,再根据x,y都是整数,可求得x,y的值.解:设1角的有x个,5角的有y个,根据题意,得x+5y=10,即x=10-5y,∵x,y是整数,∴故共有3种换法.8.两个水池共贮水吨,如果甲池再注进水吨,乙池再注进水吨,则两池的水一样多,那么两池原来有水分别为_____.【答案】吨,吨【解析】本题主要考查了由实际问题抽象出二元一次方程. 设甲、乙两池原来分别有水x吨、y吨.根据等量关系:①两个水池共贮水40吨;②甲池再注进水4吨,乙池再注进水8吨,则两池的水一样多,列方程组求解.解:设甲、乙两池原来分别有水x吨、y吨.根据题意,得解得答:甲、乙两池原来分别有水22吨和18吨.9.用一根绳子环绕一棵大树,若环绕大树周,则绳子还多尺;若环绕大树周,则绳子少了尺,这根绳子长_____尺.【答案】25【解析】本题主要考查了由实际问题抽象出二元一次方程.设这根绳子x尺,绕大树一周需要y尺.等量关系:①环绕大树3周,则绳子还多4尺;②环绕大树4周,则绳子少了3尺.解:设这根绳子x尺,绕大树一周需要y尺.根据题意,得解得答:这根绳子25尺10.古算题:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.问多少房间多少客?”(题目大意是:一些客人到李三公的店中住宿,若每间房里住人,就分有人没地方住;若每间房住人,则空出一间房.问有多少房间多少客人.)答:_______________.【答案】个房间,个客人【解析】本题主要考查了由实际问题抽象出二元一次方程. 等量关系:①每间房里住7人,就分有7人没地方住;②每间房住9人,则空出一间房.解:设有x个房间,y个客人.根据题意,得解得答:8个房间,63个客人.三、解答题1.根据下图提供的信息,求每件恤衫和每瓶矿泉水的价格.【答案】,【解析】本题主要考查了由实际问题抽象出二元一次方程. 设每件衣服为x元,每瓶水y元,根据第一幅图中两件T恤衫和两瓶矿泉水为44元,第二幅图中一件T恤衫和三瓶矿泉水共计26元,可列方程组求解.解:设每件衣服为x元,每瓶水y元,根据题意得:解得:故T恤衫每件20元,矿泉水每瓶2元.2.据研究,当洗衣机中洗衣粉的含量在0.2%~0.5%之间时,衣服的洗涤效果较好,因为这时表面活性较大.现将4.94kg的衣服放入最大容量为15kg的洗衣机中,欲使洗衣机中洗衣粉的含量达到,那么洗衣机中需要加入多少千克水,多少匙洗衣粉?(1匙洗衣粉约0.02kg,假设洗衣机以最大容量洗涤)【答案】洗衣机中需加入10千克水,3匙洗衣粉【解析】本题主要考查了由实际问题抽象出二元一次方程. 等量关系:衣服的容量+水的容量+洗衣粉的容量=15,洗衣粉的容量=15×0.4%,直接设未知数,根据等量关系列出方程组,设洗衣机中需加入千克水,匙洗衣粉.由题意得解得所以,洗衣机中需加入10千克水,3匙洗衣粉3.某中学现有学生人,计划一年后初中在校生增加,高中在校生增加,这样会使该中学在校生增加,这所中学现在的初、高中在校生分别是多少人?【答案】,【解析】本题主要考查了由实际问题抽象出二元一次方程. 等量关系:现在初中在校人数+现在高中在校人数=4200;一年后初中在校增加的人数加一年后高中在校增加的人数=一年后全校学生增加的人数.解:设这所中学现在的初中在校生为x人,高中在校生人数为y人.则解得4.长沙市某公园的门票价格如下表所示:别买票,两个班一共应付元;如果两个班联合起来作为一团体购票,一共只要付元.问:甲、乙两班分别有多少人?【答案】,【解析】本题主要考查了由实际问题抽象出二元一次方程. 设七年级甲、乙两个班各有学生x、y人,由题意得(x+y)×5=515,由此可以得到x+y=103,而根据已知条件得到8x+10y=920,联立两个方程组成方程组即可求出两个班各有多少学生;解:设七年级甲、乙两个班各有学生x、y人,则由题意得解得:5.有甲、乙、丙三种规格的钢条,已知甲种根,乙种根,丙种根,共长米;甲种根,乙种根,丙种根共长米,问甲根,乙根,丙根共长多少?【答案】米【解析】本题主要考查了由实际问题抽象出二元一次方程. 设甲、乙、丙三种规格的钢条的长度分别为x、y、z米,根据题意可以列出方程组,然后分别把两个方程一个乘以2,另一个乘以3,然后相加得到7x+14y+21z=7(x+2y+3z),由此即可求出甲1根,乙2根,丙3根共长多少米.解:设甲、乙、丙三种规格的钢条的长度分别为x、y、z米,依题意得①×2+②×3得7x+14y+21z=7(x+2y+3z)=23×2+36×3,∴x+2y+3z=22(米).6.小明和小亮两个人做加法,小明将其中一个加数后面多写了一个,得和为,小亮将同一个加数后面少写了一个,所得和为.求原来的两个加数.【答案】,【解析】本题主要考查了由实际问题抽象出二元一次方程.根据题意由两次算得的不同的和可找到两个等量关系,列方程组解方程组即可.注意进率为10.解:设两个加数分别为x、y.根据题意,得解得答:原来的两个加数分别为230和40.7.某工程由甲乙两队合做天完成,厂家需付甲乙两队共元;乙丙两队合做天完成,厂家需付乙丙两队共元;甲丙两队合做天完成全部工程的,厂家需付甲丙两队共元.(1)求甲、乙、丙各队单独完成全部工程各需多少天?(2)若要求不超过天完成全啊工程,问可由哪队单独完成此项工程花钱最少?【答案】(1),,;(2)甲单独完成此项工程花钱最少【解析】本题主要考查了分式方程的应用. (1)设甲队单独做x天完成,乙队单独做y天完成,丙队单独做z天完成,则甲、乙、丙的工作效率分别为,根据合做的效率= ,列分式方程组求解;(2)设甲队做一天应付给a元,乙队做一天应付给b元,丙队做一天应付给c元,用每天应付费用×完成任务天数=共付费用,列方程组求a、b、c,再根据工期的规定及花费最少答题.解:(1)设甲队单独做x天完成,乙队单独做y天完成,丙队单独做z天完成,则;解方程组,得x=10,y=15,z=30;(2)设甲队做一天应付给a元,乙队做一天应付给b元,丙队做一天应付给c元,则有:6(a+b)=8700,10(b+c)=9500,5(a+c)=5500解方程组,得:a=800,b=650,c=300∵10a=8000(元),15b=9750(元),∴由甲队单独完成此工程花钱最少.。
七年级数学同步测试题及答案

七年级数学同步测试题及答案七年级数学同步测试题及答案一、填空题(每空2分,共38分)1.一个数加7,再乘以3,然后减去12,再除以6,最后得到8,则这个数是_____.2.联欢会上,小明按4个红气球,3个黄气球,2个绿气球的顺序把气球串起来装饰会场,则第100个气球的颜色是________.3.某课外活动小组测得自己学校的篮球场长A(m),宽B(m),它的长比宽多C(m),•周长是D(m),面积是E(m2),篮球架高F(m).提供信息:(83,13,420,15,28,3),由于记录疏忽,数据被弄乱了,你能帮他们整理一下吗?A=_______,B=________,C=________,D=_______,E=________,F=________.4.用尺量一下,下面两个图形面积的大小关系是_________.5.对A,B,C有如下的计算规定:2A4,5A7,7B4,10B7,1C•4,3C12.请在横线上填上适当的数或相应的字母:(1)14BAC________; (2)5CB_______;(3)40_______AB (4)_______CB45.6.把一根绳子对折后再对折,然后在其一个三等分处剪断,这样变成了______根绳子,其中最长的是最短的长度的_________倍.7.如果a,b是任意两个不等于零的数,定义运算○+如下(其余符号意义如常):a○+b= ,那么[(1○+2)○+3]+[1○+(2○+3)]的值是________.8.右图是一个数值转换机的示意图,若输入的x的值是3,y的值是3,•则输出的结果为_______.9.用1个6,1个8,2个9可组成多种不同的四位数,这些四位数共有_______个.10.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,利用你所发现的规律,写出230的末位数(个位上的数字):________.二、选择题(每题3分,共30分)11.某学生在暑假期间观察了x天的天气情况,其结果是:①共有7•天上午是晴天;②共有5天下午是晴天;③共下了8次雨;④下午下雨的那天,上午是晴天.则x=( ).A.8B.9C.10D.1112.把14个棱长为1的'正方体在地面上堆叠如图所示的立体,•然后将露出的表面部分涂成红色,那么红色部分的面积为( ).A.21B.24C.33D.3713.春节晚会上,电工师傅在礼堂四周挂了一圈只有绿、黄、蓝、红四种颜色的彩灯,其排列规律是:绿黄黄红蓝红红绿黄黄红蓝红红绿黄黄红蓝红红绿黄黄红蓝红红那么,第2006个彩电的颜色是( ).A.绿色B.黄色C.红色D.蓝色14.根据图中骰子的三种不同状态显示的数字,推出?处的数字是( ).A.1B.2C.3D.615.给出两列数:1,3,5,7,9,,2001和6,11,16,,2001,•同时出现在这两列数中的数的个数为( ).A.199B.200C.201D.20216.n个连续自然数按规律排列如下:0 3 4 7 8 111 2 5 6 9 10根据规律,从2004到2006,箭头方向依次应为( ).A. B. C. D.17.现有A,B,C,D,E五名同学,他们分别是来自一中、二中、三中的学生.已知: ①每所学校至少有他们中的一名学生;②在二中的晚会上,A,B,E•作为被邀请的客人演奏了小提琴;③B过去曾在三中学习,后来转学了,现在与D在同一个班学习;④D,•E是同一所学校的三好学生.根据以上叙述,可以断定A所在的学校为( ).A.一中B.二中C.三中D.不确定18.在A,B,C三个盒子中分别装有红、黄、蓝颜色的小球中的一种,将它们分别给甲、乙、丙三个人.已知甲没有得到A盒;乙没有得到B盒,也没有得到黄球;A盒中没有装红球,B盒中装着蓝球.则丙得到的盒子编号小球的颜色分别是( ).19.找出一列数2,3,5,8,13,□,34的规律,在□里填上( ).A.20B.21C.22D.2420.如图,是一个正方体纸盒的展开图,若在其中的三个正方形A,B,C内填入适当的数,使它们折成正方体后相对的面上的两个数互为倒数,则填入正方形A,B,C•的三个数依次为( ).A. ,,1B. ,1,C.1,,D.1,,三、解答题(共32分)21.(6分)如图,A,B,C,D,E五人围坐在圆桌旁,为A祝贺生日,•小华问他们当时的座位.A说:我在B的旁边.B说:我在左边不是C就是D.C说:我在D的旁边.D说:不,C在B的右边是错的.只有E作了如实回答:除B说正确之外,A,C,D都说错了.你能确定他们的位置吗?22.(6分)如图所示,有25个点,横竖都以相等的间隔排列.•请你想出尽可能多的方法,将点连成面积不同的正方形.图中一共给出8个备用栏,但不一定有8个答案,请在一个备用栏里画出一个图形.23.(6分)在图(1),(2)的空格中填入不大于15且互不相同的数(其中已填好一个数),使每一横行、每一竖列和对角线上的3个数之和都等于30.24.(7分)(1)在如图(1)所示的正方体表面展开图中的三个空白正方形内各填入一个质数,使该图复原成正方体后,三组对面上的两数之和都相等.(2)图(2)是由四个如图(1)所示的正方体拼成的长方体,其中有阴影的面上为合数,无阴影的面上为质数,并且整个表面上任意两个相邻正方形内的数都不是图(1)•所示的正方体相对面上的两数.已知长方体正面上的四个数之和为质数,那么其左侧面上的数是_________(填具体数).(3)如果把图(2)中的长方体从中间等分成左右两个小长方体,•它们各自表面上的各数之和分别为S左和S右,那么S左与S右的大小关系是S左________S右.25.(7分)将连续的自然数1至1001按下图的方式排成一个长方形阵列,用一个长方形框出16个数,要使这个长方形框出的16个数之和分别等于(1)1998,(2)1991,(3)2000,(4)2080,这是否可能?若不可能,试说明理由;若可能,请写出该方框所框出的16个数中的最小数与最大数.答案:1.132.红色3.28 15 13 86 420 34.S甲=S乙点拨:如下图,原图形的面积分别等于两个边个相等的正方形的面积.5.(1)52 (2)17 (3)B (4)126.5 4或27. 点拨:原式= = + = .8. 点拨:结果=(32+32)5= .9.12 点拨:它们是6 899,6 989,6 998,8 699,8 969,8 996,9 869,9 •689,•9698,9 896,9 986,9 968.10.4 点拨:末位数以2,4,8,6的顺序周而复始,而30=47+2.11.C 点拨:由题意知,他们每天上午、下午各测一次,七次上午晴,五次下午晴,共下八次雨,所以共测了20次,所以是10天.12.C 点拨:相当于涂了底层的正面和每层的侧面,则共有9+4+8+12=33.13.C 点拨:观察发现,每七个为一个循环,而2006=7286+4,而第四个是红色.14.D 点拨:由图发现,1和2,3,4,5都相邻,所以1对的数字应是6.15.B 点拨:同时出现在两个数列中的数为11,21,31,41,,1991,2001,•共200个.16.C 点拨:观察发现,每四个数字为一个循环,所以2004至2006相当于4至6.17.C 点拨:由题意可知B不在二中和三中,所以B在一中,于是D,E也在一中,•而每所学校至少有他们五人中的一人,所以C在二中,A在三中.18.A 19.B 20.C21.如图,有两种可能.22.如图,面积共有七种可能(所连点可以不同).23.如图.13 5 129 10 118 15 7(1)11 5 1413 10 76 15 9(2)24.(1)如图.25.设第一个数为x,则第一行为x,x+1,x+2,x+3,第二行为x+7,x+8,x+9,x+10,第三行为x+14,x+15,x+16,x+17,第四行为x+21,x+22,x+23,x+24,16个数之和为16x+192.(1)16x+192=1988,x=112 ,不可能.(2)16x+192=1991,x=112 ,不可能.(3)16x+192=2000,x=113,可能,最小数为113,最大数为137.(4)16x+192=2080,x=118,可能,最小数为118,最大数为142.。
最新人教版七年级数学上册《有理数的加减法》同步测试题及答案.docx

1.3有理数的加减法同步测试题一、选择题1.小马虎在下面计算中只做对了一道题,他做对的题目是( )A.(-3)+5=-2 B.(-7)+(-7)=0C.(-6)+(-3)=-9 D.9+(-9)=12. .用字母表示有理数的减法法则正确的是( )A.a-b=a+b B.a-b=a+(-b)C.a-b=-a+b D.a-b=a-(-b)3. 下列式子可读作“负10,负6,正3,负7的和”的是( )A.-10+(-6)+(+3)-(-7) B.-10-6+3-7C.-10-(-6)-3-(-7) D.-10-(-6)-(-3)-(-7)4. 某村有几块麦田,今年的收成与去年相比(增产为正,减产为负)的情况如下(单位为kg):+32,-17,-32,+13,+15,+4,-15,则今年小麦的总产量与去年相比( )A.增产2千克B.减产2千克C.增产12千克D.与去年的产量相同5. 冰箱冷冻室的温度为-6℃,此时房屋内的温度为20℃,则房屋内的温度比冰箱冷冻室的温度高( )A.26℃B.14℃C.-26℃D.-14℃6. 0减去一个数等于( )A.这个数B.0 C.这个数的相反数D.负数7. 在数1,2,3,4,…,405前分别加“+”或“-”,使所得数字之和为非负数,则所得非负数最小为( ) A.0 B.1 C.2 D.38. 已知a,b在数轴上的位置如图所示,则a-b的结果的符号为( )A .正B .负C .0D .无法确定9. 下列说法正确的是( )A .两个数之差一定小于被减数B .减去一个负数,差一定大于被减数C .减去一个正数,差不一定大于被减数D .0减去任何数,差都是负数10. 计算(-2.29)+8+(-7.71)时,下列简便运算正确的是( )A .[(-2.29)+8]+(-7.71)B .(-2.29)+[8+(-7.71)]C .(-8)+(2.29+7.71)D .[(-2.29)+(-7.71)]+811.把(-8)-(+4)+(-5)-(-2)写成省略括号的和的形式是( )A .-8+4-5+2B .-8-4-5+2C .-8-4+5+2D .8-4-5+212. 7-3-4+18-11=(7+18)+(-3-4-11)是应用了( )A .加法交换律B .加法结合律C .分配律D .加法的交换律和结合二、填空题13.计算(+1)+(-2)+(+3)+(-4)+…+(+9)+(-10)的结果是_______.14. 已知a +x =2015,b +y =-2020,则a +b +x +y =_______.15.绝对值大于1而小于6的所有整数的和是____.16. 已知有理数+3,-8,-10,+12,请你通过有理数的加减混合运算,使其运算结果最大,则列式为_______ __________________.17. 如果a =-14,b =-2,c =-34,则a +(-b)-|-c|的值为__ __. 18. 在( )里写出每一步变形过程的依据.(-4)+(+18)-(-3)-(+13)+(-2)=(-4)+(+18)+(+3)+(-13)+(-2)(________________)=[(-4)+(-13)+(-2)]+[(+18)+(+3)](_____________)=(-19)+(+21)(________________)=2.(______ __________)19. 若a -(-b)=0,则a 与 b 的关系是____________.20. 已知|x|=5,y =3,则 x -y 的值为________.三、解答题21. (1)20-(-7)-|-2|; (2)12-(-18)+(-7)-15;(3)-213-56-12+116; (4)|-212|-(-2.5)+1-|1-212|;(5)16+(-25)+24-35; (6)314+(-235)+534-825;(7)(-12)+|0-5|+|-4|+(-9); (8)312-(-214)+(-13)-0.25+(+16). 22.若a 、b 、c 是有理数,|a|=3,|b|=10,|c|=5,且a 、b 异号,b 、c 同号,求a -b -(-c)的值.23.某只股票上周末的收盘价格是10.00元,本周一到周五的收盘情况如下表:(“+”表示股票比前一天上涨,“-”表示股票比前一天下跌)上周末周一周二周三周四周五收盘价10.00 +0.28 -2.36 +1.80 -0.35 +0.08(1)周一至周五这只股票每天的收盘价各是多少元?(2)本周末的收盘价比上周末收盘价是上涨了,还是下跌了多少?(3)这五天的收盘价中哪天的最高?哪天的最低?相差多少?24.已知A,B两点在数轴上分别表示的数为m,n.(1)对照数轴填写下表:m 6 -6 -6 -6 2 -1.5n 4 0 4 -4 -8 -1.5A,B两点间的距离(2)若A,B两点间的距离记为d,试问d与m,n有何数量关系?并用文字描述出来;(3)已知A,B在数轴上分别表示的数为x和-1,则A,B两点间的距离d可表示为____________,如果d =3,求x的值.参考答案一、选择题1.小马虎在下面计算中只做对了一道题,他做对的题目是( C )A.(-3)+5=-2 B.(-7)+(-7)=0C.(-6)+(-3)=-9 D.9+(-9)=12. .用字母表示有理数的减法法则正确的是( B )A.a-b=a+b B.a-b=a+(-b)C.a-b=-a+b D.a-b=a-(-b)3. 下列式子可读作“负10,负6,正3,负7的和”的是( B )A.-10+(-6)+(+3)-(-7) B.-10-6+3-7C.-10-(-6)-3-(-7) D.-10-(-6)-(-3)-(-7)4. 某村有几块麦田,今年的收成与去年相比(增产为正,减产为负)的情况如下(单位为kg):+32,-17,-32,+13,+15,+4,-15,则今年小麦的总产量与去年相比( D )A.增产2千克B.减产2千克C.增产12千克D.与去年的产量相同5. 冰箱冷冻室的温度为-6℃,此时房屋内的温度为20℃,则房屋内的温度比冰箱冷冻室的温度高( A )A.26℃B.14℃C.-26℃D.-14℃6. 0减去一个数等于( C )A.这个数B.0 C.这个数的相反数D.负数7. 在数1,2,3,4,…,405前分别加“+”或“-”,使所得数字之和为非负数,则所得非负数最小为( B ) A.0 B.1 C.2 D.38. 已知a,b在数轴上的位置如图所示,则a-b的结果的符号为( B )A.正B.负C.0 D.无法确定9. 下列说法正确的是( B )A.两个数之差一定小于被减数B.减去一个负数,差一定大于被减数C.减去一个正数,差不一定大于被减数D.0减去任何数,差都是负数10. 计算(-2.29)+8+(-7.71)时,下列简便运算正确的是( D )A.[(-2.29)+8]+(-7.71) B.(-2.29)+[8+(-7.71)]C.(-8)+(2.29+7.71) D.[(-2.29)+(-7.71)]+811.把(-8)-(+4)+(-5)-(-2)写成省略括号的和的形式是( B )A.-8+4-5+2 B.-8-4-5+2C.-8-4+5+2 D.8-4-5+212. 7-3-4+18-11=(7+18)+(-3-4-11)是应用了( D )A .加法交换律B .加法结合律C .分配律D .加法的交换律和结合律二、填空题13.计算(+1)+(-2)+(+3)+(-4)+…+(+9)+(-10)的结果是__-5_____.14. 已知a +x =2015,b +y =-2020,则a +b +x +y =____-5___.15.绝对值大于1而小于6的所有整数的和是__0__.16. 已知有理数+3,-8,-10,+12,请你通过有理数的加减混合运算,使其运算结果最大,则列式为_________ (+12)+(+3)-(-8)-(-10) __________________.17. 如果a =-14,b =-2,c =-34,则a +(-b)-|-c|的值为__ 1 __. 18. 在( )里写出每一步变形过程的依据.(-4)+(+18)-(-3)-(+13)+(-2)=(-4)+(+18)+(+3)+(-13)+(-2)(____ 统一为加法____________)=[(-4)+(-13)+(-2)]+[(+18)+(+3)](_加法的交换律、结合律___)=(-19)+(+21)(____有理数加法法则__)=2.(______ 有理数加法法则______)19. 若a -(-b)=0,则a 与 b 的关系是___互为相反数_________.20. 已知|x|=5,y =3,则 x -y 的值为__2或-8______.三、解答题21. (1)20-(-7)-|-2|; (2)12-(-18)+(-7)-15;(3)-213-56-12+116; (4)|-212|-(-2.5)+1-|1-212|;(5)16+(-25)+24-35; (6)314+(-235)+534-825;(7)(-12)+|0-5|+|-4|+(-9); (8)312-(-214)+(-13)-0.25+(+16). 解:(1)原式=20+7-2=25.(2)原式=12+18-7-15=30-22=8.(3)原式=-213-12+(116-56)=-213-12+13=-2-12=-212. (4)原式=212+2.5+1-112=4.5. (5)原式=16+24+[(-25)+(-35)]=40+(-60)=-20.(6)原式=314+534+[(-235)+(-825)]=9+(-11)=-2. (7)原式=-12+5+4+(-9)=-12. (8)原式=(214-14)+(312-13+16)=2+(336-26+16)=2+313=513. 22.若a 、b 、c 是有理数,|a|=3,|b|=10,|c|=5,且a 、b 异号,b 、c 同号,求a -b -(-c)的值.解:由题 意,得当a =-3,b =10,c =5时,a -b -(-c)=-3-10-(-5)=-8;当a=3,b=-10,c=-5时,a-b-(-c)=3-(-10)-5=8.23.某只股票上周末的收盘价格是10.00元,本周一到周五的收盘情况如下表:(“+”表示股票比前一天上涨,“-”表示股票比前一天下跌)上周末周一周二周三周四周五收盘价10.00 +0.28 -2.36 +1.80 -0.35 +0.08(1)周一至周五这只股票每天的收盘价各是多少元?(2)本周末的收盘价比上周末收盘价是上涨了,还是下跌了多少?(3)这五天的收盘价中哪天的最高?哪天的最低?相差多少?解:(1)10+0.28=10.28(元);10.28-2.36=7.92(元);7.92+1.80=9.72(元);9.72-0.35=9.37(元);9.37+0.08=9.45(元).所以,周一至周五这只股票每天的收盘价分别为10.28元、7.92元、9.72元、9.37元、9.45元.(2)10.00-9.45=0.55(元),本周末收盘价比上周末的收盘价下跌了0.55元.(3)周一最高,周二最低,因为10.28-7.92=2.36(元),所以相差2.36元.24.已知A,B两点在数轴上分别表示的数为m,n.(1)对照数轴填写下表:m 6 -6 -6 -6 2 -1.5n 4 0 4 -4 -8 -1.5A,B两点间的距离 2 6 10 2 10 0(2)若A,B两点间的距离记为d,试问d与m,n有何数量关系?并用文字描述出来;(3)已知A,B在数轴上分别表示的数为x和-1,则A,B两点间的距离d可表示为___|x+1|__________,如果d=3,求x的值.解:(2)d=|m-n|,数轴上两个点之间的距离,等于这两个点表示的数的差的绝对值(3)|x+1| 当d=3时,|x-(-1)|=3,所以x=2或-4。
初中数学(新人教版)七年级下册同步测试:第六章测评(同步测试)【含答案及解析】

第六章测评(时间:45分钟,满分:100分)一、选择题(本大题共8小题,每小题5分,共40分.下列各题给出的四个选项中,只有一项符合题意)1.四个实数1,0,√3,-3中,最大的数是( )A.1B.0C.√3D.-32.下列计算正确的是( )A.√(-3)2=-3B.√-53=√53C.√36=±6D.-√0.36=-0.63.√83的算术平方根是( )A .2B .±2C .√2D .±√2 4.满足-√2<x<√3的整数共有( )A.4个B.3个C.2个D.1个 5.实数2 √10介于( )A.4和5之间B.5和6之间C.6和7之间D.7和8之间6.若|x-2y|+√y +2=0,则xy 的值为( )A .8B .2C .5D .-6 7.若√a 3+√b 3=0,则下列等式成立的是( )A.a=b=0B.a=bC.a+b=0D.ab=08.如图,数轴上表示1,√3的对应点分别为点A ,B ,若AB=AC ,则点C 所表示的实数为( )A .√3-1B .1-√3C .2-√3D .√3-2二、填空题(每小题5分,共20分)9.已知非零整数x ,y 满足√x +√y 3=0,请写出一对符合条件的x ,y 的值: .10.以下判断:①数轴上任一点都表示一个有理数;②√23是分数;③任何非负实数都可以进行开平方运算;④因为√2,√3,√5都是无理数,所以无理数都是有根号的数.其中说法正确的是 .(填序号)11.比较大小:√5-3 √5-22.(填“>”“<”或“=”)12.若x ,y 都是实数,且√x +y +|x+√2|=0,则y 的相反数是 .三、解答题(共40分)13.(10分)计算:(1)√49+√9+16−√144;(2)√2163−√-3-383×√400.14.(10分)求下列各式中x 的值:(1)x 3+827=0;(2)(x-1)2-1=8.15.(10分)如图所示,在这个漂亮的螺旋图中,所有的三角形都是直角三角形.已知直角三角形有如下性质:直角三角形两直角边的平方和等于斜边的平方,如图中有结论OA 2+AB 2=OB 2,OB 2+BC 2=OC 2等.根据图中所标数据,试求出x ,y ,z ,w 的值,并指出其中的无理数.16.(10分)阅读下列解题过程.若5+√11的小数部分为a ,5-√11的小数部分为b ,求a+b 的值.解 ∵3<√11<4,∴5+√11的整数部分为8,5-√11的整数部分为1.∴5+√11的小数部分a=5+√11-8=√11-3,5-√11的小数部分b=5-√11-1=4-√11.∴a+b=√11-3+4-√11=1.阅读后,请解答下列问题:若6+√10的整数部分为a ,小数部分为b ,求2a-(√10+1)+b+2 019的值.答案:一、选择题1.C2.D3.C4.B5.C6.A7.C8.C 由题意,得AB=√3-1.∵AB=AC ,∴点C 表示的实数为1-(√3-1)=2-√3.二、填空题9.答案不唯一,如x=1,y=-1 10.③11.< ∵4<5<9,∴√4<√5<√9,即2<√5<3,∴√5-3<0,√5-22>0,即√5-3<√5-22. 12.-√2三、解答题13.解 (1)原式=7+5-12=0.(2)原式=6-√-2783×√400 =6-(-32)×20=6+30=36.14.解 (1)x=√-8273=-23.(2)因为(x-1)2=9,x-1=±3,所以x=4或x=-2.15.解 根据题意,得x 2=12+12=2,y 2=x 2+12=3,z 2=y 2+12=4,w 2=z 2+12=5, 由算术平方根的意义,得x=√2,y=√3,z=√4=2,w=√5,其中√2,√3,√5是无理数.16.解 ∵3<√10<4, ∴6+√10的整数部分a=9,6+√10的小数部分b=6+√10-9=√10-3.∴2a-(√10+1)+b+2 019=2×9-√10-1+√10-3+2 019=2 033.。
人教版 七年级数学上册 第四章同步测试题(含答案)

人教版七年级数学上册第四章同步测试题(含答案)4.1 几何图形一、选择题1. 如图所示的几何体是由形状、大小都完全相同的小正方体组合而成的,则图中的图形不是从正面、左面、上面看这个几何体得到的平面图形的是()2. 如图所示的几何体,从上面看得到的平面图形是()3. 下列四个图形中,是三棱锥的展开图的是()4. 如图,下列各组图形中全部属于柱体的是()5. 下列几何体是由4个相同的小正方体搭成的,其中从左面看和从上面看得到的平面图形相同的是( )6. 下列几何体中,含有曲面的有()A.1个B.2个C.3个D.4个7. 圆柱是由长方形绕着它的一边所在的直线旋转一周得到的,那么如图所示的几何体是图中的哪一个图形绕着直线旋转一周得到的()8. 将如图所示的长方体的表面展开,则得到的平面图形不可能是图中的 ()9. 如图,给定的是一个纸盒的外表面,图中的几何体能由它折叠而成的是()10. 如果一个棱柱有18条棱,那么它的底面一定是()A.十八边形B.八边形C.六边形D.四边形二、填空题11. 如图,观察生活中的物体,根据它们所呈现的形状,填出与它们类似的立体图形的名称:(1)______;(2)______;(3)__________;(4)________.12. 苏轼的诗句“横看成岭侧成峰,远近高低各不同”说明的现象是.13. 如图所示的图形中,是棱柱的有______.(填序号)14. 如图所示的8个立体图形中,是柱体的有,是锥体的有,是球的有.(填序号)15. 如图所示是某几何体的展开图,那么这个几何体是.16. 如图,把下列实物图和与其对应的立体图形连接起来.三、解答题17. 如图,有一个外观为圆柱形的物体,它的内部构造看不到,当分别用一组平面沿水平方向(自上而下)和竖直方向(自左而右)截这个物体时,得到了如图所示的(1)(2)两组形状不同的截面,请你试着说出这个物体的内部构造.18. 如图,是长方体的展开图,将其折叠成一个长方体,那么:(1)与点N重合的点是哪几个?(2)若AG=CK=14 cm,FG=2 cm,LK=5 cm,则该长方体的表面积和体积分别是多少?图19. 如图①是三个直立于水平面上的形状完全相同的几何体(下底面为圆,单位:cm),将它们拼成如图②所示的新几何体,求新几何体的体积(结果保留π).人教版七年级数学上册 4.1 几何图形同步课时训练-答案一、选择题1. 【答案】A2. 【答案】C3. 【答案】A4. 【答案】B5. 【答案】B6. 【答案】B7. 【答案】A8. 【答案】C9. 【答案】B10. 【答案】C[解析] 一个棱柱有18条棱,则这个棱柱是六棱柱,六棱柱的底面是六边形.二、填空题11. 【答案】(1)圆柱(2)圆锥(3)圆柱、圆锥的组合体(4)球[解析] 立体图形实际上是由物体抽象得来的.12. 【答案】观察同一个物体,由于方向和角度不同,看到的图形往往不同13. 【答案】②⑥14. 【答案】①②⑤⑦⑧④⑥③15. 【答案】圆柱16. 【答案】①-C,②-B,③-D,④-E,⑤-A 连线略三、解答题17. 【答案】解:这个物体的内部构造为:圆柱中间有一球形空洞.18. 【答案】解:(1)与点N重合的点是点H,J.(2)由AG=CK=14 cm,LK=5 cm,可得CL=CK-LK=14-5=9(cm),所以长方体的表面积为2×(9×5+2×5+2×9)=146(cm2),体积为5×9×2=90(cm3).19. 【答案】解:π×22×(4+6)+[π×22×(4+6)]=40π+20π=60π(cm3).答:新几何体的体积为60π cm3.4.2直线、射线、线段同步练习试题(一)一.选择题1.平面上有三点A、B、C,如果AB=10,AC=7,BC=3,那么()A.点C在线段AB上B.点C在线段AB的延长线上C.点C在直线AB外D.点C可能在直线AB上,也可能在直线AB外2.下列四个生产生活现象,可以用公理“两点之间,线段最短”来解释的是()A.用两个钉子可以把木条钉在墙上B.植树时,只要定出两棵树的位置,就能使同一行树坑在一条直线上C.打靶的时候,眼睛要与枪上的准星、靶心在同一直线上D.为了缩短航程把弯曲的河道改直3.有下列生活、生产现象:①从A地到B地架设电线,总是尽可能沿着线段AB架设.②用两个钉子就可以把木条固定在墙上.③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线.④把弯曲的公路改直,就能缩短路程.其中能用“两点之间,线段最短”来解释的现象有()A.①④B.②④C.①②D.③④4.已知点A,B,C在同一直线上,若AB=20cm,AC=30cm,点M、N分别是线段AB、AC中点,求线段MN的长是()A.5cm B.5cm或15cm C.25cm D.5cm或25cm 5.已知点A,B,C为平面内三点,给出下列条件:①AC=BC;②AB=2BC;③AC =BC=AB.选择其中一个条件就能得到“点C是线段AB中点”的是()A.①B.③C.①或③D.①或②或③6.如图,点C是AB的中点,点D是BC的中点,下列结论:①CD=AC﹣DB,②CD=AB,③CD=AD﹣BC,④BD=2AD﹣AB,正确的有()A.1个B.2个C.3个D.4个7.现实生活中“为何有人乱穿马路,却不愿从天桥或斑马线通过?”,请用数学知识解释图中这一现象,其原因()A.两点之间,线段最短B.过一点有无数条直线C.两点确定一条直线D.两点之间线段的长度,叫做这两点之间的距离8.如图,某工厂有三个住宅区,A、B、C各区分别住有职工15人、20人、45人,且这三个区在一条大道上(A、B、C三点共线),已知AB=1500m,BC=1000m,为了方便职工上下班,该工厂打算从以下四处中选一处设置接送车停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()A.A住宅区B.B住宅区C.C住宅区D.B、C住宅区中间D处9.老爷爷从家到超市有甲、乙、丙三条路可以选择,在不考虑其它因素的情况下,他选择了乙路前往,则其中蕴含着的数学道理是()A.两点确定一条直线B.两点之间线段最短C.连结直线外一点与直线上各点的所有线段中,垂线段最短D.在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线10.如图所示,某公司员工住在A,B,C三个住宅区,已知A区有2人,B区有7人,C区有12人,三个住宅区在同一条直线上,且AB=150m,BC=300m,D 是AC的中点.为方便员工,公司计划开设通勤车免费接送员工上下班,但因为停车位紧张,在A,B,C,D四处只能设一个通勤车停靠点,为使所有员工步行到停靠点的路程之和最小,那么停靠站应设在()A.A处B.B处C.C处D.D处二.填空题11.如图所示是一段火车路线图,A、B、C、D、E是五个火车站,在这条线路上往返行车需要印制种火车票.12.点A到原点的距离为4,且位于原点的左侧,若一个点从A处向右移动2个单位长度,再向左移动7个单位长度,此时终点所表示的数为.13.如图,AE⊥AB于A点,DB⊥AB于B点,点P为线段AB上任意一点,若AE =2,DB=4,AB=8,则PE+PD的最小值是.14.曲桥是我国古代经典建筑之一,它的修建增加了游人在桥上行走的路程,有利于游人更好的观赏风光,如图,A、B两地间修建曲桥与修建直的桥相比,增加了桥的长度,其中蕴含的数学道理是.15.如图,建筑工人在砌墙时,经常用细线绳在墙的两端之间拉一条直的参照线,这样做的依据是.三.解答题16.如图所示,已知C、D是线段AB上的两个点,点M、N分别为AC、BD的中点.(1)若AB=16cm,CD=6cm,求AC+BD的长和M,N的距离;(2)如果AB=m,CD=n,用含m,n的式子表示MN的长.17.如图所示,把一根细线绳对折成两条重合的线段AB,点P在线段AB上,且AP:BP=2:3.(1)若细线绳的长度是100cm,求图中线段AP的长;(2)从点P处把细线绳剪断后展开,细线绳变成三段,若三段中最长的一段为60cm,求原来细线绳的长.18.已知平面上点A,B,C,D(每三点都不在一条直线上).(1)经过这四点最多能确定条直线.(2)如图这四点表示公园四个地方,如果点B,C在公园里湖对岸两处,A,D在湖面上,要从B到C筑桥,从节省材料的角度考虑,应选择图中两条路中的哪一条?如果有人想在桥上较长时间观赏湖面风光,应选择哪一条?为什么?19.已知如图,A,B,C三点在同一直线上,AB=6,BC=2.(1)已知点C在直线AB上,根据条件,请补充完整图形,并求AC的长;(2)已知点C在直线AB上,M,N分别是AB,BC的中点,根据条件,请补充完整图形,并求MN的长,直接写出MN与AC的长存在的数量关系;(3)已知点C在直线AB上,M,N分别是AC,BC的中点,根据条件,请补充完整图形,并求MN的长,直接写出MN与AB的长存在的数量关系.参考答案与试题解析一.选择题1.【解答】解:如图,在平面内,AB=10,∵AC=7,BC=3,∴点C为以A为圆心,7为半径,与以B为圆心,3为半径的两个圆的交点,由于AB=10=7+3=AC+BC,所以,点C在线段AB上,故选:A.2.【解答】解:A、根据两点确定一条直线,故本选项不符合题意;B、确定树之间的距离,即得到相互的坐标关系,故本选项不符合题意;C、根据两点确定一条直线,故本选项不符合题意;D、根据两点之间,线段最短,故本选项符合题意.故选:D.3.【解答】解:根据两点之间,线段最短,得到的是:①④;②③的依据是两点确定一条直线.故选:A.4.【解答】解:(1)当点C位于点B的右边时,MN=(AC﹣AB)=5cm,(2)当点C位于点A的左边时,MN=(AC+AB)=25cm故线段MN的长为5cm或25cm.故选:D.5.【解答】解:①点C在线段AB上,且AC=BC,则C是线段AB中点故①不符合题意;②AB=2BC,C不一定是线段AB中点故②不符合题意;③AC=BC=AB,则C是线段AB中点,故③符合题意.故选:B.6.【解答】解:∵点C是AB的中点,点D是BC的中点,∴AC=BC=AB,CD=BD=BC=AC,∴①CD=BC﹣DB=AC﹣DB,正确;②CD=BC=AB,正确;③CD=AD﹣AC=AD﹣BC,正确;④BD=AB﹣AD≠2AD﹣AB,错误.所以正确的有①②③3个.故选:C.7.【解答】解:现实生活中“为何有人乱穿马路,却不愿从天桥或斑马线通过?”,请用数学知识解释图中这一现象,其原因是两点之间,线段最短,故选:A.8.【解答】解:当停靠点在A区时,所有员工步行到停靠点路程和是:20×1500+45×2500=142500m;当停靠点在B区时,所有员工步行到停靠点路程和是:15×1500+45×1000=67500m;当停靠点在C区时,所有员工步行到停靠点路程和是:15×2500+20×1000=57500m;当停靠点在D区时,设距离B区x米,所有员工步行到停靠点路程和是:15×(1500+x)+20x+45(1000﹣x)=﹣10x+67500,由于k=﹣10,所以,x越大,路程之和越小,∴当停靠点在C区时,所有员工步行到停靠点路程和最小.故选:C.9.【解答】解:图中三条路线,甲和丙是曲线,乙是线段,由两点间线段最短,∴乙最短,故选:B.10.【解答】解:BD=(150+300)÷2﹣150=75(m),以点A为停靠点,则所有人的路程的和=7×150+12×(150+300)=6450m,以点B为停靠点,则所有人的路程的和=2×150+12×300=3900m,以点C为停靠点,则所有人的路程的和=2×(150+300)+7×300=3000m,以点D为停靠点,则所有人的路程的和=2×(150+300)÷2+7×75+12×(150+300)÷2=3675m.故停靠点的位置应设在点C.故选:C.二.填空题11.【解答】解:图中线段有:AB、AC、AD、AE,BC、BD、BE,CD、CE、DE 共10条,∵每条线段应印2种车票,∴共需印10×2=20种车票.故答案为:20.12.【解答】解:∵点A到原点的距离为4,且位于原点的左侧,∴点A表示的数为﹣4,∵一个点从A处向右移动2个单位长度,再向左移动7个单位长度,∴﹣4+2﹣7=﹣9,故答案为:﹣9.13.【解答】解:过点D作DT⊥EA交EA的延长线于T,连接DE.∵AE⊥AB,DB⊥AB,DT⊥ET,∴∠B=∠T=∠BAT=90°,∴四边形ABDT是矩形,∴BD=AT=4,AB=DT=8,∴ET=AE+AT=2+4=6,∴DE===10,∵PE+PD≥DE,∴PE+PD≥10,∴PE+PD的最小值为10.故答案为10.14.【解答】解:其中蕴含的数学道理是两点之间线段最短,故答案为:两点之间线段最短.15.【解答】解:建筑工人在砌墙时,经常用细线绳在墙的两端之间拉一条参照线,使垒的每一层砖在一条直线上,沿着这条线就可以砌出直的墙,则其中的道理是:两点确定一条直线.故答案为:两点确定一条直线.三.解答题16.【解答】解:(1)∵AB=16cm,CD=6cm,∴AC+BD=AB﹣CD=10cm,∴MN=AB﹣(AM+BN)=AB﹣(AC+BD)=16﹣5=11(cm);(2)∵AB=m,CD=n,∴AC+BD=AB﹣CD=m﹣n,∴MN=AB﹣(AM+BN)=AB﹣(AC+BD)=m﹣(m﹣n)=.17.【解答】解:(1)∵AB=100=50,AP:BP=2:3,∴AP=20;(2)∵AP:BP=2:3,∴设AP=2x,BP=3x,若一根绳子沿B点对折成线段AB,则剪断后的三段绳子中分别为2x,2x,6x,∴6x=60,解得x=10,∴绳子的原长=2x+2x+6x=10x=100(cm);若一根绳子沿A点对折成线段AB,则剪断后的三段绳子中分别为4x,3x,3x,∴4x=60,解得x=15,∴绳子的原长=4x+3x+3x=10x=150(cm);综上所述,绳子的原长为100cm或150cm.故答案为100cm或150cm.18.【解答】解:(1)经过这四点最多能确定6条直线:直线AB,直线AD,直线BC,直线CD,直线AC,直线BD,故答案为:6;(2)从节省材料的角度考虑,应选择图中路线2;如果有人想在桥上较长时间观赏湖面风光,应选择路线1,因为两点之间,线段最短,路线2比路线1短,可以节省材料;而路线1较长,可以在桥上较长时间观赏湖面风光.19.【解答】解:(1)如图,如图1,∵AB=6,BC=2.∴AC=AB+BC=8;如备用图1,AC=AB﹣BC=4.答:AC的长为8或4;(2)如图,∵M,N分别是AB,BC的中点,∴BM=AB=3,BN=BC=1,∴MN=BM+BN=3+1=4,或MN=BM﹣BN=3﹣1=2.答:MN的长为4或2;(3)如图,∵M,N分别是AC,BC的中点,∴MC=AC=4,NC=BC=1,∴MN=MC﹣NC=4﹣1=34.3角同步练习试题(一)一.选择题1.如图,射线OA表示的方向是()A.北偏东65°B.北偏西35°C.南偏东65°D.南偏西35°2.如图,∠AOC=90°,OC平分∠DOB,且∠DOC=22°36′,∠BOA度数是()A.67°64′B.57°64′C.67°24′D.68°24′3.下列说法正确的是()A.射线比直线短B.从同一点引出的两条射线所组成的图形叫做角C.若AP=BP,则P是线段AB的中点D.两点之间的线段叫做这两点之间的距离4.下列语句错误的个数是()①一个角的补角不是锐角就是钝角;②角是由两条射线组成的图形;③如果点C是线段AB的中点,那么AB=2AC=2BC;④连接两点之间的线段叫做两点的距离.A.4个B.3个C.2个D.1个5.按图1~图4的步骤作图,下列结论错误的是()A.∠AOB=∠AOP B.∠AOP=∠BOPC.2∠BOP=∠AOB D.∠BOP=2∠AOP6.如图,用量角器度量∠AOB,可以读出∠AOB的度数为()A.30°B.60°C.120°D.150°7.如图,小王从A处出发沿北偏东40°方向行走至B处,又从B处沿南偏东60°方向行走至C处,则∠ABC等于()A.90°B.100°C.110°D.120°8.如图,将一副三角板按不同位置摆放,其中α和β互为余角的是()A.B.C.D.9.如果∠1与∠2互补,∠2与∠3互余,那么∠1与∠3的关系是()A.∠1=90°+∠3 B.∠3=90°+∠1 C.∠1=∠3 D.∠1=180°﹣∠310.为防止森林火灾的发生,会在森林中设置多个观测点,如图,若起火点M 在观测台B的南偏东46°的方向上,点A表示另一处观测台,若AM⊥BM,那么起火点M在观测台A的()A.南偏东44°B.南偏西44°C.北偏东46°D.北偏西46°二.填空题11.若两个角互补,且度数之比为3:2,求较大角度数为.12.若∠A=59.6°,则它的余角为°′.13.将一副三角板按如图方式摆放在一起,且∠1比∠2大20°,则∠1的度数等于.14.如图,点C在点B的北偏西60°的方向上,点C在点A的北偏西30°的方向上,则∠C等于度.15.如图,点A在点O的北偏西60°的方向上,点B在点O的南偏东20°的方向上,那么∠AOB的大小为°.三.解答题16.如图所示,O为直线上的一点,且∠COD为直角,OE平分∠BOD,OF平分∠AOE,∠BOC+∠FOD=117°,求∠BOE的度数.17.如图,已知∠AOB=128°,OC平分∠AOB,请你在∠COB内部画射线OD,使∠COD和∠AOC互余,并求∠COD的度数.18.已知∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD,OE.(1)如图①,当∠BOC=40°时,求∠DOE的度数;(2)如图②,当射线OC在∠AOB内绕O点旋转时,OD,OE始终是∠AOC与∠BOC的平分线.则∠DOE的大小是否发生变化,说明理由;(3)当射线OC在∠AOB外绕O点旋转且∠AOC为钝角时,OD,OE仍始终是∠AOC与∠BOC的平分线,直接写出∠DOE的度数(不必写过程).19.如图①,点O为直线AB上一点,过点O作射线OC,将一直角三角板如图摆放(∠MON=90°).(1)若∠BOC=35°,求∠MOC的大小.(2)将图①中的三角板绕点O旋转一定的角度得图②,使边OM恰好平分∠BOC,问:ON是否平分∠AOC?请说明理由.(3)将图①中的三角板绕点O旋转一定的角度得图③,使边ON在∠BOC的内部,如果∠BOC=50°,则∠BOM与∠NOC之间存在怎样的数量关系?请说明理由.参考答案与试题解析一.选择题1.【解答】解:射线OA表示的方向是南偏东65°,故选:C.2.【解答】解:∵OC平分∠DOB,∴∠DOC=∠BOC=22°36′.∵∠AOC=∠AOB+∠BOC=90°,∴∠AOB=∠AOC﹣∠BOC=90°﹣22°36′=67°24′.故选:C.3.【解答】解:A.射线和直线不可以比较长短,原说法错误,故本选项不符合题意;B.从同一点引出的两条射线所组成的图形叫做角,原说法正确,故本选项符合题意;C.若点P在线段AB上,AP=BP,则P是线段AB的中点,原说法错误,故本选项不符合题意;D.两点之间的线段的长度叫做这两点之间的距离,原说法错误,故本选项不符合题意;故选:B.4.【解答】解:①直角的补角是直角,故原说法错误;②角是由有公共的端点的两条射线组成的图形,故原说法错误;③如果点C是线段AB的中点,那么AB=2AC=2BC,说法正确;④连接两点之间的线段的长度叫做两点的距离,故原说法错误.故错误的个数有①②④共3个.故选:B.5.【解答】解:∵OP是∠AOB的平分线,∴∠AOB=2∠AOP=2∠BOP,∠AOP=∠BOP=∠AOB,∴选项A、B、C均正确,选项D错误.故选:D.6.【解答】解:看内圈的数字可得:∠AOB=120°,故选:C.7.【解答】解:如图:∵小王从A处沿北偏东40°方向行走至点B处,又从点B处沿南偏东60°方向行走至点C处,∴∠DAB=40°,∠CBE=60°,∵向北方向线是平行的,即AD∥BE,∴∠ABE=∠DAB=40°,∴∠ABC=∠ABE+∠EBC=40°+60°=100°.故选:B.8.【解答】解:A、α和β互余,故本选项正确;B、α和β不互余,故本选项错误;C、α和β不互余,故本选项错误;D、α和β不互余,故本选项错误.故选:A.9.【解答】解:∵∠1+∠2=180°∴∠1=180°﹣∠2又∵∠2+∠3=90°∴∠3=90°﹣∠2∴∠1﹣∠3=90°,即∠1=90°+∠3.故选:A.10.【解答】解:如图:因为AM⊥BM,所以∠2+∠3=90°,因为南北方向的直线平行,所以∠2=46°,∠1=∠3,所以∠3=90°﹣∠2=90°﹣46°=44°,所以∠1=44°,所以起火点M在观测台A的南偏西44°,故选:B.二.填空题11.【解答】解:因为两个角的度数之比为3:2,所以设这两个角的度数分别为(3x)°和(2x)°.根据题意,列方程,得3x+2x=180,解这个方程,得x=36,所以3x=108.即较大角度数为108°.故答案为108°.12.【解答】解:∵∠A=59.6°,∴∠A的余角为90°﹣59.6°=30.4°=30°24',故答案为30;24.13.【解答】解:设∠2为x,则∠1=x+20°;根据题意得:x+x+20°=90°,解得:x=35°,则∠1=35°+20°=55°;故答案为:55°.14.【解答】解:如图:根据题意可得:∠1=60°,∠2=30°,∵AE∥DB∥CF,∴∠BCF=∠1=60°,∠ACF=∠2=30°,∴∠ACB=30°.故答案为:30.15.【解答】解:如图,∵点A在点O北偏西60°的方向上,∴OA与西方的夹角为90°﹣60°=30°,又∵点B在点O的南偏东20°的方向上,∴∠AOB=30°+90°+20°=140°.故答案为:140.三.解答题16.【解答】解:设∠BOE=α°,∵OE平分∠BOD,∴∠BOD=2α°,∠EOD=α°.∵∠COD=∠BOD+∠BOC=90°,∴∠BOC=90°﹣2α°.∵OF平分∠AOE,∠AOE+∠BOE=180°,∴∠FOE=∠AOE=(180°﹣α°)=90°﹣α°,∴∠FOD=∠FOE﹣∠EOD=90°﹣α°﹣α°=90°﹣α°,∵∠BOC+∠FOD=117°,∴90°﹣2α°+90°﹣α°=117°,∴α=18,∴∠BOE=18°.17.【解答】解:作OD⊥OA,则∠COD和∠AOC互余,如图所示.∵∠AOB=128°,OC平分∠AOB,∴∠AOC=∠AOB=64°,∵∠COD和∠AOC互余,∴∠COD=90°﹣∠AOC=26°.18.【解答】解:(1)如图,∠AOC=90°﹣∠BOC=50°,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=∠AOC=25°,∠COE=∠BOC=20°,∴∠DOE=∠COD+∠COE=45°;(2)∠DOE的大小不变,理由是:∠DOE=∠COD+∠COE=∠AOC+∠BOC=(∠AOC+∠BOC)∠AOB =45°;(3)∠DOE的大小分别为45°和135°,如图3,则∠DOE为45°;如图4,则∠DOE为135°.分两种情况:如图3所示,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=∠AOC,∠COE=∠BOC,∴∠DOE=∠COD﹣∠COE=(∠AOC﹣∠BOC)=45°;如图4所示,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=∠AOC,∠COE=∠BOC,∴∠DOE=∠COD+∠COE=(∠AOC+∠BOC)=×270°=135°.19.【解答】解:(1)∵∠MON=90°,∠BOC=35°,∴∠MOC=∠MON+∠BOC=90°+35°=125°.(2)ON平分∠AOC.理由如下:∵∠MON=90°,∴∠BOM+∠AON=90°,∠MOC+∠NOC=90°.又∵OM平分∠BOC,∴∠BOM=∠MOC.∴∠AON=∠NOC.∴ON平分∠AOC.(3)∠BOM=∠NOC+40°.理由如下:∵∠CON+∠NOB=50°。
人教版七年级数学上册《5.3实际问题与一元一次方程》同步测试题及答案

人教版七年级数学上册《5.3实际问题与一元一次方程》同步测试题及答案一、解答题1.列方程解应用题甲乙两车分别从相距605km 的A 、B 两地出发,甲车的速度为60km/h ,乙车的速度为50km/h ,两车同时出发,相向而行.求经过多少小时两车相遇后相距55km ?2.如图,某小区矩形绿地的长宽分别为35m 15m ,.现计划对其进行扩充,将绿地的长、宽增加相同的长度后,得到一个新的矩形绿地.若扩充后的矩形绿地的长是宽的2倍,求新的矩形绿地的长与宽;3.如图,已知A B ,为数轴上的两个点,点A 表示的数是30-,点B 表示的数是10.(1)写出线段AB 的中点C 对应的数;(2)若点D 在数轴上,且30BD =,写出点D 对应的数;(3)若一只蚂蚁从点A 出发,在数轴上每秒向右前进3个单位长度;同时一只毛毛虫从点B 出发,在数轴上每秒向右前进1个单位长度,它们在点E 处相遇,求点E 对应的数.4.我们学校七年级同学参加“研学”活动,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座位车,则多出一辆,且其余客车恰好坐满,已知45座客车租金200元,60座客车租金300元,问:(1)七年级同学多少人?原计划租车45座的客车多少辆?(2)若你是七年级组长,要使每个同学都有座位,应如何租车最划算?花钱多少元?5.去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?6.每年农历五月初五是中国民间的传统节日——端午节.今年端午节,某地甲、乙两家超市为吸引更多的顾客,开展促销活动,对某种质量和售价相同的粽子分别推出了不同的优惠方案,甲超市的方案是:购买该种粽子超过80元后,超出80元的部分按九折收费;乙超市的方案是:购买该种粽子超过120元后,超出120元的部分按八折收费.请根据顾客购买粽子的金额,帮顾客判断到哪家超市购买粽子更划算?7.用白铁皮做罐头盒,每张铁片可制盒身16个或制盒底43个,一个盒身与两个盒底配成一套罐头盒,现有150张白铁皮,用多少张制盒身,多少张制盒底,可以正好制成整套罐头盒?8.有一篮苹果,平均分给几个小朋友,每人3个,则多2个;每人4个则少3个.问:有几个小朋友,几个苹果?9.“丰收1号”油菜籽的平均每公顷产量为2 400kg,含油率为40%.“丰收2号”油菜籽比“丰收1号”的平均每公顷产量提高了300kg,含油率提高了10个百分点.某村去年种植“丰收1号”油菜,今年改种“丰收2号”油菜,虽然种植面积比去年减少3hm2,但是所产油菜籽的总产油量比去年提高3 750kg.这个村去年和今年种植油菜的面积各是多少公顷?10.(列方程)把一批图书分给七年级(11)班的同学阅读,若每人分3本,则剩余20本,若每人分4本,则缺25本,这个班有多少学生?11.昨天老师带着我们班同学去深圳少年宫玩,我们一共去了60人(包括老师),买门票共花了1240元.玩得可开心了!小明:真羡慕你们,不过听说门票还是挺贵的.小红:是的,老师票每张30元,学生票每张20元.那你能猜出我们去了几位老师,几位学生吗?小明:去了……根据以上的对话,你能用解方程的知识帮助小明回答小红的提问吗?12.把一些图书分给某班学生阅读,如果没人分3本,则余20本,如果每人分4本,则还缺25本。
人教版七年级上册数学同步测试:第一章 1.3 有理数的加法(解析版)

1.3 有理数的加法测试1. 小磊解题时,将式子(−16)+(−7)+56+(−4)先变成[(−16+56]+[(−7)+(−4)]再计算结果,则小磊运用了( )A. 加法交换律B. 加法交换律和加法结合律C. 加法结合律D. 无法判断【答案】B【解析】将式子(−16)+(−7)+56+(−4)先变成[(−16)+56]+[(−7)+(−4)]再计算结果,运用了加法交换律和加法结合律,故选B.2. 下列变形,运用运算律正确的是( )A. 2+(−1)=1+2B. 3+(−2)+5=(−2)+3+5C. [6+(−3)]+5=[6+(−5)]+3D. 13+(−2)+(+2323)=(1313+2323)+(+2)【答案】B【解析】A. 2+(−1)=(−1)+2,错误;B. 3+(−2)+5=(−2)+3+5,正确;C. [6+(−3)]+5=(6+5)+(−3),错误;D. 13+(−2)+(+23)=(13+23)+(−2),错误,故选B.3. 下列交换加数的位置的变形中,错误的是( )A. 30+(−20)=(−20)+30B. (−5)+(−13)=(−13)+(−5)C. (−37)+16=16+(−37)D. 10+(−20)=20+(−10) 【答案】D【解析】A. 30+(−20)=(−20)+30是正确的,不符合题意;B. (−5)+(−13)=(−13)+(−5)是正确的,不符合题意;C. (−37)+16=16+(−37)是正确的,不符合题意;D. 10+(−20)=(−20)+10,原来的变形是错误的,符合题意.故选D.4. 计算(+1317)+(−3.5)+(−6)+(+2.5)+(+6)+(+417)的结果是( )A. 12B. −12C.317D. 0【答案】D 【解析】原式=(1317+417)+(−3.5+2.5)+(−6+6)=1−1+0=0,故选D5. 下列说法中正确的是( )A.若a+b>0,则a>0,b>0B. 若a+b<0,则a<0,b<0C. 若a+b>a,则a+b>bD. 若|a|=|b|,则a=b或a+b=0 【答案】D 【解析】A. 如果a=−3,b=5,那么a+b=2>0,但是a<0,故本选项错误;B. 如果a=3,b=−5,那么a+b=−2<0,但是a>0,故本选项错误;C. 如果a=−3,b=5,那么a+b=2>−3=a,但是a+b=2<5=b,故本选项错误;D. 若|a|=|b|,则a=b或a+b=0,故本选项正确.故选D. 点睛:本题考查了有理数的加法法则及绝对值的定义与性质,本题属于基础知识,需熟练掌握.6. 在数轴上表示有理数a的点在表示–2的点的左边,则a+2( )A. 一定是正数B. 一定是负数C. 可能是正数,可能是负数D. 等于0【答案】B【解析】∵在数轴上表示有理数a的点在表示−2的点的左边,∴a<−2∴a+2<0,故选B.点睛:根据题意可知a与2异号,根据绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值即可作出选择.7. 若一个数的绝对值和相反数都等于它本身,另一个数是最大的负整数,则这两个数的和为( )A. –2B. –1C. 0D. 1【答案】B【解析】∵一个数的绝对值和相反数都等于它本身,∴这个数为0,而最大的负整数为−1,∴这两个数的和为−1.故选B.8. 一个数是10,另一个数比10的相反数大2,则这两个数的和为()-A. 18 B. 2- C. 2 D. 18【答案】C【解析】【分析】根据题意表示出另一个数,相加即可得到结果.【详解】根据题意得:10+(−10+2)=10−10+2=2.故选C【点睛】此题考查有理数的加法,解题关键在于利用相反数的性质进行求解9. –13与+25的和的相反数可以列式为( )A. –13+25B. –(13–25)C. –(–13+25)D. 13+25 【答案】C【解析】根据题意得:−(−13+25).故选C10. 已知|m|=5,|n|=2,且n<0,则m+n的值是( )A.–7B. +3C. –7或–3D. –7或3 【答案】D 【解析】因为|m|=5,|n|=2,∴m=±5,n=±2,又∵n<0,∴n=-2, 当m=5,n=-2时,m+n=3; 当m=-5,n=-2时,m+n= -7. 所以D选项是正确的. 11. 已知3,2x y==,且x y>,则x y+的值为()A. 5B. -1C. -5或-1D. 5或1 【答案】D【解析】∵|x|=3,|y|=2,∴x=±3,y=±2,又∵x>y,∴x=3,y=2,x+y=5;或x=3,y=−2,x+y=1.故选D.a b的值为12. 若a=2,b=3,则A. 5B. -5C. ±5D. ±1或±5 【答案】D【解析】【分析】首先根据绝对值的性质,推出a、b的值,即a=±2,b=±3,然后分情况进行代入求值即可.【详解】∵|a|=2,|b|=3,∴a=±2,b=±3,∴当a=2,b=3时,a+b=5,当a=2,b=−3时,a+b=−1,当a=−2,b=3时,a+b=1,当a=−2,b=−3时,a+b=−5,∴a+b的值为±1或±5.故答案选D.【点睛】本题考查了绝对值的知识点,解题的关键是熟练的掌握绝对值的性质.13. 已知x<0,y>0,且|x|>|y|,则x+y的值是( )A. 非负数B. 负数C. 正数D. 0【答案】B【解析】∵|x|>|y|,∴x+y的符号与x的符号一致.∵x<0,∴x+y<0.故选B.14. 若两个非零有理数a,b,满足|a|=a,|b|=﹣b,a+b<0,则a,b的取值符合题意的是()A. a=2,b=﹣1B. a=﹣2,b=1C. a=1,b=﹣2D. a=﹣1,b=﹣2 【答案】C【解析】∵|a|=a,|b|=−b,a+b<0,∴a>0,b<0,且|a|<|b|,四个选项中只有C选项符合,故选C.点睛:本题考查了有理数的加法和绝对值的意义,解题的关键是发现a>0,b<0,且|a|<|b|.15. 如果a>0,b<0,且a、b两数的和为正数,那么( )A. |a|≥|b|B. |a|≤|b|C. |a|>|b|D. |a|<|b|【答案】C【解析】∵a>0,b<0,且a、b两数的和为正数,∴|a|>|b|.故选C.16. 能用简便算法的用简便算法计算:(1)3+(−1)+(−3)+1+(−4) (2)(−9)+4+(−5)+8(3)(−36.35)+(−7.25)+26.35+(+1 74)(4) 59+516+49+(−2)(5)(− 32)+(−512)+52+(−712)(6)(− 13)+(+25)+(+35)+(−123)【答案】−4;−2;−10;56;0;-1.【解析】分析:(1)(2)先化简再相加即可求解;(3)(4)(5)(6)先根据加法交换律把同分母分数交换,再根据加法结合律进行计算.本题解析:解:(1)3+(−1)+(−3)+1+(−4)=[3+(−3)]+[(−1)+1]+(−4)=0+0+(−4)=−4;(2)(−9)+4+(−5)+8=[(−9)+(−5)]+(4+8)=−14+12=−2;(3)(−36.35)+(−7.25)+26.35+(+714)=(−36.35+26.35)+(−7.25+714)=−10+0=−10;(4)59+156+49+(−2)=(59+49)[+156(−2)]=1+(−16)=56;(5)(−32)+(−512)+52+(−712)=[(−32)+52]+[(−712)+(−512)]=1+(−1)=0;(6)(−13)+(+25)+(+35)+(−123)=[(−13)+(−123)]+[(+25)+(+35)]=−2+1=−1.17. 计算:(−2)+4+(−6)+8+…+(−98)+100=___________【答案】50【解析】分析:观察式子,可发现:每相邻的两个数字相加为2,且有25对.本题解析:(−2)+4+(−6)+8+…+(−98)+100=25×2=50.故答案为50.18. 当x=__________时,|x+1|+2取得最小值【答案】-1【解析】∵|x+1|⩾0,∴当|x+1|=0时,|x+1|+2的值最小;即当x=−1时,|x+1|+2取得最小值,故答案为-1.19. 在数轴上表示数a的点到原点的距离是3个单位长度,则a+|a|=___________.【答案】0或6【解析】∵数a的点到原点的距离是3个单位长度,所以a=3或a=−3.当a=3时,a+|a|=3+3=6;当a=−3时,a+|a|=−3+3=0.∴a+|a|=0或6,故答案为0或6.点睛:本题考查了有理数的加法,数轴,由于数a的点到原点的距离是3个单位长度,那么a应有两个点,记为a1,a2,分别位于原点两侧,且到原点的距离为3,这两个点对应的数分别是-3和3,分情况讨论即可求出a+|a|的值.20. 若x 的相反数是3,y =5,则x y +的值为_________.【答案】2或-8【解析】【分析】【详解】因为x 的相反数是3,所以3x =-, 因为5y =,所以5y =±,所以x y +的值为2或-8,故答案2或-8.21. 若|a |=4,–b =3,则a +b =___________.【答案】1或–7【解析】根据题意得:a=4或−4,b=−3,当a=4时,a+b=4−3=1;当a=−4时,a+b=−4−3=−7.故答案为1或−7.22. 已知25x y ==,,且x y >,则x y +=______.【答案】-3或-7.【解析】【分析】根据题意,利用绝对值的意义和有理数的加法法则判断即可求出值.【详解】解:∵|x|=2,|y|=5,且x >y ,∴x=2,y=-5或x=-2,y=-5,则x+y=-3或-7.故答案为-3或-7. 【点睛】本题考查有理数的加法,以及绝对值,熟练掌握运算法则是解题关键.23. 已知x 、y 都是有理数,|x |=2,|y |=4,且x <y ,则x +y =___________.【答案】2或6【解析】根据题意得:x=2,y=4;x=−2,y=4,则x+y=2或6.故答案为2或6点睛:此题考查了有理数的加法,熟练掌握运算法则是解答本题的关键.24. 已知|x–2|与|y–7|互为相反数,求–x+y的值【答案】5.【解析】分析:先根据非负数的性质求出x、y的值,再求出-x+y的值即可.本题解析:∵|x−2|与|y-7|互为相反数,∴|x−2|+|y-7|=0,∴x−2=0,y-7=0,解得x=2,y=7,所以-x+y=-2+7=5,故答案为5.。
浙教版七年级数学上册《4.3整式》同步测试题带答案

浙教版七年级数学上册《4.3整式》同步测试题带答案 学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列各式中不是单项式的是( )A .a 3B .- 15C .0D .3a 2.单项式−3xy 22的系数与次数分别是( )A .-3,3B .−12,3C .−32,2D .−32,3 3.下列说法正确的是( )A .−7a 2b 4系数是−7,次数是2 B .多项式−4x 2+2x −5是二次二项式 C .(−3)2和−32的结果互为相反数 D .−a 是负数 4.一个关于a ,b 的多项式,除常数项为1外,其余各项次数都是4,系数为﹣1,并且各项都不相同,这个多项式最多有( )项?A .3B .5C .6D .7二、填空题5.写出一个含有字母x 、y 的三次单项式,这个单项式可是 .6.多项式 4x 2−πxy 22−13x +1 的三次项系数是 . 7.单项式−πx 2y 2的系数是 ,次数是 . 8.已知多项式3x m ﹣1+3x ﹣1是关于x 的四次三项式,那么m 的值为 . 9.已知关于x 、y 的多项式(a+b )x 5+(a -3)x 3-2(b+2)x 2+2ax+1不含x 3和x 2项,则当x=-1时,这个多项式的值为 .三、解答题10.指出下列各式中,哪些是单项式、哪些是多项式、哪些是整式?填在相应的横线上:①m 2+n 2 ;②-x ;③a+b 3;④10;⑤6xy+1;⑥1x ;⑦17 m 2n ;⑧2x 2-x -5;⑨a 7;⑩2x+y单项式: ;多项式:;整式:;11.已知多项式(m−3)x|m|−2y3+x2y−2xy2是关于x、y的四次三项式. (1)求m的值;(2)当x=12,y=−1时,求此多项式的值.12.(做一做)列代数式(1)已知一个三位数的个位数字是a,十位数字是b,百位数字是c,则这个三位数可表示为;(2)某地区夏季高山的温度从山脚处开始每升高100米,降低0.7℃,若山脚温度是28℃,则比山脚高x米处的温度为℃;(3)已知某礼堂第1排有18个座位,往后每一排比前一排多2个座位.则第n排共有座位数个.(4)(数学思考)上面所列的代数式都属于我们所学习的整式中的;(5)请你任意写一个关于x的这种类型的数字系数的二次式;(6)用字母表示系数,写一个关于x的二次三项式,并注明字母系数应满足的条件;(7)(问题解决)若代数式3x|m|﹣(m﹣2)x+4是一个关于x的二次三项式,求m的值.参考答案1、【答案】D2、【答案】D3、【答案】C4、【答案】C5、【答案】x2y(答案不唯一)6、【答案】−π27、【答案】−π2;38、【答案】59、【答案】-6【解析】【解答】解:∵多项式里面不含x3和x2项∴a−3=0,b+2=0,即a=3,b=−2∴原多项式化简为:x5+6x+1将x=-1代入多项式中,求得多项式的值为:-6故答案为:-6.10、【答案】②④⑦⑨;①③⑤⑧;①②③④⑤⑦⑧⑨.11、【答案】(1)∵多项式(m−3)x|m|−2y3+x2y−2xy2是关于x、y的四次三项式.∴|m|−2+3=4m−3≠0解得:m=−3;(2)当x=12,y=−1时此多项式的值为:−6×12×(−1)3+(12)2×(−1)−2×12×(−1)2=3−14−1=74.12、【答案】(1)100c+10b+c(2)(﹣0.007x+28)(3)(2n+16)(4)多项式(5)x2+1 (6)ax2+bx+c(a、b、c均不为0)(7)解:∵代数式3x|m|﹣(m﹣2)x+4是一个关于x的二次三项式∴|m|=2且m﹣2≠0解得:m=﹣2,即m的值是﹣2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学同步测试题及答案七年级数学同步测试题及答案「篇一」20xx七年级数学上册期中检测试题及答案(浙教版)【本检测题满分:120分,时间:120分钟】一、选择题(每小题3分,共30分)1. (20xx•浙江温州中考)给出四个数0,,,-1,其中最小的是A. 0B.C.D. -12. (20xx•山东菏泽中考)如图,四个有理数在数轴上的对应点M,P,N,Q,若点M,N表示的有理数互为相反数,则图中表示绝对值最小的数的点是A.点MB.点NC.点PD.点Q3.已知甲、乙、丙三数,甲=5+ ,乙=3+ ,丙=1+ ,则甲、乙、丙的大小关系为A.丙<乙<甲B.乙<甲<丙C.甲<乙<丙D.甲=乙=丙4.下列四种说法:(1)负数没有立方根;(2)1的立方根与平方根都是1;(3) 的平方根是 ;(4) 。
其中共有个是错误的。
A.1B.2C.3D.45.观察下列算式:,,,,根据上述算式中的规律,请你猜想的末位数字是A.2B.4C.8D.66. (20xx•杭州中考)若 (k是整数),则k=A. 6B. 7C.8D. 97. 下列算式中,积为负分数的是A. B. C. D。
8.有下列各数:0.01,10,-6.67,,0,-90,-(-3),,- ,其中属于非负整数的共有A.1个B.2个C.3个D.4个9.实际测量一座山的高度时,可在若干个观测点中测量每两个相邻可视观测点的相对高度,然后用这些相对高度计算出山的高度.下表是某次测量记录的部分数据(用A-C表示观测点A相对观测点C的高度),根据这次测量的数据,可得观测点A相对观测点B的高度是A-C C-D E-D F-E G-F B-G90米 80米 -60米 50米 -70米 40米A.210米B.130米C.390米D.-210米10.如图,数轴上的A、B、C、D四点所表示的数分别为a、b、c、d,且O为原点.根据图中各点位置,判断|a-c|之值与下列选项中哪个不同A.|a|+|b|+|c|B.|a-b|+|c-b|C.|a-d|-|d-c|D.|a|+|d|-|c-d|二、填空题(每小题3分,共30分)11.如果a-3与a+1互为相反数,那么a= 。
12.比大而比小的所有整数的`和为 ___ 。
13. (20xx•陕西中考)将实数由小到大用“<”号连起来,可表示为________。
14. 已知,则 ________。
15.(杭州中考)把7的平方根和立方根按从小到大的顺序排列为__________。
16. (20xx•山东烟台中考) 如图,数轴上点A,B所表示的两个数的和的绝对值是______。
17.若某数的立方等于-0.027,则这个数的倒数是____________。
18. 一个正方体的体积变为原来的64倍,则它的棱长变为原来的倍。
19. 数轴上两点A、B分别表示数-2和3,则A、B两点间的距离是。
20.已知0.122=0.014 4,1.22=1.44,122=144,则0.0122= ,1202= 。
三、解答题(共60分)21.(12分)计算:(1) ;(2) ;(3) ;(4) ;(5) ;(6) 。
22.(12分)计算:(1) ; (2) ;(3) ; (4) ;(5) ; (6) 。
23.(4分)将-2.5,12,2,,,0在数轴上表示出来,并用“<”把它们连接起来。
24.(6分)小虫从某点O出发在一直线上来回爬行,假定向右爬行的路程记为正,向左爬行的路程记为负,爬过的路程依次为(单位:cm):问:(1)小虫是否回到原点O ?(2)小虫离开出发点O最远是多少厘米?(3)在爬行过程中,如果每爬行1 cm奖励一粒芝麻,则小虫共可得到多少粒芝麻?25.(5分)飞出地球遨游太空,长期以来就是人类的一种理想.可是地球的引力毕竟是太大了,飞机飞得再快也得回到地面.只有当物体速度达到一定值时,才能克服地球引力,围绕地球旋转,这个速度叫第一宇宙速度,计算公式是: (km/s),其中g=0.009 8 km/ ,是重力加速度,R=6 370 km,是地球半径.请你求出第一宇宙速度,看看有多大.(精确到0.1 km/s)26.(5分)某同学把错抄为,如果正确答案是m,错抄后的答案为n,求m-n 的值。
27.(8分)某检修小组从A地出发,在东西方向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶记录如下(单位:千米): 第一次第二次第三次第四次第五次第六次第七次-3 +8 -9 +10 +4 -6 -2(1)在第________次行驶时距A地最远。
(2)收工时距A地多远?(3)若每千米耗油0.3升,每升汽油需7.2元,问检修小组工作一天需汽油费多少元?28.(8分) “中国移动杯”中美篮球对抗赛在吉首举行.为组织该活动,中国移动吉首公司已经在此前花费了费用120万元.对抗赛的门票价格分别为80元、200元和400元.已知2 000张80元的门票和1 800张200元的门票已经全部售出.那么,如果要不亏本,400元的门票最少要卖出多少张?期中检测题参考答案一、选择题1. D 解析:根据正数大于0,0大于负数进行判断.在这四个数中只有-1是负数,所以它最小,故D选项正确。
2.C 解析:若点M,N表示的有理数互为相反数,则原点是线段MN的中点,观察数轴,发现M,P,N,Q四个点中,点P到原点的距离最小,所以图中表示绝对值最小的数的点是点P。
3.A 解析:∵ 3= < < =4,∴ 8<5+ <9,即8<甲<9;∵ 4= < < =5,∴ 7<3+ <8,即7<乙<8;∵ 4= < < =5,∴ 5<1+ <6,即5<丙<6。
∴ 丙<乙<甲,故选A。
4.C 解析:负数有立方根,(1)错误;1的立方根是1,平方根是,(2)错误; 的平方根是,(3)正确; ,(4)错误.故错误的有3个。
5.B 解析:因为,,,,,。
可以看出末位数字每四个一循环,所以的末位数字是4.故选B。
6. D解析:∵ 81<90<100,∴ ,即9 10,∴ k=9。
7. D 解析:A中算式乘积为0;B中算式乘积为-20;C中算式乘积为-3;D中算式乘积为 .故选D。
8.D 解析:非负整数有10,0,-(-3),- ,共4个。
9.A 解析:由表中数据可知:A-C=90①,C-D=80②,D-E=60③,E-F=-50④,F-G=70⑤,G-B=-40⑥。
①+②+③++⑥,得A-B=90+80+60-50+70-40=210(米)。
∴ 观测点A相对观测点B的高度是210米。
10.A 解析:可知|a-c|=AC。
由于|a|+|b|+|c|=AO+BO+CO≠AC,故A正确;由于|a-b|+|c-b|=AB+BC=AC,故B错误;由于|a-d|-|d-c|=AD-CD=AC,故C错误;由于|a|+|d|-|c-d|=AO+DO-CD=AC,故D错误.故选A。
二、填空题11.1 解析:若a-3与a+1互为相反数,则a-3+a+1=0,解得a=1。
12.-3 解析:满足条件的整数有-3,-2,-1,0,1,2,它们的和为-3。
13. -6<0< <π 解析:根据正数大于0,0大于负数得,在这四个数中只有-6是负数,它最小,而2< <3,π>3,所以-6<0< <π。
14. 解析:由,得,所以15. < 解析:因为7的平方根是和,7的立方根是,而,所以 < 。
16. 1 解析:A点表示的数是-3,B点表示的数是2,则17. 解析:立方等于-0.027的数为-0.3,其倒数是。
18.4 解析:因为正方体的体积是棱长的立方,当体积变为原来的64倍时,则棱长变为原来的4倍。
19.5 解析:根据数轴上两点对应的数是-2,3,可知两点间的距离是3-(-2)=5。
20.0.000 144 14 400 解析:观察数据可以看出,当小数点向左移动一位时,其相应的平方数的小数点向左移动两位;当小数点向右移动一位时,其相应的平方数的小数点向右移动两位。
三、解答题21.解:(1)原式(2)原式。
(3)原式(4)原式。
(5)原式(6)原式22.解: (1) 。
(2) 。
(3) 。
(4) 。
(5) 。
(6) 。
23.解:,,在数轴上的位置如图。
故它们的大小顺序为。
24. 分析:(1)若将爬过的路程(向右爬行记为正,向左爬行记为负)相加和为0,则小虫回到原点.(2)可画图直观看出.(3)将所给数的绝对值相加即为所奖励的芝麻数。
解:(1)∵ ,∴ 小虫最后回到原点O。
(2)12㎝。
(3) + + + + + + =54,∴ 小虫可得到54粒芝麻。
25.解:把g=0.009 8 km/ ,R=6 370 km代入公式,得(km/s)。
答:第一宇宙速度约为7.9 km/s。
26.解:由题意可知。
27.解:(1)由题意得:第一次距A地|-3|=3(千米);第二次距A地-3+8=5(千米);第三次距A地|-3+8-9|=4(千米);第四次距A地|-3+8-9+10|=6(千米);第五次距A地|-3+8-9+10+4|=10(千米)。
而第六次、第七次是向相反的方向又行驶了共8千米。
所以在第五次行驶时距A地最远。
(2)根据题意列式:-3+8-9+10+4-6-2=2。
故收工时距A地2千米。
(3)根据题意得检修小组走的路程为:|-3|+|+8|+|-9|+|+10|+|+4|+|-6|+|-2|=42(千米)。
42×0.3×7.2=90.72(元)。
故检修小组工作一天需汽油费90.72元。
28.解:2 000张80元的门票收入为2 000×80=160 000(元)。
1 800张200元的门票收入为1 800×200=360 000(元)。
1 200 000-160 000-360 000=680 000(元)。
故400元的门票至少要卖出680 000÷400=1 700(张)。
答:400元的门票最少要卖出1 700张。
七年级数学同步测试题及答案「篇二」一、认真选一选(每题5分,共30分)1.下列说法正确的是A.有最小的正数B.有最小的自然数C.有最大的有理数D.无最大的负整数2.下列说法正确的是A.倒数等于它本身的数只有1B.平方等于它本身的数只有1C.立方等于它本身的数只有1D.正数的绝对值是它本身3.如图,那么下列结论正确的是A.a比b大B.b比a大C.a、b一样大D.a、b的大小无法确定4.两个有理数相除,其商是负数,则这两个有理数A.都是负数B.都是正数C.一正数一负数D.有一个是零5.我国“杂交水稻之父”袁隆平主持研究的某种超级杂交水稻平均亩产820千克.某地今年计划栽插这种超级杂交水稻3000亩,预计该地今年收获这种超级杂交水稻的总产量(用科学记数法表示)是A.2.5×106千克B.2.5×105千克C.2.46×106千克D.2.46×105千克6.若︱2a︱=-2a,则a一定是A.正数B.负数C.正数或零D.负数或零二、认真填一填(每空2分,共30分)7.-23的相反数是;倒数是;绝对值是。