全等三角形教学反思
三角形全等的判定教学反思

三角形全等的判定教学反思三角形全等的判定教学反思篇一从本周起,我们将学习《全等三角形判定》,对于刚刚进入八年级的学生,这既是一个重点也是一个难点,几何与代数最大的区别是:几何是看得见、摸得着的,代数中特别是函数则比较抽象,不易理解。
就*内容,希望能给我们的孩子点燃学习的火种,指明学习的方向,其实《全等三角形的判定》就这么简单。
我用四课时完成了“全等三角形判定”的学习。
我的最大收获就是无论证明何种类型的全等题,学生都很少出现用SSA(假命题)证明全等的情况,而且百分之八十的学生都能比较清楚地表达验证的过程,并准确选择方法进行全等三角形的证明。
所以说,本部分的教学设计是比较成功的,既给学生留下了比较充分地探索空间(如第一节课),又从学生已有的认知基础出发(如第二课时),同时注重了必要的练习巩固(如第四节课)。
就第三节课来说,首先,本节课设计了探究活动,让学生带着问题进行探究,调动了学生学习的积极性,而且使好奇心得以持续发展。
学生在探究活动中,通过观察猜想、操作验证、归纳概括等一系列活动,使学生对问题的本质理解更为深刻。
学生不仅知道了全等三角形判定的方法,而且明白为什么可以通过它们证明两个三角形全等,也对“边边角”不能作为判定两个三角形全等的方法有了深刻的理解。
三角形全等的判定教学反思篇二本节课是人教版八年级数学第十二章第二节的内容,主要探索三角形全等的条件及利用全等三角形进行证明,而我所讲授的是第一课时:《三角形全等的判定方法一(SSS)》,它是后面几种判定方法的基础,也是*的重点及难点。
教材看似简单,仔细研究后才发现,对八年级学生来说有些困难,处理不好是难以成功的,况且对学生以后学习几何起着关键作用,因此在上这一课时,我精心设计,从确定一个三角形到得到三角形全等的判定方法这个环节,让学生动手操作,大胆猜想,实践操作,相互交流验证,很好地解决了问题,圆满地完成了本节课的任务,表现在以下几个方面:一、我认真备课,教学设计整体化,内容生活化。
《全等三角形》教学反思

《全等三角形》教学反思
1、在上课时我先点评学生的自学提要部分,引出这一小节的知识结构。
2、在第2题、第3题的添加条件中,应引导学生如何去找。
可以分为三类,第一类:已知一角一边,可以增加这个角的另一边,构成SAS;也可以增加另一个角,构成ASA或AAS。
第二类:已知两个角,则只能找边。
三条边可以找任一边,构成ASA或AAS。
第三类:已知两条边,这时可以找第三边,构成SSS,或这两边的夹角构成SAS。
但这份学案这部分的不足之处没有将这三种情况都体现出来。
3、本章在说理上对学生提出了较高的要求。
在学习过程中学生根据图形和间接条件挖掘三角形全等的条件有一些困难,而且不知道究竟选用什么方法进行说理。
有的几何题图形比较复杂,在教学的过程中,我采取两种方法:①把不同的线段用不同的颜色来标注,而相等的线段用相同的颜色来标注。
比如:AB线段用蓝色,BC线段用红色,而和AB线段相等的CD线段用同样的蓝色,和BC相等的线段AD用同样的红色。
在分析的过程中,引导学生根据颜色来找相等的线段,而且也可以根据颜色的提示来寻找下一组相等的线段。
②对于识图有困难的学生还可以引导学生将图形进行分离。
这两个个方法有助于学生理解SAS,ASA定理中夹边和夹角的概念。
对提高学生学习几何的兴趣有一定的帮助。
4、通过本节课的教学,让我意识到在几何教学中,对于复杂图形的教学,教师应开动脑筋化难为易,化繁为简从而消除学生学习几何图形的畏难情绪,并培养学生的学习兴趣。
八年级数学上册《三角形全等的判定》教学反思

八年级数学上册《三角形全等的判定》教学反思1、八年级数学上册《三角形全等的判定》教学反思昨天对三角形全等进行复习,教学目的是:使学生能灵活运用“SSS”、“SAS”、“ASA”、“AAS”和“HL”来判定三角形全等;体会文字命题转化为数学符号语言的过程,掌握文字命题的证明。
对于本单元的知识内容,学生很容易掌握,但是,与单纯的知识内容相比,更重要的是利用这些知识内容解决问题。
因此,本课的复习就是重在证明题的分析方法上。
这一课的教学案设计是这样的,预习导学部分安排复习了定义、性质、判定方法;安排复习三角形全等的条件思路;安排复习找三角形全等的条件时经常见到的隐含条件;三个对应相等的条件不能使三角形全等的情况及其反例。
前置学习第二部分的三个选择题,有效地复习了“对应相等”、“两边夹角”、“边边角”和“角角角”不能的注意点。
又安排了两次全等的证明题,并由命题的.证明归纳文字命题:“等腰三角形底边的中点到两腰的距离相等”,为学习文字命题的证明作好了准备,也训练了学生语言表达能力。
在前置学习的基础上,我让学生上台叙述例题1的证明思路,并由两条题目的分析思路的探究体会怎样分析和总结证题时常有的合理联想,如“由垂直想互余,互余多了自有同角或等角的余角相等”、“由角平分线想折叠”等等。
接着学习例2和练习学习文字命题的证明步骤:根据题意画图形,结合图形写“已知”和“求证”,认真分析得“证明”。
这一课复习安排的内容比较多,学生思维训练很充分,证明和分析方法体会得不少,学生动手写证明的全过程偏少,文字命题的训练占全课的比重较小。
收获:利用学生主动的探究,学生对三角形判定和性质掌握比较好,而且由于学生对每一个判定和性质都进行了数学语言和符号语言的书写练习,因此提高了学生的书写能力,在习题课上大部分的学生都能写出比较完整的证明过程。
不足:1、学生识别图形的能力差、如:“ASA”与“AAS”“HL”判别不清。
2、几何证明题一直是学生的一个弱点。
2024年人教版八年级数学上册教案及教学反思全册第12章 全等三角形12.1 全等三角形教案

第十二章全等三角形12.1 全等三角形一、教学目标【知识与技能】1.掌握全等形、全等三角形的概念,能应用符号语言表示两个三角形全等;2.能熟练地找出两个全等三角形的对应元素,理解全等三角形的性质,并解决相关简单的问题.【过程与方法】掌握全等三角形对应边相等,对应角相等的性质,并能进行简单的推理和计算,解决一些实际问题.【情感、态度与价值观】联系学生的生活环境,创设情景,使学生通过观察、操作、交流和反思,获得必需的数学知识,激发学生的学习兴趣.二、课型新授课三、课时第1课时四、教学重难点【教学重点】全等三角形的概念、性质及对应元素的确定.【教学难点】全等三角形对应元素的识别.五、课前准备教师:课件、三角尺、全等图形等。
学生:三角尺、直尺、全等图形、三角形纸板。
六、教学过程(一)导入新课观察这些图片,你能找出形状、大小完全一样的几何图形吗?(出示课件2-3)(二)探索新知1.观察图形,学习全等图形教师问1:下列各组图形的形状与大小有什么特点?(出示课件5)学生回答:每一组图中的两个图形形状相同,大小相等.教师问2:观察思考:每组中的两个图形有什么特点?(出示课件6)学生回答:前三组图形的形状相同,大小也相等,第4组图形的形状相同,但是大小不相等,第5组图形的形状不相同,但是大小相等.教师问3:它们能够完全重合吗?你能再举出一些类似的例子吗?学生讨论分析,教师引导后学生回答:举例:学生手中含30度角的三角板;含45度角的三角板;学生手中的小量角器;由同一张底片洗出的尺寸相同的照片;两本数学书等.教师讲解:由图①②③中的图形,我们可以看到,它们的形状相同,大小相等,像这样,形状相同、大小相同的图形放在一起能够完全重合,能够完全重合的两个图形叫做全等形.教师问4:同学们讨论一下,全等图形有什么性质呢?学生回答:全等图形的形状相同,大小相等.总结点拨:全等图形定义:能够完全重合的两个图形叫做全等图形.全等形性质:如果两个图形全等,它们的形状和大小一定都相等.2.师生互动,认识全等三角形的概念教师问5:观察下边的两个三角形,它们的形状和大小有何特征?学生回答:它们的形状相同,大小相等.教师问6:这两个三角形能够完全重合吗?学生回答:能够完全重合教师问7:这两个三角形能够完全重合之后,△ABC的顶点A、B、C与△DEF的顶点D、E、F那两个点重合呢?它们的边呢?它们的角呢?学生回答:点A与点D重合,点B与点E重合,点C与点F重合,边AB 与边DE重合,边AC与边DF重合,边CB与边FE重合,∠A与∠D重合,∠B与∠E重合,∠C与∠F重合.教师总结:(出示课件9)像上图一样,把△ABC 叠到△DEF上,能够完全重合的两个三角形,叫做全等三角形. 把两个全等的三角形重叠到一起时,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角.教师问8:平移、翻折、旋转前后的两个三角形什么变化,什么没有变化呢?学生讨论并回答:三角形的形状和大小没有变化,位置变化了.教师问9:把一个三角形平移、旋转、翻折,变换前后的两个三角形全等吗?(出示课件10)学生回答:平移、翻折、旋转前后的两个三角形全等.总结点拨:(出示课件11)一个图形经过平移、翻折、旋转后,位置变化了,但形状和大小都没有改变,即平移、翻折、旋转前后的两个图形全等.学生小组活动:教师提出下列要求:①请你用事先准备好的三角形纸板通过平移、翻折、旋转等操作得到你认为美丽的图形;②在练习本上画出这些图形,标上字母,并在小组内交流;③指出这些图形中的对应顶点、对应边、对应角.教师问10:请同学们观察分析,指出下列图形的对应边、对应角和对应顶点.学生分组做完后并点名回答教师问11:寻找对应元素有什么方法和规律吗?学生思考交流后,师生共同归纳、板书.(出示课件13)1. 有公共边,则公共边为对应边;2. 有公共角(对顶角),则公共角(对顶角)为对应角;3.最大边与最大边(最小边与最小边)为对应边;最大角与最大角(最小角与最小角)为对应角;4. 对应角的对边为对应边;对应边的对角为对应角.教师问12:全等三角形的对应边、对应角有什么数量关系?学生回答:全等三角形的对应边相等,全等三角形的对应角相等.教师问:全等三角形用什么表示呢?学生阅读教材32页内容回答:全等”用符号“≌”表示,△ABC全等于△DEF,记作△ABC≌△DEF.教师问13:全等三角形有哪些性质呢?学生讨论回答:全等三角形的对应边相等,对应角相等.总结点拨:全等的表示方法:“全等”用符号“≌”表示,读作“全等于”. (出示课件15)警示:记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上.全等的性质:(出示课件16-17)全等三角形的对应边相等,对应角相等.几何语言:∵△ABC≌△DEF(已知),∴AB=DE,AC=DF,BC=EF(全等三角形对应边相等),∠A=∠D,∠B=∠E,∠C=∠F(全等三角形对应角相等).例1:如图,若△BOD≌△COE,∠B=∠C,指出这两个全等三角形的对应边;若△ADO≌△AEO,指出这两个三角形的对应角.(出示课件18)师生共同解答如下:解:△BOD与△COE的对应边为:BO与CO,OD与OE,BD与CE;△ADO与△AEO的对应角为:∠DAO与∠EAO,∠ADO与∠AEO,∠AOD与∠AOE.例2:如图,△ABC≌△DEF,∠A=70°,∠B=50°,BF=4,EF=7,求∠DEF的度数和CF的长.(出示课件20)师生共同解答如下:解:∵△ABC≌△DEF,∠A=70°,∠B=50°,BF=4,EF=7,∴∠DEF=∠B=50°,BC=EF=7,∴CF=BC–BF=7–4=3.例3:如图,△EFG≌△NMH,EF=2.1cm,EH=1.1cm,NH=3.3cm.(1)试写出两三角形的对应边、对应角;(2)求线段NM及HG的长度;(3)观察图形中对应线段的数量或位置关系,试提出一个正确的结论并证明.(出示课件22-23)师生共同解答如下:解:(1)对应边有EF和NM,FG和MH,EG和NH;对应角有∠E和∠N,∠F和∠M,∠EGF和∠NHM.(2)解:∵△EFG≌△NMH,∴NM=EF=2.1cm,EG=NH=3.3cm.∴HG=EG –EH=3.3 – 1.1=2.2(cm).(3)解:结论:EF∥NM证明:∵ △EFG≌△NMH,∴ ∠E=∠N. ∴ EF∥NM.总结点拨:全等三角形的性质:能够重合的边是对应边,重合的角是对应角,对应边所对的角是对应角.对应角所对的边是对应边;两个全等三角形最大的边是对应边,最小的边也是对应边; 两个全等三角形最大的角是对应角,最小的角也是对应角.(三)课堂练习(出示课件27-30)1.能够_________的两个图形叫做全等形.两个三角形重合时,互相__________的顶点叫做对应顶点.记两个全等三角形时,通常把表示___________顶点的字母写在_________的位置上.2.如图,△ABC≌ △ADE,若∠D=∠B,∠C= ∠AED,则∠DAE=_______;∠DAB=__________ .3.如图,△ABC≌△BAD,如果AB=5cm,BD=4cm,AD=6cm,那么BC 的长是( )A.6cmB.5cmC.4cmD.无法确定4.在上题中,∠CAB的对应角是( )A.∠DABB.∠DBAC.∠DBCD.∠CAD5. 如图所示,△ABD≌△CDB,下面四个结论中,不正确的是( )A.△ABD 和△CDB 的面积相等B.△ABD 和△CDB 的周长相等C.∠A +∠ABD =∠C +∠CBDD.AD∥BC,且AD = BC6.如图,△ABC ≌△AED,AB是△ABC 的最大边,AE是△AED的最大边,∠BAC 与∠ EAD是对应角,且∠BAC=25°,∠B= 35°,AB =3cm,BC =1cm,求出∠E,∠ ADE 的度数和线段DE,AE 的长度.参考答案:1. 重合重合对应相对应2. ∠BAC ∠EAC3.A4.B5.C6. 解:∵ △ABC ≌△AED,(已知)∴∠E= ∠B = 35°,(全等三角形对应角相等)∠ADE =∠ACB =180°–25°–35°=120 °,(全等三角形对应角相等) DE = BC =1cm,AE = AB =3cm.(全等三角形对应边相等)(四)课堂小结今天我们学了哪些内容:1.全等三角形的有关概念2.全等三角形的性质3.寻找对应元素的方法(五)课前预习预习下节课(11.2)教材35页到教材37页的相关内容。
人教版八年级数学上《全等三角形的性质》教学反思

《全等三角形的性质》教学反思
一、教学目标达成情况
本节课的教学目标是让学生掌握全等三角形的性质,包括全等三角形的对应边相等、对应角相等。
通过讲解、讨论和练习,学生基本掌握了这些性质,并能运用它们进行简单的推理和证明。
二、教学方法和手段
本节课采用了讲解、讨论和练习相结合的教学方法。
首先,通过回顾全等三角形的定义,引出全等三角形的性质。
然后,通过讲解和讨论,让学生了解全等三角形的性质及其应用。
最后,通过练习巩固所学知识。
三、学生表现
在课堂中,大部分学生能够积极参与讨论和练习,表现出较高的学习热情和积极性。
但也存在一些问题,如部分学生对于全等三角形的性质理解不够深入,需要进一步加强练习和指导。
四、改进措施
针对本节课存在的问题,可以采取以下措施加以改进:
1.加强学生对全等三角形性质的深入理解,可以通过更多的实例和练习加以
巩固。
2.针对学生的不同学习水平,可以设计不同难度的练习题,以满足不同层次
学生的需求。
3.加强课堂互动,鼓励学生提出问题和意见,以便更好地了解学生的学习情
况和需求。
总之,本节课的教学效果基本达到了预期目标,但也存在一些需要改进的地方。
在今后的教学中,我将继续努力,不断改进教学方法和手段,提高教学效果。
八年级数学上册第十二章全等三角形全等三角形教学反思

《全等三角形》教学反思
一、教学细节方面
1、在字体大小上,以前自己亲手制作的几何图形在字母大小的表示很小,学生看起来肯定是比较吃力;这样不利于学生对知识的阅读与理解。
2、在概念关键字上,比如能够重合的两个图形称为全等图形,全等图形的形状和大小都相等;上课的时候学生是直接给出,没有对概念的中关键词“形状”、“大小”加以强调,在课上学生是用声音重和慢来突出关键词“形状"、“大小",并追问:“判断两个图形是不是全等图形关键是看这两个图形的什么?”提高学生对知识的理解深化。
二、课后反思
1、在上全等三角形这节课中,全等指的是两个图形之间的关系,直接给出两个图形,这样学生对全等图形是指两个图形之间的关系很模糊,而逐步呈现,这样有利于学生的理解全等图形是两个图形之间的关系有了更加深刻的认识。
我认为在基本概念分析透彻上是非常有必要的。
2、拿出两个全等三角形纸片,当这两个全等三角形独立的时候,让学生找它们对应顶点、对应边、对应角;如果将两个全等的三角形摆放的位置发生变化:这时在课堂上呈现两个全等三角形摆放成“蝴蝶型”、“Z字型”等,让学生感受,进行分析;在最后增加利用全等三角形对应边相等、对应角相等练习.
3、练习部分的内容在课堂的时间上一般是后半部分,练习部
分的题目设计上我认为最好的是既能将各个练习之间内在的关系挖掘出来,给学生呈现内在的美与气质,更需要将有气质的题目以新颖的形式呈现出来,;这样能够有效调动学生各方面的感官为学习服务.就能有效地提高教学的效率。
三角形全等的判定教学反思

三角形全等的判定教学反思篇一:《全等三角形的判定1》教案及教学反思《全等三角形的判定1》教案及教学反思教学目标1知识目标:掌握“边边边”条件的内容,并能初步应用“边边边”条件判定两个三角形全等.2能力目标:使学生经历探索三角形全等条件的过程,体会如何探索研究问题,并初步体会分类思想,提高学生分析问题和解决问题的能力.3思想目标:通过画图、比较、验证,培养学生注重观察、善于思考、不断总结的良好思维习惯。
教学重点、难点:重点:利用边边边证明两个三角形全等难点:探究三角形全等的条件教学过程(一)复习提问1、什么叫全等三角形?2、全等三角形有什么性质?3、若△Abc≌△DeF,点A与点D,点b与点e是对应点,试写出其中相等的线段和角. (二)新课讲解:问题1:如图:在△Abc和△DeF 中,Ab=De,bc=eF,Ac=DF,∠A=∠D,∠b=∠e,∠c=∠F,则△Abc和△DeF 全等吗?问题2:△Abc和△DeF全等是不是一定要满足Ab=De,bc=eF,Ac=DF,∠A=∠D,∠b=∠e,∠c=∠F这六个条件呢?若满足这六个条件中的一个、两个或三个条件,这两个三角形全等吗?一个条件可分为:一组边相等和一组角相等两个条件可分为:两个边相等、两个角相等、一组边一组角相等探究一:1.只给一个条件(一组对应边相等或一组对应角相等)。
①只给一条边:②只给一个角:12.给出两个条件:①一边一内角:°②两内角:②两°内角°:③两边:502cm4cm2cm4cm问题3:两个三角形若满足这六个条件中的三个条件能保证它们全等吗?满足三个条件有几种情形呢?3.给出三个条件三个条件可分为:三条边相等、三个角相等、两角一边相等、两边一角相等例:画△Abc,使Ab=2,Ac=3,bc=42画法:1画线段bc=42分别以A、b为圆心,以2和3为半径作弧,交于点c。
则△Abc 即为所求的三角形把你画的三角形与其同桌所画的三角形剪下来,进行比较,它们能否互相重合?归纳:有三边对应相等的两个三角形全等.可以简写成“边边边”或“sss”用数学语言表述:在△Abc和△DeF中∴△≌△DeF(sss)(三)题例训练:例1填空:1、在下列推理中填写需要补充的条件,使结论成立:如图,在△Aob和△Doc中Ao=Do(已知)______=________(已知)∴△Aob≌△Doc(sss)2、如图,Ab=cD,Ac=bD,△Abc和△Dcb是否全等?试说明理由。
《全等三角形》教学反思

《全等三角形》教学反思XXX全等三角形这节课上完之后,我感觉成功之处在于:1.能驾驭教材,对学生提出的问题有灵活的解决办法。
2.在小组合作研究产生争议的时候,教师能放能收,处理的到位,符合新的课堂教学理念。
3.在处理课堂练时,让学生选择自己喜欢的问题来回答,照顾了学生的个体差异,关注了学生的个性发展,真正成为学生研究的组织者、参与者、合作者、促进者。
4.建立了民主、平等、和谐的师生关系。
5.我觉得教师角色转变的重心在于使传统意义上的教师教和学生学,不断让位于师生互教互学,彼此形成一个真正的“研究共同体”。
本节课,若按老的教学路子,应先告诉学生什么叫做全等,然后让学生把全等的特征和性质背下来,最后应用全等的性质去解决实际问题,这样就完成了教学任务。
而新的课程标准则要求教师引导学生经历从具体情境中抽象出数学知识的过程,并在这个过程中与学生平等地交流和给以恰到好处的点拨。
在这点上,我处理的比较好。
6.运用当代信息手艺,实现了学生的研究方式、教师的教学方式和师生互动方式的厘革,实现当代信息手艺与学科课程的整合。
新课的引入、生活中平移征象的举例及平移在实际生活中的应用,都使用了多媒体的手段,为辅助我上好这节课,我设计了大量形象、直观的课件。
本节课缺乏之处:1.在介绍对应顶点、对应线段、对应角时破费时间较多。
2.应该多举生活中的全等实例。
通过本节课教学,使我意识到此后应注意如下几个方面:1.教学看法还要不断更新,使数学教育面向部分学生,实现——人人学有价值的数学,人人都能获得必须的数学,不同的人在数学上得到不同的开展。
2.要不断研究新的教育理论,充实自己头脑,指导新课程教学实践。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《全等三角形》教学反思
龙泉一中:张珂
全等三角形这节课上完之后,我感觉成功之处在于:
1.能驾驭教材,对学生提出的问题有灵活的解决办法。
2.在小组合作学习产生争议的时候,教师能放能收,处理的到位,符合新的课堂教学理念新人教版八年级数学上册《全等三角形》教学反思新人教版八年级数学上册《全等三角形》教学反思。
3.在处理课堂练习时,让学生选择自己喜欢的问题来回答,照顾了学生的个体差异,关注了学生的个性发展,真正成为学生学习的组织者、参与者、合作者、促进者。
4.建立了民主、平等、和谐的师生关系新人教版八年级数学上册《全等三角形》教学反思文章新人教版八年级数学上册《全等三角形》教学反思出自
5.我觉得教师角色转变的重心在于使传统意义上的教师教和学生学,不断让位于师生互教互学,彼此形成一个真正的“学习共同体”。
本节课,若按老的教学路子,应先告诉学生什么叫做全等,然后让学生把全等的特征和性质背下来,最后应用全等的性质去解决实际问题,这样就完成了教学任务。
而新的课程标准则要求教师引导学生经历从具体情境中抽象出数学知识的过程,并在这个过程中与学生平等
地交流和给以恰到好处的点拨。
在这点上,我处理的比较好新人教版八年级数学上册《全等三角形》教学反思教学反思。
本节课不足之处:
1.在介绍对应顶点、对应线段、对应角时花费时间较多。
2.应该多举生活中的全等实例。
通过本节课教学,使我意识到今后应注意如下几个方面:
1.教学观念还要不断更新,使数学教育面向全体学生,实现——人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展。
2.要不断学习新的教育理论,充实自己头脑,指导新课程教学实践。