2002考研数学三真题及解析
考研数学:2002年考研数学三_真题及答案(精校版)

设
P
1
T T 1 ,则 B P A P PT AP 1 AP B
T
T
T
A PT BPT , A ( PT BPT )
T 两边左乘 P ,得 B ( P ) P
T T
1
1
故知 B ( P AP ) 的对应于特征值 的特征向量为 PT ,即应选(B).
T
1T
( PT ) PT A ( PT ) 成立.故应选(B).
(5)设随机变量 X 和 Y 都服从标准正态分布,则 (A) X Y 服从正态分布 (C) X 和 Y 都服从 分布
2 2
2
(
2 2
)
2
(B) X Y 服从 分布 (D) X 2 / Y 2 服从 F 分布
答案应填
二、选择题(本题共 5 小题,每小题 3 分,共 15 分,在每小题给出的四个选项中,只有一 项符合题目要求,把所选项前的字母填在题后的括号内.) (1)设函数 f ( x) 在闭区间 [a, b] 上有定义,在开区间 (a, b) 内可导,则 (A)当 f (a) f (b) 0 时,存在 (a, b) ,使 f ( ) 0 . (B)对任何 (a, b) ,有 lim[ f ( x) f ( )] 0 .
x 1
x (1,1] x 1
f ( 1) f ( 1) ,但 1 f ( x) 1 (当 x (1,1) ),不满足罗
尔中值定理,当然也不满足拉格朗日中值定理的结论.
(2)设幂级数
an xn 与 bn x n 的收敛半径分别为
n 1 n 1
a2 n 5 1 与 ,则幂级数 2 n x 的收敛 3 3 i 1 b n
2002-数三真题、标准答案及解析

X 的简单随机样本,则未知参数 θ 的矩估计量为______
【答】
1 n ∑ X i −1 n i =1
北京市海淀区王庄路 1 号清华同方科技广场 B 座 609 -3电话: 62701055
培训网:
2002 年全国硕士研究生入学统一考试 数学试题解析点评
x y z
Fx' = ( x + 1)e x , Fy' = −( y + 1)e y , Fz' = −( z + 1)e z .
故
F' F' x + 1 x − z ∂z y + 1 y−z ∂z e , =− y = e , =− x = F 'z z + 1 F 'z z + 1 ∂x ∂y
+∞
水木艾迪考研辅导班命题研究中心
【详解】因为 E ( X ) = 所以,由 E ( X ) = X =
∫
0
xe −( x −θ ) dx = θ + 1,
1 n 1 n , 1 X 即 θ + = ∑ i ∑ Xi, n i =1 n i =1 1 n ∑ X i − 1. n i =1
$= 得参数 θ 的矩估计量为 θ
x →ξ
(C) 对 f (a ) = f (b) 时,存在 ξ ∈ (a, b) ,使 f '(ξ ) = 0 (D) 存在. ξ ∈ (a, b) ,使 【答】 [ B] 【详解】 由题设, f ( x) 在 ξ (ξ ∈ (a, b) 处可导,从而连续, 故有 lim[ f ( x ) − f (ξ )] = 0. 应选(B).
n →∞
1 1 n (1− 2 a ) n − 2na + 1 n 1 1− 2 a = e1− 2 a ] = lim[1 + ] n →∞ n(1 − 2a ) n(1 − 2a) 1 n − 2na + 1 n 1 ] = ln e1− 2 a = n(1 − 2a ) 1 − 2a
历年考研概率真题集锦(2000-2019)-精品推荐

历年考研概率真题集锦(2000-2019) ——对应茆诗松高教出版社“概率论与数理统计”第一章§1.11、(2001数学四)(4)对于任意二事件A 和B ,与A B B ⋃=不等价的是( ) A 、A B ⊂ B 、B A ⊂ C 、AB =Φ D 、AB =Φ2、(2000数学三、四)(5)在电炉上安装4 个温控器,其显示温度的误差是随机的,在使用过程中,只要有两个温控器显示的温度不低于临界温度0t ,电炉就断电。
以E 表示事件“电炉断电”,而(1)(2)(3)(4)T T T T ≤≤≤为4 个温控器显示的按递增顺序排列的温度值,则事件E 等于( )(A ) {}(1)0T t ≥ (B ) {}(2)0T t ≥ (C ) {}(3)0T t ≥ (D ) {}(4)0T t ≥ §1.21、(2007数学一、三)(16)在区间(0,1)中随机地取两个数,这两数之差的绝对值小于12的概率为________. §1.31、(2009数学三)(7)设事件A 与事件B 互不相容,则( ) (A )()0P AB = (B )()()()P AB P A P B =(C )()1()P A P B =-(D )()1P A B ⋃=2、(2015数学一、三)(7) 若A ,B 为任意两个随机事件,则( ) (A ) ()()()≤P AB P A P B (B ) ()()()≥P AB P A P B (C ) ()()()+2≤P A P B P AB (D ) ()()()+2≥P A P B P AB3、(2019数学一、三)(7)设A 、B 为随机事件,则()()P A P B =的充分必要条件是( ) (A )()()()P AB P A P B =+ (B ) ()()()P AB P A P B =(C )()()P AB P B A = (D )()()P AB P AB = §1.41、(2005数学一、三)(6)从数1,2,3,4中任取一个数,记为X , 再从X ,,2,1 中任取一个数,记为Y ,则}2{=Y P =____________.2、(2006数学一)(13) 设,A B 为随机事件,且()0,(|)1P B P A B >=,则必有( ) (A )()()P A B P A ⋃>(B )()()P A B P B ⋃> (C )()()P A B P A ⋃= (D )()()P A B P B ⋃=3、(2012数学一、三)(14)设A ,B ,C 是随机变量,A 与C 互不相容,()()()11,,23p AB P C p AB C === 。
2002考研数学一真题及答案解析

f2 (x)dx
2
1,
F1() F2 () 11 2 1.
数学(一)试题 第 7页(共 13 页)
对于选项(B),若
f1 ( x)
1, 2 x 0, 其他,
2002 年全国硕士研究生入学统一考试 数学一试题
一、填空题(本题共 5 小题,每小题 3 分,满分 15 分.把答案填在题中横线上.)
(1)
e
dx x ln 2
x
=
.
(2)已知函数 y y(x) 由方程 e y 6xy x 2 1 0 确定,则 y(0) =
.
(3)微分方程 yy
0,
因而所考虑级数是交错级数,但不能保证
1 un
的单调性.
按定义考察部分和
Sn
n (1)k 1( 1
k 1
uk
1) uk 1
n
(1)k 1
k 1
1 uk
n
(1)k 1
k 1
1 uk 1
数学(一)试题 第 6页(共 13 页)
原级数收敛.
n
n1
un
1) un1
(A) 发散. (C) 条件收敛.
(B) 绝对收敛. (D) 收敛性根据所给条件不能判定.
数学(一)试题 第 1页(共 13 页)
(3)设函数 y f (x) 在 (0, ) 内有界且可导,则
(A) 当 lim f (x) 0 时,必有 lim f (x) 0 .
.
(5)设随机变量 X 服从正态分布 N (, 2 )( 0) ,且二次方程 y 2 4 y X 0 无实根的概
考研真题【1987-2002考研数(三)真题及解析】2002考研数三真题及解析

2002年全国硕士研究生入学统一考试数学三试题一、填空题(本题共5小题,每小题3分,满分15分,把答案填在题中横线上)(1) 设常数12a ≠,则21lim ln .(12)nn n na n a →∞⎡⎤-+=⎢⎥-⎣⎦(2)交换积分次序:111422104(,)(,)yydy f x y dx dy f x y dx +=⎰⎰⎰.(3) 设三阶矩阵122212304A -⎛⎫⎪= ⎪ ⎪⎝⎭,三维列向量(),1,1T a α=.已知A α与α线性相关,则 a =.(4)则2X 和2Y 的协方差22cov(,)X Y =.(5) 设总体X 的概率密度为(),,(;)0,x e x f x x θθθθ--⎧≥=⎨<⎩若若而12,,,n X X X 是来自总体X 的简单随机样本,则未知参数θ的矩估计量为二、选择题(本题共5小题,每小题3分,共15分,在每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1) 设函数()f x 在闭区间[,]a b 上有定义,在开区间(,)a b 内可导,则 ( )(A)当()()0f a f b <时,存在(,)a b ξ∈,使()0f ξ=. (B)对任何(,)a b ξ∈,有lim[()()]0x f x f ξξ→-=.(C)当()()f a f b =时,存在(,)a b ξ∈,使()0f ξ'=. (D)存在(,)a b ξ∈,使()()()()f b f a f b a ξ'-=-.(2) 设幂级数1nn n a x ∞=∑与1nn n b x ∞=∑13,则幂级数221nn i na xb ∞=∑的收敛半径为 ( ) (A) 5 (B)(C) 13 (D)15(3) 设A 是m n ⨯矩阵,B 是n m ⨯矩阵,则线性方程组()0AB x = ( )(A)当n m >时仅有零解 (B)当n m >时必有非零解(C)当m n >时仅有零解 (D)当m n >时必有非零解(4) 设A 是n 阶实对称矩阵,P 是n 阶可逆矩阵,已知n 维列向量α是A 的属于特征值λ的 特征向量,则矩阵()1TP AP-属于特征值λ的特征向量是 ( )(A) 1P α- (B) TP α (C)P α (D)()1TP α-(5) 设随机变量X 和Y 都服从标准正态分布,则 ( )(A)X Y +服从正态分布 (B)22X Y +服从2χ分布(C)2X 和2Y 都服从2χ分布 (D)22/X Y 服从F 分布三、(本题满分5分)求极限 200arctan(1)lim(1cos )xu x t dt du x x →⎡⎤+⎢⎥⎣⎦-⎰⎰四、(本题满分7分)设函数(,,)u f x y z =有连续偏导数,且(,)z z x y =由方程xyzxe ye ze -=所确定,求du . 五、(本题满分6分)设2(sin ),sin x f x x =求()x dx . 六、(本题满分7分)设1D 是由抛物线22y x =和直线,2x a x ==及0y =所围成的平面区域;2D 是由抛物线22y x =和直线0y =,x a =所围成的平面区域,其中02a <<.(1)试求1D 绕x 轴旋转而成的旋转体体积1V ;2D 绕y 轴旋转而成的旋转体体积2V ; (2)问当a 为何值时,12V V +取得最大值?试求此最大值.七、(本题满分7分)(1)验证函数()()3693()13!6!9!3!nx x x x y x x n =+++++++-∞<<+∞满足微分方程x y y y e '''++=(2)利用(1)的结果求幂级数()303!nn x n ∞=∑的和函数.八、(本题满分6分)设函数(),()f x g x 在[,]a b 上连续,且()0g x >.利用闭区间上连续函数性质,证明存在一点[,]a b ξ∈,使()()()()bbaaf xg x dx f g x dx ξ=⎰⎰.九、(本题满分8分)设齐次线性方程组1231231230,0,0,n n n ax bx bx bx bx ax bx bx bx bx bx ax ++++=⎧⎪++++=⎪⎨⎪⎪++++=⎩其中0,0,2a b n ≠≠≥,试讨论,a b 为何值时,方程组仅有零解、有无穷多组解?在有无穷多组解时,求出全部解,并用基础解系表示全部解.十、(本题满分8分)设A 为三阶实对称矩阵,且满足条件220A A +=,已知A 的秩()2r A = (1)求A 的全部特征值(2)当k 为何值时,矩阵A kE +为正定矩阵,其中E 为三阶单位矩阵. 十一、(本题满分8分)假设随机变量U 在区间[]2,2-上服从均匀分布,随机变量1,1-1,11,1;1,1;U U X Y U U -≤-≤⎧⎧==⎨⎨>->⎩⎩若若若若试求:(1)X 和Y 的联合概率分布;(2)()D X Y +. 十二、(本题满分8分)假设一设备开机后无故障工作的时间X 服从指数分布,平均无故障工作的时间()E X 为5小时.设备定时开机,出现故障时自动关机,而在无故障的情况下工作2小时便关机.试求该设备每次开机无故障工作的时间Y 的分布函数()F y .2002年全国硕士研究生入学统一考试数学三试题解析一、填空题 (1)【答案】112a- 【详解】ln “”里面为1∞“”型,通过凑成重要极限形式来求极限, 1(12)12211limln limln 1(12)(12)nn a an n n na n a n a -⋅-→∞→∞⎡⎤⎡⎤-+=+⎢⎥⎢⎥--⎣⎦⎣⎦(12)11lim ln 112(12)n a n a n a -→∞⎡⎤=+⎢⎥--⎣⎦11ln 1212e a a==--.(2)【答案】2120(,)xxdx f x y dy ⎰⎰【详解】画出与原题中二次积分的限所对应的积分区域1D 与2D ,将它们的并集记为D . 于是111422104(,)(,)yydy f x y dx dy f x y dx +⎰⎰⎰(,)Df x y d σ=⎰⎰.再将后者根据积分定义化为如下形式,即2102x y x x →→从,从,所以2120(,)(,).xxDf x y d dx f x y dy σ=⎰⎰⎰⎰(3)【答案】1- 【详解】122212123,304134a a A a a α-⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪==+ ⎪⎪ ⎪ ⎪⎪ ⎪+⎝⎭⎝⎭⎝⎭由于A α与α线性相关,(两个非零向量线性相关,则对应分量成比例),所以有233411a a a a ++==,得 2334, 1.a a a +=+=- 或,(0)A k k αα=≠(两个非零向量线性相关,则其中一个可以由另一个线性表出)即 231341a a a k a ⎛⎫⎛⎫ ⎪ ⎪+= ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭,得2334a ka a k a k =⎧⎪+=⎨⎪+=⎩,得 1.(1)a k =-=(4)【答案】0.02-.【详解】2X 、2Y 和2X 2Y 都是01-分布,而01-分布的期望值恰为取1时的概率p .由离散型随机变量X 和Y 的联合概率分布表可得2X 的可能取值为0和1,且2Y 的可能取值也为0和1,且X 和Y 的边缘分布为{}00.070.180.150.4P X ==++=;{}10.080.320.200.6P X ==++=; {}10.070.080.15P Y =-=+=;{}00.180.320.5P Y ==+=; {}10.150.200.35P Y ==+=;故有{}{}220,00,00.18,P X Y P X Y ======X0 10.4 0.6Y 1- 0 10.15 0.5 0.35{}{}{}220,10,10,10.070.150.22,P X Y P X Y P X Y =====-+===+= {}{}221,01,00.32,P X Y P X Y ======{}{}{}221,11,11,10.080.200.28,P X Y P X Y P X Y =====-+===+=而边缘分布律:{}{}2000.4P X P X ====,{}{}2110.6P X P X ====, {}{}2000.5P Y P Y ====,{}{}{}21110.150.350.5P Y P Y P Y ===-+==+=所以,22(,)X Y 的联合分布及其边缘分布为由上表同理可求得22X Y 的分布律为所以由01-分布的期望值恰为取1时的概率p 得到:2222222222()0.5()0.60,(0.28cov ()()0.280.60.50.02E X E Y E X Y X Y E X Y E X E Y ====-=-⨯=-,)(,)()(5)【答案】1X -.【详解】矩估计的实质在于用样本矩来估计相应的总体矩,此题中被估参数只有一个,故只需要用样本一阶原点矩(样本均值)来估计总体的一阶原点矩(期望) 期望 ()()()1x E X xf x dx xe dx θθθ+∞+∞---∞===+⎰⎰样本均值 11ni i X X n ==∑用样本均值估计期望有 EX X =,即 111ni i X n θ=+=∑,解得未知参数θ的矩估计量为 11ˆ11n i i X X n θ==-=-∑.二、选择题 (1)【答案】(B)【详解】方法1:论证法.由题设()f x 在开区间(,)a b 内可导,所以()f x 在(,)a b 内连续,因此,对于(,)a b 内的任意一点ξ,必有lim ()().x f x f ξξ→= 即有lim[()()]0x f x f ξξ→-=.故选(B).方法2:排除法.(A)的反例:1(,]()1x a b f x x a ∈⎧=⎨-=⎩,有()1,()1,()()10f a f b f a f b =-==-<,但()f x 在(,)a b 内无零点.(C)与(D)的反例,(1,1]()11xx f x x ∈-⎧=⎨=-⎩ (1)(1)1f f -==,但()1f x '=(当(1,1)x ∈-),不满足罗尔中值定理,当然也不满足拉格朗日中值定理的结论.故选(B).(2)【答案】(D)【详解】方法1:A 是m n ⨯矩阵,B 是n m ⨯矩阵,则AB 是m 阶方阵,因()min((),())r AB r A r B ≤.当m n >时,有()min((),())r AB r A r B n m ≤≤<.(系数矩阵的秩小于未知数的个数)方程组()0AB x =必有非零解,故应选(D).方法2:B 是n m ⨯矩阵, 当m n >时,,则()r B n =,(系数矩阵的秩小于未知数的个数)方程组0Bx =必有非零解,即存在00x ≠,使得00Bx =,两边左乘A ,得00ABx =,即0ABx =有非零解,故选(D).(3)【答案】(B)【详解】方法1:由题设根据特征值和特征向量的定义,A αλα=,A 是n 阶实对称矩阵,故TA A =.设()1TP APB -=,则111()TTT T T T T B P A P P AP P A P ---===上式左乘1T P-,右乘TP ,得111()()()T T T T T T P BP P P A P P ---=,即1T T A P BP -=,所以 1()T T A P BP ααλα-==两边左乘T P ,得 1()()T T T T P P BP P αλα-=得()T TB P P αλα=根据特征值和特征向量的定义,知1()TB P AP -=的对应于特征值λ的特征向量为T P α,即应选(B).方法2:逐个验算(A),(B),(C),(D)中哪个选项满足,由题设根据特征值和特征向量的定义,A αλα=,A 是n 阶实对称矩阵,故T A A =.设()1TP AP -属于特征值λ的特征向量为ξ,即()1TP APξλξ-=,其中()111TTTT T T P AP P A P P AP ---==对(A),即令1P ξα-=,代入111()TT P AP P P αλα---≠对(B),1()TT T P AP P α-1()TT T P A P P α-=1[())]T T TP A P P α-=TP A α=()T P λα=成立.故应选(B).(4)【答案】C【分析】(i)2χ变量的典型模式是:222212n X X X χ=+++,其中i X 要求满足:i X 相互独立,(0,1)iX N .称2χ为参数为n 的2χ变量.(ii) F 变量的典型模式是:12//X n F Y n =,其中,X Y 要求满足:X 与Y 相互独立,2212(),()Xn Yn χχ,称F 为参数为()12,n n 的F 变量.【详解】方法1:根据题设条件,X 和Y 均服从(0,1)N .故2X 和2Y 都服从2(1)χ分布,答案应选(C).方法2:题设条件只有X 和Y 服从(0,1)N ,没有X 与Y 的相互独立条件.因此,2X 与2Y的独立条件不存在,选(B)、(D)项均不正确.题中条件既没有X 与Y 独立,也没有(,)X Y 正态,这样就不能推出X Y +服从正态分布的选项(A).根据排除法,正确选项必为(C).三【详解】22000003arctan(1)arctan(1)limlim 1(1cos )2xu x u x x t dt du t dt du x x x→→⎡⎤⎡⎤++⎢⎥⎢⎥⎣⎦⎣⎦-⎰⎰⎰⎰等 22arctan(1)lim32x x t dt x →+⎰洛洛20arctan(1)2lim 3x x x x →+⋅2346ππ=⋅=.四【详解】方法1:用一阶微分形式不变性求全微分.123du f dx f dy f dz '''=++(,)z z x y =由x y z xe ye ze -=所确定,两边求全微分,有()()()()()x y z x y z d xe ye d ze d xe d ye d ze -=⇒-= x x y y z z xe dx e dx ye dy e dy ze dz e dz ⇒+--=+,解出 (1)(1),(10).(1)x y z e x dx e y dydz z e z +-+=+≠+设 所以 du =123(1)(1)(1)x y z e x dx e y dyf dx f dy f e z +-+'''++⨯+1323(1)(1)(1)(1)x yz ze x e yf f dx f f dy e z e z ⎡⎤⎡⎤++''''=++-⎢⎥⎢⎥++⎣⎦⎣⎦ 方法2:1323,u z u zf f f f x x y y∂∂∂∂''''=+=+∂∂∂∂(根据多元函数偏导数的链式法则) 下面通过隐函数求导得到z x ∂∂,z y∂∂.由x y zxe ye ze -=两边对x 求偏导数,有 (),x x z z z xe e ze e x∂+=+∂ 得x xz zz xe e x ze e∂+=∂+,(10)z +≠设.类似可得,y y z z z ye e y ze e ∂+=-∂+,代入,u u x y ∂∂∂∂表达式 1323(),()x xy yz zz zu xe e u ye e f f f f x ze e y ze e ∂+∂+''''=+⋅=-⋅∂+∂+, 再代入 u udu dx dy x y∂∂=+∂∂中,得du 1323(1)(1)(1)(1)x yz ze x e yf f dx f f dy e z e z ⎡⎤⎡⎤++''''=++-⎢⎥⎢⎥++⎣⎦⎣⎦.五【详解】首先要从2(sin )sin xf x x=求出()f x . 命2sin u x =,则有sin x =x =()f u =(通过换元求出函数的表达式)arcsin ()x f x dxx == sin 2sin cos cos ttt tdt t⎰(换元积分法) sin t tdt =2⎰[]2cossin t t t C=-++(分部积分法)2C ⎡=+⎣.六【分析】旋转体的体积公式:设有连续曲线:()()y f x a x b Γ=≤≤,()0f x ≥与直线,x a x b ==及x 轴围成平面图形绕x 轴旋转一周产生旋转体的体积2()baV f x dx π=⎰.【详解】(1) ()2225142(32)5aV xdx a ππ==-⎰22222420202a V a a x dy a a πππ=-=<<⎰.(2) 54124(32)5V V V a a ππ=+=-+ 根据一元函数最值的求法要求驻点,令34(1)0dVa a daπ=-=, 得1a =. 当01a <<时0dV da >,当12a <<时0dVda<,因此1a =是V 的唯一极值点且是极大值点,所以是V 的最大值点,129max 5V π=.七【解】(1) 369331()113(3)!(3)!nnn x x x x x y x n n ∞==+++++=+∑+!6!9!,由收敛半径的求法知收敛半径为∞,故由幂级数在收敛区间上逐项可导公式得3311()(1)(3)!(3)!nn n n x x y x n n ∞∞=='⎛⎫''=+= ⎪⎝⎭∑∑3113(3)!n n nx n -∞==∑311(31)!n n x n -∞==-∑,同理得 321(32)!n n x y n -∞=''=-∑从而 ()()()y x y x y x '''++32313111()()(1)(32)!(31)!(3)!n n nn n n x x x n n n --∞∞∞====+++--∑∑∑ 11!nn x n ∞==+∑(由x e 的麦克劳林展开式)x e =这说明,30()(3)!n n x y x n ∞==∑是微分方程xy y y e '''++=的解,并且满足初始条件310(0)1(3)!n n y n ∞==+∑1=,3110(0)(31)!n n y n -∞='=-∑0=. (2)微分方程xy y y e '''++=对应的齐次线性方程为0y y y '''++=,其特征方程为210λλ++=,其特征根为12-±,所以其通解为212[cossin ]22xy e C x C x -=+. 另外,该非齐次方程的特解形式为xy ce =,代入原非齐次方程得x x x xce ce ce e ++=,所以13c =.故微分方程xy y y e '''++=的通解为2121[sin ]3x x y e C x C x e -=++. 故22121211[cossin ][sin cos ]2222223x xx y e C x C x e C x x e --'=-⨯++-⨯++222112111(2(22222223x x x e C C x e C C x e --=-⨯-⨯-⨯-⨯+由初始条件(0)1,(0)0y y '==得0212100022211212111[00]331110(20(2022311223e C C e C e C C e C C e C C ---⎧=++=+⎪⎪⎪=-⨯--⨯-+⎨⎪⎪⎪=-++⎩解得11211311023C C ⎧+=⎪⎪⎨⎪-+=⎪⎩, 于是得到惟一的一组解:122,0.3C C ==从而得到满足微分方程x y y y e '''++=及初始条件(0)1,(0)0y y '==的解,只有一个,为221cos 323x x y e x e -=+另一方面,由(1)已知30()(3)!n n x y x n ∞==∑也是微分方程xy y y e '''++=及初始条件(0)1,(0)0y y '==的解,由微分方程解的唯一性,知321211cos ().(3)!323xn x n x e x e x n ∞-=+=+-∞<<+∞∑八【详解】方法1:因为()f x 与()g x 在[],a b 上连续,所以存在1x 2x 使得1[,]()max ()x a b f x M f x ∈==,2[,]()min ()x a b f x m f x ∈==,满足()m f x M ≤≤.又()0g x >,故根据不等式的性质()()()()mg x f x g x Mg x ≤≤根据定积分的不等式性质有()()()(),b b baaam g x dx f x g x dx M g x dx ≤≤⎰⎰⎰所以 ()().()babaf xg x dxm M g x dx≤≤⎰⎰由连续函数的介值定理知,存在[,]a b ξ∈,使()()()()babaf xg x dxf g x dxξ=⎰⎰即有()()()()bbaaf xg x dx f g x dx ξ=⎰⎰.方法2:因为()f x 与()g x 在[],a b 上连续,且()0g x >,故()()baf xg x dx ⎰与()bag x dx ⎰都存在,且()0.bag x dx >⎰记()()()babaf xg x dxh g x dx=⎰⎰,于是()()()(),bbbaaaf xg x dxh g x dx hg x dx ==⎰⎰⎰即(())()0baf x hg x dx -=⎰因此必存在(,)a b ξ∈使()f h ξ=.不然,则在(,)a b 内由连续函数的零点定理知要么()f x h -恒为正,从而根据积分的基本性质得(())()0ba f x h g x dx ->⎰;要么()f x h -恒为负,同理得(())()0baf x hg x dx -<⎰,均与(())()0baf x hg x dx -=⎰不符.由此推知存在(,)a b ξ∈使()f h ξ=,从而()()()()bbaaf xg x dx f g x dx ξ=⎰⎰.九【详解】方法1:对系数矩阵记为A 作初等行变换21311000000n a b b b a b b b b a b b b a a b A bb a b b a a b b b ba b a a b -- -⎛⎫⎛⎫⎪⎪-- ⎪ ⎪ ⎪ ⎪=→-- ⎪ ⎪ ⎪⎪ ⎪ ⎪--⎝⎭⎝⎭行行行行行行当(0)a b =≠时,()1,0r A AX ==的同解方程组为120n x x x +++=,基础解系中含有1n -个(未知数的个数-系数矩阵的秩)线性无关的解向量,取23,,...,n x x x 为自由未知量,分别取231,0,...,0n x x x ===,230,1,...,0n x x x ===,…,230,0,...,1n x x x ===得方程组1n -个线性无关的解[][][]1211,1,0,,0,1,0,1,0,,0,,1,0,,0,1T T Tn ξξξ-=-=-=-,为基础解系,方程组0AX =的全部解为112211n n X k k k ξξξ--=+++,其中(1,2,1)i k i n =-是任意常数.当a b ≠时,000000ab b b b a a bA b a a bb a a b ⎛⎫⎪-- ⎪ ⎪→-- ⎪⎪⎪--⎝⎭23110010101001a b a b n a b a b bb ---⎛⎫⎪- ⎪ ⎪→- ⎪ ⎪ ⎪-⎝⎭行/()行/()行/() 12131(1)000110010101001bb n ba n b-⨯-⨯-⨯+-⎛⎫⎪-⎪ ⎪→- ⎪ ⎪ ⎪-⎝⎭行行行行行行 当a b ≠且(1)a n b ≠--时,(1)0A a n b =+-≠,(),0r A n AX ==仅有零解. 当(1)a n b =--时,()1,0r A n AX =-=的同解方程组是121310,0,0,n x x x x x x -+=⎧⎪-+=⎪⎨⎪⎪-+=⎩…… 基础解系中含有1个线性无关的解向量,取1x 为自由未知量,取11x =,得方程组1个非零解[]1,1,,1Tξ=,即其基础解系,故方程组的全部解为X k ξ=,其中k 是任意常数.方法2:方程组的系数行列式a b b bb a b b A b b abb b ba=(1)(1)2...(1)1(1)a n b b bb a n ba b b n a n b b ab a n b b ba+-+-+-+-把第,,列加到第列111[(1)]11b bb a bb an b b ab b ba +-提取第列的公因子 1210003-1[(1)]000-1000bbb a b an ba bna b--+---第行第行第行第行第行第行1[(1)]()n a n b a b -=+--(1)当a b ≠且(1)a n b ≠--时,0A ≠,()r A n =方程组只有零解. (2)当(0)a b =≠时,a a a a a a a a A a a a a a a aa ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦21000031000010000a a aa n ⎡⎤-⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦第行第行第行第行第行第行111100001100000000a ⎡⎤⎢⎥⎢⎥⎢⎥⨯⎢⎥⎢⎥⎢⎥⎣⎦第行 方程组的同解方程组为120n x x x +++=基础解系中含有1n -个(未知数的个数-系数矩阵的秩)线性无关的解向量,取23,,...,n x x x 为自由未知量,分别取231,0,...,0n x x x ===,230,1,...,0n x x x ===,…, 230,0,...,1n x x x ===得方程组1n -个线性无关的解[][][]1211,1,0,,0,1,0,1,0,,0,,1,0,,0,1T T Tn ξξξ-=-=-=-,为基础解系,方程组0AX =的全部解为112211n n X k k k ξξξ--=+++,其中(1,2,1)i k i n =-是任意常数.(1)当(1)(0)a n b b =--≠时,(1)(1)(1)(1)n bb b bbn b b b A b b n bb b b b n b -⎛⎫⎪- ⎪ ⎪=- ⎪ ⎪ ⎪-⎝⎭1,2,...,11111111111111111n bn n nn ⨯-⎛⎫⎪- ⎪ ⎪→- ⎪ ⎪ ⎪-⎝⎭行分别111121003100100n n n n nn n n -⎛⎫-⎪-⎪- ⎪- ⎪ ⎪- ⎪-⎝⎭行行行行行行 111111002,...,101011001n n n -⎛⎫⎪- ⎪ ⎪-⨯⎪ ⎪ ⎪-⎝⎭行分别000011002,...,10101001n ⎛⎫ ⎪-⎪ ⎪- ⎪ ⎪ ⎪-⎝⎭把第行都依次加到第1行 ()1r A n =-,其同解方程组是121310,0,0,n x x x x x x -=⎧⎪-=⎪⎨⎪⎪-=⎩…… 基础解系中含有1个线性无关的解向量,取1x 为自由未知量,取11x =,得方程组1个非零解[]1,1,,1Tξ=,即其基础解系,故方程组的全部解为X k ξ=,其中k 是任意常数.十【详解】(1) 设λ是A 的任意特征值,α是A 的属于λ的特征向量,根据特征值、特征向量的定义,有 ,0,A αλαα=≠ ①两边左乘A ,得 2A αA λαλλα==2λα= ②②+2*①得 ()()2222A Aαλλα+=+因220A A +=,0α≠,从而上式()()22220A Aαλλα+=+=,所以有220λλ+=,故A 的特征值λ的取值范围为0,2-.因为A 是实对称矩阵,所以必相似于对角阵Λ,且Λ的主对角线上元素由A 的特征值组成,且()()2r A r =Λ=,故A 的特征值中有且只有一个0.(若没有0,则222-⎡⎤⎢⎥Λ=-⎢⎥⎢⎥-⎣⎦,故()()3r A r =Λ=与已知矛盾;若有两个0,则200-⎡⎤⎢⎥Λ=⎢⎥⎢⎥⎣⎦,故()()1r A r =Λ=与已知矛盾;若三个全为0,则000⎡⎤⎢⎥Λ=⎢⎥⎢⎥⎣⎦,故()()0r A r =Λ=与已知矛盾). 故220A -⎡⎤⎢⎥Λ=-⎢⎥⎢⎥⎣⎦即A 有特征值1232,0λλλ==-=.(2)A kE +是实对称矩阵,A 有特征值1232,0λλλ==-=,知A kE +的特征值为2,2,k k k --.因为矩阵正定的充要条件是它的所有的特征值均大于零,故A kE +正定200k k ->⎧⇔⎨>⎩2k k >⎧⇔⎨>⎩2k ⇔> 故2k >时A kE +是正定矩阵.十一【分析】(,)X Y 有四个可能值,可以逐个求出.在计算过程中要注意到取值与U 的值有关.U 的分布为均匀分布,计算概率不用积分都行,可以直接看所占区间的长度比例即可.【详解】(,)X Y 只有四个可能值(1,1),(1,1),(1,1)(1,1)----和.依照题意,有{}{}{}1(2)11,11,11;2(2)4P X Y P U U P U ---=-=-=≤-≤=≤-==--{}{}{}1,11,10;P X Y P U U P =-==≤->=∅= {}{}{}11,11,111;2P X Y P U U P U ==-=>-≤=-<≤={}{}{}11,11,11.4P X Y P U U P U ===>->=>=于是,(,)X Y 分布为(2) 因为22()()[()]D X Y E X Y E X Y +=+-+,所以我们应该知道X Y +和2()X Y +的分布律.对离散型随机变量,X Y +的取值可能有2,0,2;-2()X Y +的取值可能有0和4;{}{}121,1,4P X Y P X Y +=-==-=-={}{}{}1101,11,10,22P X Y P X Y P X Y +====-+=-==+= {}{}121,1,4P X Y P X Y +=====(){}{}2100,2P X Y P X Y +==+==(){}{}{}214222P X Y P X Y P X Y +==+=-++==.X Y +和2()X Y +的分布律分别为和所以由离散型随机变量的数学期望计算公式有:{}1()nk k k E X x P X x ==⋅=∑所以有,2224()0,()2442E X Y E X Y +=-+=+==. 22()()[()]2D X Y E X Y E X Y +=+-+=十二【详解】首先找出随机变量Y 的表达式. Y 由X 和2(小时)来确定,所以min(,2)Y X =.指数分布的X 的分布参数为 11,()5E X λ==其密度函数为:1510()500x X ex f x x -⎧>⎪=⎨⎪≤⎩其中0λ>是参数由分布函数的定义:{}{}()min(,2)F y P Y y P X y =≤=≤(1) 当0y <时,()0Y F y =(因为{}min ,2Y X =,其中X 和2都大于0,那么小于0是不可能事件)(2) 当2y ≥时,()1Y F y =(因为{}min ,2Y X =最大也就取到2,所以小于等于2是一定发生的,是必然事件)(3) 当02y ≤<时, {}{}{}()min(,2)F y P Y y P X y P X y =≤=≤=≤115501()15x y yyX f x dx e dx e ---∞===-⎰⎰所以1500()10212y Y y F y e y y -<⎧⎪⎪=-≤<⎨⎪≥⎪⎩。
2002年考研数学(三)真题及详细解析

2002 年全国硕士研究生入学统一考试数学三试题及解析一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) ⑴ 设常数12a ≠,则21lim ln[]________(12)n n n na n a →∞-+=-. 【分析】将所求极限转换为1ln[1](12)lim1n n a n→∞+-,利用等价无穷小代换化简求解,或利用重要极限。
【详解】法一:11ln[1]211(12)(12)lim ln[]limlim 11(12)12nn n n n na n a n a n a an n→∞→∞→∞+-+--===-- 法二:11(12)12122111lim ln[]lim ln[1]lim ln (12)(12)12n a n aa n n n n na e n a n a a-⨯--→∞→∞→∞-+=+==---⑵ 交换积分次序:111422104(,)(,)________yyydy f x y dx dy f x y dx +=⎰⎰⎰⎰.【分析】写出对应的二重积分积分域D 的不等式,画出D 的草图后,便可写出先对y 后对x 的二次积分【详解】对应的积分区域12D D D =+,其中11(,)0,4D x y y y x y ⎧⎫=≤≤≤≤⎨⎬⎩⎭2111(,),422D x y y y x ⎧⎫=≤≤≤≤⎨⎬⎩⎭画出D 的草图如右图所示,则D 也可表示为 21(,)0,2D x y x x y x ⎧⎫=≤≤≤≤⎨⎬⎩⎭故211114222104(,)(,)(,)yxyyxdy f x y dx dy f x y dx dx f x y dy +=⎰⎰⎰⎰⎰⎰⑶ 设三阶矩阵122212304A -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,三维列向量(,1,1)Ta α=。
已知A α与α线性相关,则______a =。
【分析】由A α与α线性相关知,存在常数k 使得A k αα=,及对应坐标成比例,由此求出a【详解】由于122212123304134a a A a a α-⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥+⎣⎦⎣⎦⎣⎦由A α与α线性相关可得:233411a a a a ++==,从而1a =-。
2002数学二--考研数学真题详解

r (α1,α2,α3, k β1 + β2 )=r(α1,α2,α3, β2 ) = 4,
故 α1,α2,α3, k β1 + β2 线性无关.
【详解 2】
取 k = 0,由条件知向量组α1,α2,α3 线性无关,α1,α2,α3, β1 线性相关,所以应排
除(B)、(C).
取
k
=
1,因
β1可由α1,α
即
f '(1) = 1 = 0.5.
2
(2)设函数 f (x) 连续,则下列函数中,必为偶函数的是
( ) ∫ (A)
x
f
t 2 dt
0
x
(C)∫0
t
⎡⎣
f
(t)
−
f
(−t )⎤⎦dt
∫ (B) x f 2 (t )dt 0
x
(D)∫0 t
⎡⎣
f
(t)
+
f
(−t )⎤⎦dt
【】
∫ 【详解】 F (x) x f (t )dt 的奇偶性与 f (x ) 的奇偶性的关系是:若 f (x )为偶函数,则 F(x) 0
1π 2 cos dx
0
2
02
1
= 2 2 sin π x = 2 2
π2
π
0
⎡ 0 −2 −2⎤
(4)
矩阵
⎢ ⎢
2
2 −2⎥⎥ 的非零特征值是________.
⎢⎣−2 −2 2 ⎥⎦
【答】 4 【详解】 因为
⎡ λ −2 −2 ⎤ λ 2 2
λE − A Hale Waihona Puke ⎢⎢−2 λ − 2−2
⎥ ⎥
=
2002年湖北武汉大学现代经济学考研真题及答案

2002年湖北武汉大学现代经济学考研真题及答案一、名词解释(共6小题,每小题5分,共30分)1.机会成本:指选择生产要素的某种用途,而必须放弃的其他用途所带来的收益。
机会成本是以资源的稀缺性为前提提出的。
一个社会在任何一个时期内,它的资源的供给量总是相当固定的,或者说总是一个有限的量,而决不可能同时生产它所需要的一切东西。
因此,社会生产某种产品的真正成本就是它不能生产另一些产品的代价。
机会成本说明,要把有限的(稀缺的)资源用于最有利的地方,或者说在使用某种资源时应该是各种用途中最优的或者至少是同样有利的。
机会成本不仅用于生产经营活动,而且还被广泛用于分析消费和政府开支等活动的得失。
2.帕累托改进:指通过某种方式改变一个社会的某种既定状态,可以使一些人的境况变好,而其他人的境况至少不变坏的情况。
利用帕累托标准和帕累托改进,可以定义最优资源配置,即如果对于既定的资源配置状态,所有的帕累托改进都不存在,即在该状态下,任意改变都不可能使至少有一个人的状况变好而又不使任何人的状况变坏,则这种资源配置状态为帕累托最优状态。
3.菲利普斯曲线:说明失业率和货币工资率之间交替变动关系的一条曲线。
它是由英国经济学家菲利普斯根据1861—1957年英国的失业率和货币工资变动率的经验统计资料提出来的,故称之为菲利普斯曲线。
因为西方经济学家认为,货币工资率的提高是引起通货膨胀的原因,即货币工资率的增加超过劳动生产率的增加会引起物价上涨,从而导致通货膨胀。
所以,菲利普斯曲线又成为当代经济学家用以表示失业率和通货膨胀率之间此消彼长、相互交替关系的曲线。
4.欧拉定理:指在完全竞争条件下,如果规模报酬不变,则全部产品正好足够分配给各生产要素。
用数学表达式表示如下:设为生产函数,式中为产量,和分别为两种不同的生产要素即劳动和资本的数量。
则有表示劳动的边际产品,表示资本的边际产品。
欧拉定理表明,在所给条件下,全部产品Q恰好足够分配给劳动要素L和资本要素K。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2002年全国硕士研究生入学统一考试数学三试题一、填空题(本题共5小题,每小题3分,满分15分,把答案填在题中横线上)(1) 设常数12a ≠,则21lim ln .(12)nn n na n a →∞⎡⎤-+=⎢⎥-⎣⎦(2)交换积分次序:111422104(,)(,)yydy f x y dx dy f x y dx +=⎰⎰⎰.(3) 设三阶矩阵122212304A -⎛⎫⎪= ⎪ ⎪⎝⎭,三维列向量(),1,1T a α=.已知A α与α线性相关,则 a =.(4)则2X 和2Y 的协方差22cov(,)X Y =.(5) 设总体X 的概率密度为(),,(;)0,x e x f x x θθθθ--⎧≥=⎨<⎩若若而12,,,n X X X L 是来自总体X 的简单随机样本,则未知参数θ的矩估计量为二、选择题(本题共5小题,每小题3分,共15分,在每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1) 设函数()f x 在闭区间[,]a b 上有定义,在开区间(,)a b 内可导,则 ( )(A)当()()0f a f b <时,存在(,)a b ξ∈,使()0f ξ=. (B)对任何(,)a b ξ∈,有lim[()()]0x f x f ξξ→-=.(C)当()()f a f b =时,存在(,)a b ξ∈,使()0f ξ'=. (D)存在(,)a b ξ∈,使()()()()f b f a f b a ξ'-=-.(2) 设幂级数1nn n a x ∞=∑与1nn n b x ∞=∑13,则幂级数221nn i na xb ∞=∑的收敛半径为 ( ) (A) 5 (B)(C) 13 (D)15(3) 设A 是m n ⨯矩阵,B 是n m ⨯矩阵,则线性方程组()0AB x = ( )(A)当n m >时仅有零解 (B)当n m >时必有非零解(C)当m n >时仅有零解 (D)当m n >时必有非零解(4) 设A 是n 阶实对称矩阵,P 是n 阶可逆矩阵,已知n 维列向量α是A 的属于特征值λ的 特征向量,则矩阵()1TP AP-属于特征值λ的特征向量是 ( )(A) 1P α- (B) TP α (C)P α (D)()1TP α-(5) 设随机变量X 和Y 都服从标准正态分布,则 ( )(A)X Y +服从正态分布 (B)22X Y +服从2χ分布(C)2X 和2Y 都服从2χ分布 (D)22/X Y 服从F 分布三、(本题满分5分)求极限 200arctan(1)lim(1cos )xu x t dt du x x →⎡⎤+⎢⎥⎣⎦-⎰⎰四、(本题满分7分)设函数(,,)u f x y z =有连续偏导数,且(,)z z x y =由方程xyzxe ye ze -=所确定,求du . 五、(本题满分6分)设2(sin ),sin x f x x =求()x dx . 六、(本题满分7分)设1D 是由抛物线22y x =和直线,2x a x ==及0y =所围成的平面区域;2D 是由抛物线22y x =和直线0y =,x a =所围成的平面区域,其中02a <<.(1)试求1D 绕x 轴旋转而成的旋转体体积1V ;2D 绕y 轴旋转而成的旋转体体积2V ; (2)问当a 为何值时,12V V +取得最大值?试求此最大值.七、(本题满分7分)(1)验证函数()()3693()13!6!9!3!nx x x x y x x n =+++++++-∞<<+∞L L 满足微分方程x y y y e '''++=(2)利用(1)的结果求幂级数()303!nn x n ∞=∑的和函数.八、(本题满分6分)设函数(),()f x g x 在[,]a b 上连续,且()0g x >.利用闭区间上连续函数性质,证明存在一点[,]a b ξ∈,使()()()()bbaaf xg x dx f g x dx ξ=⎰⎰.九、(本题满分8分)设齐次线性方程组1231231230,0,0,n nn ax bx bx bx bx ax bx bx bx bx bx ax ++++=⎧⎪++++=⎪⎨⎪⎪++++=⎩L L L L L L L 其中0,0,2a b n ≠≠≥,试讨论,a b 为何值时,方程组仅有零解、有无穷多组解?在有无穷多组解时,求出全部解,并用基础解系表示全部解.十、(本题满分8分)设A 为三阶实对称矩阵,且满足条件220A A +=,已知A 的秩()2r A = (1)求A 的全部特征值(2)当k 为何值时,矩阵A kE +为正定矩阵,其中E 为三阶单位矩阵. 十一、(本题满分8分)假设随机变量U 在区间[]2,2-上服从均匀分布,随机变量1,1-1,11,1;1,1;U U X Y U U -≤-≤⎧⎧==⎨⎨>->⎩⎩若若若若试求:(1)X 和Y 的联合概率分布;(2)()D X Y +. 十二、(本题满分8分)假设一设备开机后无故障工作的时间X 服从指数分布,平均无故障工作的时间()E X 为5小时.设备定时开机,出现故障时自动关机,而在无故障的情况下工作2小时便关机.试求该设备每次开机无故障工作的时间Y 的分布函数()F y .2002年全国硕士研究生入学统一考试数学三试题解析一、填空题 (1)【答案】112a- 【详解】ln “”里面为1∞“”型,通过凑成重要极限形式来求极限, 1(12)12211limln limln 1(12)(12)nn a an n n na n a n a -⋅-→∞→∞⎡⎤⎡⎤-+=+⎢⎥⎢⎥--⎣⎦⎣⎦(12)11lim ln 112(12)n a n a n a -→∞⎡⎤=+⎢⎥--⎣⎦11ln 1212e a a==--.(2)【答案】2120(,)xxdx f x y dy ⎰⎰【详解】画出与原题中二次积分的限所对应的积分区域1D 与2D ,将它们的并集记为D . 于是111422104(,)(,)yydy f x y dx dy f x y dx +⎰⎰⎰(,)Df x y d σ=⎰⎰.再将后者根据积分定义化为如下形式,即2102x y x x →→从,从,所以2120(,)(,).xxDf x y d dx f x y dy σ=⎰⎰⎰⎰(3)【答案】1- 【详解】122212123,304134a a A a a α-⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪==+ ⎪⎪ ⎪ ⎪⎪ ⎪+⎝⎭⎝⎭⎝⎭由于A α与α线性相关,(两个非零向量线性相关,则对应分量成比例),所以有233411a a a a ++==,得 2334, 1.a a a +=+=- 或,(0)A k k αα=≠(两个非零向量线性相关,则其中一个可以由另一个线性表出)即 231341a a a k a ⎛⎫⎛⎫ ⎪ ⎪+= ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭,得2334a ka a k a k =⎧⎪+=⎨⎪+=⎩,得 1.(1)a k =-=(4)【答案】0.02-.【详解】2X 、2Y 和2X 2Y 都是01-分布,而01-分布的期望值恰为取1时的概率p .由离散型随机变量X 和Y 的联合概率分布表可得2X 的可能取值为0和1,且2Y 的可能取值也为0和1,且X 和Y 的边缘分布为{}00.070.180.150.4P X ==++=;{}10.080.320.200.6P X ==++=; {}10.070.080.15P Y =-=+=;{}00.180.320.5P Y ==+=; {}10.150.200.35P Y ==+=;故有{}{}220,00,00.18,P X Y P X Y ======X0 10.4 0.6Y 1- 0 10.15 0.5 0.35{}{}{}220,10,10,10.070.150.22,P X Y P X Y P X Y =====-+===+= {}{}221,01,00.32,P X Y P X Y ======{}{}{}221,11,11,10.080.200.28,P X Y P X Y P X Y =====-+===+=而边缘分布律:{}{}2000.4P X P X ====,{}{}2110.6P X P X ====, {}{}2000.5P Y P Y ====,{}{}{}21110.150.350.5P Y P Y P Y ===-+==+=所以,22(,)X Y 的联合分布及其边缘分布为由上表同理可求得22X Y 的分布律为所以由01-分布的期望值恰为取1时的概率p 得到:2222222222()0.5()0.60,(0.28cov ()()0.280.60.50.02E X E Y E X Y X Y E X Y E X E Y ====-=-⨯=-,)(,)()(5)【答案】1X -.【详解】矩估计的实质在于用样本矩来估计相应的总体矩,此题中被估参数只有一个,故只需要用样本一阶原点矩(样本均值)来估计总体的一阶原点矩(期望) 期望 ()()()1x E X xf x dx xe dx θθθ+∞+∞---∞===+⎰⎰样本均值 11ni i X X n ==∑用样本均值估计期望有 EX X =,即 111ni i X n θ=+=∑,解得未知参数θ的矩估计量为 11ˆ11n i i X X n θ==-=-∑.二、选择题 (1)【答案】(B)【详解】方法1:论证法.由题设()f x 在开区间(,)a b 内可导,所以()f x 在(,)a b 内连续,因此,对于(,)a b 内的任意一点ξ,必有lim ()().x f x f ξξ→= 即有lim[()()]0x f x f ξξ→-=.故选(B).方法2:排除法.(A)的反例:1(,]()1x a b f x x a ∈⎧=⎨-=⎩,有()1,()1,()()10f a f b f a f b =-==-<,但()f x 在(,)a b 内无零点.(C)与(D)的反例,(1,1]()11xx f x x ∈-⎧=⎨=-⎩ (1)(1)1f f -==,但()1f x '=(当(1,1)x ∈-),不满足罗尔中值定理,当然也不满足拉格朗日中值定理的结论.故选(B).(2)【答案】(D)【详解】方法1:A 是m n ⨯矩阵,B 是n m ⨯矩阵,则AB 是m 阶方阵,因()min((),())r AB r A r B ≤.当m n >时,有()min((),())r AB r A r B n m ≤≤<.(系数矩阵的秩小于未知数的个数)方程组()0AB x =必有非零解,故应选(D).方法2:B 是n m ⨯矩阵, 当m n >时,,则()r B n =,(系数矩阵的秩小于未知数的个数)方程组0Bx =必有非零解,即存在00x ≠,使得00Bx =,两边左乘A ,得00ABx =,即0ABx =有非零解,故选(D).(3)【答案】(B)【详解】方法1:由题设根据特征值和特征向量的定义,A αλα=,A 是n 阶实对称矩阵,故TA A =.设()1TP APB -=,则111()TTT T T T T B P A P P AP P A P ---===上式左乘1T P-,右乘TP ,得111()()()T T T T T T P BP P P A P P ---=,即1T T A P BP -=,所以 1()T T A P BP ααλα-==两边左乘T P ,得 1()()T T T T P P BP P αλα-=得()T TB P P αλα=根据特征值和特征向量的定义,知1()TB P AP -=的对应于特征值λ的特征向量为T P α,即应选(B).方法2:逐个验算(A),(B),(C),(D)中哪个选项满足,由题设根据特征值和特征向量的定义,A αλα=,A 是n 阶实对称矩阵,故T A A =.设()1TP AP -属于特征值λ的特征向量为ξ,即()1TP APξλξ-=,其中()111TTTT T T P AP P A P P AP ---==对(A),即令1P ξα-=,代入111()TT P AP P P αλα---≠对(B),1()TT T P AP P α-1()TT T P A P P α-=1[())]T T TP A P P α-=TP A α=()T P λα=成立.故应选(B).(4)【答案】C【分析】(i)2χ变量的典型模式是:222212n X X X χ=+++L ,其中i X 要求满足:i X 相互独立,(0,1)i X N :.称2χ为参数为n 的2χ变量.(ii) F 变量的典型模式是:12//X n F Y n =,其中,X Y 要求满足:X 与Y 相互独立,2212(),()X n Y n χχ::,称F 为参数为()12,n n 的F 变量.【详解】方法1:根据题设条件,X 和Y 均服从(0,1)N .故2X 和2Y 都服从2(1)χ分布,答案应选(C).方法2:题设条件只有X 和Y 服从(0,1)N ,没有X 与Y 的相互独立条件.因此,2X 与2Y的独立条件不存在,选(B)、(D)项均不正确.题中条件既没有X 与Y 独立,也没有(,)X Y 正态,这样就不能推出X Y +服从正态分布的选项(A).根据排除法,正确选项必为(C).三【详解】22000003arctan(1)arctan(1)limlim 1(1cos )2xu x u x x t dt du t dt du x x x→→⎡⎤⎡⎤++⎢⎥⎢⎥⎣⎦⎣⎦-⎰⎰⎰⎰等 22arctan(1)lim32x x t dt x →+⎰洛洛20arctan(1)2lim 3x x x x →+⋅2346ππ=⋅=.四【详解】方法1:用一阶微分形式不变性求全微分.123du f dx f dy f dz '''=++(,)z z x y =由x y z xe ye ze -=所确定,两边求全微分,有()()()()()x y z x y z d xe ye d ze d xe d ye d ze -=⇒-= x x y y z z xe dx e dx ye dy e dy ze dz e dz ⇒+--=+,解出 (1)(1),(10).(1)x y z e x dx e y dydz z e z +-+=+≠+设 所以 du =123(1)(1)(1)x y z e x dx e y dyf dx f dy f e z +-+'''++⨯+1323(1)(1)(1)(1)x yz ze x e yf f dx f f dy e z e z ⎡⎤⎡⎤++''''=++-⎢⎥⎢⎥++⎣⎦⎣⎦ 方法2:1323,u z u zf f f f x x y y∂∂∂∂''''=+=+∂∂∂∂(根据多元函数偏导数的链式法则) 下面通过隐函数求导得到z x ∂∂,z y∂∂.由x y zxe ye ze -=两边对x 求偏导数,有 (),x x z z z xe e ze e x∂+=+∂ 得x xz zz xe e x ze e∂+=∂+,(10)z +≠设.类似可得,y y z z z ye e y ze e ∂+=-∂+,代入,u u x y ∂∂∂∂表达式 1323(),()x xy yz zz zu xe e u ye e f f f f x ze e y ze e ∂+∂+''''=+⋅=-⋅∂+∂+, 再代入 u udu dx dy x y∂∂=+∂∂中,得du 1323(1)(1)(1)(1)x yz ze x e yf f dx f f dy e z e z ⎡⎤⎡⎤++''''=++-⎢⎥⎢⎥++⎣⎦⎣⎦.五【详解】首先要从2(sin )sin xf x x=求出()f x . 命2sin u x =,则有sin x =x =()f u =(通过换元求出函数的表达式)()f x dx ==sin 2sin cos cos ttt tdt t⎰(换元积分法) sin t tdt =2⎰[]2cos sin t t t C =-++(分部积分法)2C ⎡=+⎣.六【分析】旋转体的体积公式:设有连续曲线:()()y f x a x b Γ=≤≤,()0f x ≥与直线,x a x b ==及x 轴围成平面图形绕x 轴旋转一周产生旋转体的体积2()baV f x dx π=⎰.【详解】(1) ()2225142(32)5aV xdx a ππ==-⎰22222420202a V a a x dy a a πππ=-=<<⎰g .(2) 54124(32)5V V V a a ππ=+=-+ 根据一元函数最值的求法要求驻点,令34(1)0dVa a daπ=-=, 得1a =. 当01a <<时0dV da >,当12a <<时0dVda<,因此1a =是V 的唯一极值点且是极大值点,所以是V 的最大值点,129max 5V π=.七【解】(1) 369331()113(3)!(3)!n nn x x x x x y x n n ∞==+++++=+∑L L +!6!9!, 由收敛半径的求法知收敛半径为∞,故由幂级数在收敛区间上逐项可导公式得3311()(1)(3)!(3)!nn n n x x y x n n ∞∞=='⎛⎫''=+= ⎪⎝⎭∑∑3113(3)!n n nx n -∞==∑311(31)!n n x n -∞==-∑,同理得 321(32)!n n x y n -∞=''=-∑从而 ()()()y x y x y x '''++32313111()()(1)(32)!(31)!(3)!n n nn n n x x x n n n --∞∞∞====+++--∑∑∑ 11!nn x n ∞==+∑(由x e 的麦克劳林展开式)x e =这说明,30()(3)!n n x y x n ∞==∑是微分方程xy y y e '''++=的解,并且满足初始条件310(0)1(3)!n n y n ∞==+∑1=,3110(0)(31)!n n y n -∞='=-∑0=. (2)微分方程xy y y e '''++=对应的齐次线性方程为0y y y '''++=,其特征方程为210λλ++=,其特征根为12-±,所以其通解为212[cossin ]22xy e C x C x -=+. 另外,该非齐次方程的特解形式为xy ce =,代入原非齐次方程得x x x xce ce ce e ++=,所以13c =.故微分方程xy y y e '''++=的通解为2121[sin ]3x x y e C x C x e -=++. 故22121211[cossin ][sin cos ]2222223x xx y e C x C x e C x x e --'=-⨯++-⨯++222112111(2(22222223x x x e C C x e C C x e --=-⨯-⨯-⨯-⨯+由初始条件(0)1,(0)0y y '==得0212100022211212111[00]331110(20(2022311223e C C e C e C C e C C e C C ---⎧=++=+⎪⎪⎪=-⨯--⨯-+⎨⎪⎪⎪=-++⎩解得11211311023C C ⎧+=⎪⎪⎨⎪-+=⎪⎩, 于是得到惟一的一组解:122,0.3C C ==从而得到满足微分方程x y y y e '''++=及初始条件(0)1,(0)0y y '==的解,只有一个,为221cos 323x x y e x e -=+另一方面,由(1)已知30()(3)!n n x y x n ∞==∑也是微分方程xy y y e '''++=及初始条件(0)1,(0)0y y '==的解,由微分方程解的唯一性,知321211cos ().(3)!323xn x n x e x e x n ∞-=+=+-∞<<+∞∑八【详解】方法1:因为()f x 与()g x 在[],a b 上连续,所以存在1x 2x 使得1[,]()max ()x a b f x M f x ∈==,2[,]()min ()x a b f x m f x ∈==,满足()m f x M ≤≤.又()0g x >,故根据不等式的性质()()()()mg x f x g x Mg x ≤≤根据定积分的不等式性质有()()()(),b b baaam g x dx f x g x dx M g x dx ≤≤⎰⎰⎰所以 ()().()babaf xg x dxm M g x dx≤≤⎰⎰由连续函数的介值定理知,存在[,]a b ξ∈,使()()()()b abaf xg x dxf g x dxξ=⎰⎰即有()()()()bbaaf xg x dx f g x dx ξ=⎰⎰.方法2:因为()f x 与()g x 在[],a b 上连续,且()0g x >,故()()baf xg x dx ⎰与()bag x dx ⎰都存在,且()0.bag x dx >⎰记()()()babaf xg x dxh g x dx=⎰⎰,于是()()()(),bbbaaaf xg x dxh g x dx hg x dx ==⎰⎰⎰即(())()0baf x hg x dx -=⎰因此必存在(,)a b ξ∈使()f h ξ=.不然,则在(,)a b 内由连续函数的零点定理知要么()f x h -恒为正,从而根据积分的基本性质得(())()0ba f x h g x dx ->⎰;要么()f x h -恒为负,同理得(())()0baf x hg x dx -<⎰,均与(())()0baf x hg x dx -=⎰不符.由此推知存在(,)a b ξ∈使()f h ξ=,从而()()()()bbaaf xg x dx f g x dx ξ=⎰⎰.九【详解】方法1:对系数矩阵记为A 作初等行变换21311000000n a b b b a b b b b a b b b a a b A bb a b b a a b b b b a b a a b -- -⎛⎫⎛⎫ ⎪⎪-- ⎪ ⎪ ⎪ ⎪=→-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭M L L L LL L M M M M MM M M LL行行行行行行当(0)a b =≠时,()1,0r A AX ==的同解方程组为120n x x x +++=L ,基础解系中含有1n -个(未知数的个数-系数矩阵的秩)线性无关的解向量,取23,,...,n x x x 为自由未知量,分别取231,0,...,0n x x x ===,230,1,...,0n x x x ===,…,230,0,...,1n x x x ===得方程组1n -个线性无关的解[][][]1211,1,0,,0,1,0,1,0,,0,,1,0,,0,1T T Tn ξξξ-=-=-=-L L L L ,为基础解系,方程组0AX =的全部解为112211n n X k k k ξξξ--=+++L ,其中(1,2,1)i k i n =-L 是任意常数.当a b ≠时,000000ab b b b a a bA b a a bb a a b ⎛⎫⎪-- ⎪ ⎪→--⎪⎪ ⎪--⎝⎭L L L MM M M L23110010101001a b a b n a b a b b b -- -⎛⎫ ⎪- ⎪ ⎪→- ⎪ ⎪ ⎪-⎝⎭M L L L MM M M 行/()行/()行/() 12131(1)000110010101001bb n ba n b-⨯-⨯ -⨯+-⎛⎫⎪-⎪ ⎪→-⎪ ⎪ ⎪-⎝⎭ML LL M M M M L行行行行行行 当a b ≠且(1)a n b ≠--时,(1)0A a n b =+-≠,(),0r A n AX ==仅有零解. 当(1)a n b =--时,()1,0r A n AX =-=的同解方程组是121310,0,0,n x x x x x x -+=⎧⎪-+=⎪⎨⎪⎪-+=⎩…… 基础解系中含有1个线性无关的解向量,取1x 为自由未知量,取11x =,得方程组1个非零解[]1,1,,1Tξ=L ,即其基础解系,故方程组的全部解为X k ξ=,其中k 是任意常数.方法2:方程组的系数行列式a b b bb a b b A b b a bb b b a=L L LM M M ML(1)(1)2...(1)1(1)a n b b b b a n b a b b n a n b b a b a n b b b a+-+-+-+-LL LM M M M L把第,,列加到第列111[(1)]11b b b a b ba nb b a b b b a +-LLLM M M M L提取第列的公因子 1210003-1[(1)]000-1000bbb a b a n b a b n a b--+-- -LLLMM M MM L第行第行第行第行第行第行1[(1)]()n a n b a b -=+--(1)当a b ≠且(1)a n b ≠--时,0A ≠,()r A n =方程组只有零解. (2)当(0)a b =≠时,a a a a a a a a A a a a a a a a a ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦L L L M M M M L21000031000010000a a a a n ⎡⎤-⎢⎥⎢⎥-⎢⎥ ⎢⎥⎢⎥-⎢⎥⎣⎦L LL M M M M M u u u u u u u u u u u u u u r L第行第行第行第行第行第行111100001100000000a ⎡⎤⎢⎥⎢⎥⎢⎥⨯⎢⎥⎢⎥⎢⎥⎣⎦L LL u u u u u u u u u r MM M M L第行 方程组的同解方程组为120n x x x +++=L基础解系中含有1n -个(未知数的个数-系数矩阵的秩)线性无关的解向量,取23,,...,n x x x 为自由未知量,分别取231,0,...,0n x x x ===,230,1,...,0n x x x ===,…, 230,0,...,1n x x x ===得方程组1n -个线性无关的解[][][]1211,1,0,,0,1,0,1,0,,0,,1,0,,0,1T T Tn ξξξ-=-=-=-L L L L ,为基础解系,方程组0AX =的全部解为112211n n X k k k ξξξ--=+++L ,其中(1,2,1)i k i n =-L 是任意常数.(1)当(1)(0)a n b b =--≠时,(1)(1)(1)(1)n bb b bbn b b b A b b n bb b b b n b -⎛⎫⎪- ⎪ ⎪=-⎪ ⎪ ⎪-⎝⎭L L L MM M M L1,2,...,11111111111111111n bn n n n ⨯-⎛⎫⎪- ⎪ ⎪→-⎪ ⎪ ⎪-⎝⎭L L LMM M M L 行分别111121003100100n n n n nn n n -⎛⎫-⎪-⎪- ⎪-⎪ ⎪- ⎪-⎝⎭L LL M M M M M u u u u u u u u u r L 行行行行行行 111111002,...,101011001n n n -⎛⎫⎪- ⎪ ⎪-⨯⎪ ⎪ ⎪-⎝⎭L LL M M M M u u u u u u u u u r L行分别0011002,...,10101001n ⎛⎫ ⎪-⎪ ⎪- ⎪ ⎪ ⎪-⎝⎭LLL u u u u u u u u u u u u u u u u u r M M M M L把第行都依次加到第1行 ()1r A n =-,其同解方程组是121310,0,0,n x x x x x x -=⎧⎪-=⎪⎨⎪⎪-=⎩…… 基础解系中含有1个线性无关的解向量,取1x 为自由未知量,取11x =,得方程组1个非零解[]1,1,,1Tξ=L ,即其基础解系,故方程组的全部解为X k ξ=,其中k 是任意常数.十【详解】(1) 设λ是A 的任意特征值,α是A 的属于λ的特征向量,根据特征值、特征向量的定义,有 ,0,A αλαα=≠ ①两边左乘A ,得 2A αA λαλλα==2λα= ②②+2*①得 ()()2222A Aαλλα+=+因220A A +=,0α≠,从而上式()()22220A Aαλλα+=+=,所以有220λλ+=,故A 的特征值λ的取值范围为0,2-.因为A 是实对称矩阵,所以必相似于对角阵Λ,且Λ的主对角线上元素由A 的特征值组成,且()()2r A r =Λ=,故A 的特征值中有且只有一个0.(若没有0,则222-⎡⎤⎢⎥Λ=-⎢⎥⎢⎥-⎣⎦,故()()3r A r =Λ=与已知矛盾;若有两个0,则200-⎡⎤⎢⎥Λ=⎢⎥⎢⎥⎣⎦,故()()1r A r =Λ=与已知矛盾;若三个全为0,则000⎡⎤⎢⎥Λ=⎢⎥⎢⎥⎣⎦,故()()0r A r =Λ=与已知矛盾). 故220A -⎡⎤⎢⎥Λ=-⎢⎥⎢⎥⎣⎦: 即A 有特征值1232,0λλλ==-=.(2)A kE +是实对称矩阵,A 有特征值1232,0λλλ==-=,知A kE +的特征值为2,2,k k k --.因为矩阵正定的充要条件是它的所有的特征值均大于零,故A kE +正定200k k ->⎧⇔⎨>⎩2k k >⎧⇔⎨>⎩2k ⇔> 故2k >时A kE +是正定矩阵.十一【分析】(,)X Y 有四个可能值,可以逐个求出.在计算过程中要注意到取值与U 的值有关.U 的分布为均匀分布,计算概率不用积分都行,可以直接看所占区间的长度比例即可.【详解】(,)X Y 只有四个可能值(1,1),(1,1),(1,1)(1,1)----和.依照题意,有{}{}{}1(2)11,11,11;2(2)4P X Y P U U P U ---=-=-=≤-≤=≤-==--{}{}{}1,11,10;P X Y P U U P =-==≤->=∅= {}{}{}11,11,111;2P X Y P U U P U ==-=>-≤=-<≤={}{}{}11,11,11.4P X Y P U U P U ===>->=>=于是,(,)X Y 分布为(2) 因为22()()[()]D X Y E X Y E X Y +=+-+,所以我们应该知道X Y +和2()X Y +的分布律.对离散型随机变量,X Y +的取值可能有2,0,2;-2()X Y +的取值可能有0和4;{}{}121,1,4P X Y P X Y +=-==-=-={}{}{}1101,11,10,22P X Y P X Y P X Y +====-+=-==+= {}{}121,1,4P X Y P X Y +=====(){}{}2100,2P X Y P X Y +==+==(){}{}{}214222P X Y P X Y P X Y +==+=-++==.X Y +和2()X Y +的分布律分别为和所以由离散型随机变量的数学期望计算公式有:{}1()nk k k E X x P X x ==⋅=∑所以有,2224()0,()2442E X Y E X Y +=-+=+==. 22()()[()]2D X Y E X Y E X Y +=+-+=十二【详解】首先找出随机变量Y 的表达式. Y 由X 和2(小时)来确定,所以min(,2)Y X =.指数分布的X 的分布参数为 11,()5E X λ==其密度函数为:1510()500x X ex f x x -⎧>⎪=⎨⎪≤⎩其中0λ>是参数由分布函数的定义:{}{}()min(,2)F y P Y y P X y =≤=≤(1) 当0y <时,()0Y F y =(因为{}min ,2Y X =,其中X 和2都大于0,那么小于0是不可能事件)(2) 当2y ≥时,()1Y F y =(因为{}min ,2Y X =最大也就取到2,所以小于等于2是一定发生的,是必然事件)(3) 当02y ≤<时, {}{}{}()min(,2)F y P Y y P X y P X y =≤=≤=≤115501()15x y yyX f x dx e dx e ---∞===-⎰⎰所以1500()10212y Y y F y e y y -<⎧⎪⎪=-≤<⎨⎪≥⎪⎩。