全等三角形教学反思
三角形全等的判定教学反思

三角形全等的判定教学反思三角形全等的判定教学反思篇一从本周起,我们将学习《全等三角形判定》,对于刚刚进入八年级的学生,这既是一个重点也是一个难点,几何与代数最大的区别是:几何是看得见、摸得着的,代数中特别是函数则比较抽象,不易理解。
就*内容,希望能给我们的孩子点燃学习的火种,指明学习的方向,其实《全等三角形的判定》就这么简单。
我用四课时完成了“全等三角形判定”的学习。
我的最大收获就是无论证明何种类型的全等题,学生都很少出现用SSA(假命题)证明全等的情况,而且百分之八十的学生都能比较清楚地表达验证的过程,并准确选择方法进行全等三角形的证明。
所以说,本部分的教学设计是比较成功的,既给学生留下了比较充分地探索空间(如第一节课),又从学生已有的认知基础出发(如第二课时),同时注重了必要的练习巩固(如第四节课)。
就第三节课来说,首先,本节课设计了探究活动,让学生带着问题进行探究,调动了学生学习的积极性,而且使好奇心得以持续发展。
学生在探究活动中,通过观察猜想、操作验证、归纳概括等一系列活动,使学生对问题的本质理解更为深刻。
学生不仅知道了全等三角形判定的方法,而且明白为什么可以通过它们证明两个三角形全等,也对“边边角”不能作为判定两个三角形全等的方法有了深刻的理解。
三角形全等的判定教学反思篇二本节课是人教版八年级数学第十二章第二节的内容,主要探索三角形全等的条件及利用全等三角形进行证明,而我所讲授的是第一课时:《三角形全等的判定方法一(SSS)》,它是后面几种判定方法的基础,也是*的重点及难点。
教材看似简单,仔细研究后才发现,对八年级学生来说有些困难,处理不好是难以成功的,况且对学生以后学习几何起着关键作用,因此在上这一课时,我精心设计,从确定一个三角形到得到三角形全等的判定方法这个环节,让学生动手操作,大胆猜想,实践操作,相互交流验证,很好地解决了问题,圆满地完成了本节课的任务,表现在以下几个方面:一、我认真备课,教学设计整体化,内容生活化。
三角形全等的判定教学反思2 (2)

三角形全等的判定教学反思21. 成功之处:在数学中,三角形全等是指两个三角形在形状和大小上完全相同,具有相等的对应角度和对应边长。
三角形全等判定是中学数学中至关重要的一部分,可以帮助学生通过几何推理来判断是否两个三角形是全等的。
这个判定方法被广泛地应用于解决实际问题中的相似性以及计算其三角形各个属性问题。
在教学实践中,比较常见的是通过 SSS、SAS、ASA、AAS 和 RHS 等五种判定方法来判断三角形是否全等,这些方法是十分有效和准确的。
当学生在掌握这些方法之后,不仅能够准确地判断两个三角形是否全等,而且在后续的学习中还会有很多有效的帮助。
2. 存在问题:在实际授课中,我们发现这些方法需要学生对三角形内角和外角、三角形的边长以及有关的角度等概念,有了基本几何概念的基础,才能获得正确的解答。
然而,基本几何概念是初中数学的基础,但因为学生学习水平和差异的程度不同,可能需要很长时间才能透彻理解和掌握这些概念。
此时,老师可以通过推荐相关资源、培训和练习来加强学生的实际应用。
同时,老师还需要注意教学中的精细度和细节,以防止学生因为概念上的问题而产生困惑。
3. 思考及其措施:当学生完成基础几何概念的学习之后,为了提升学生判断三角形全等的技能,我们可以采用以下措施:1)运用多媒体辅助教学,通过动态展示、视频演示和交互式掌握来加强学生的领域认知和应用能力。
2)注意创设实践场景,鼓励学生灵活运用三角形的全等性质、掌握相似三角形之间比较的方法,并给他们丰富的课后练习,以帮助他们夯实知识。
3)借助小组合作的形式,让学生自行模拟、推理、讨论和叙述,以提升学生的团队精神、批判性思维和判断力。
根据判定三角形全等的五个方法,我们可以通过具体案例来说明:例:如图所示,ABCD和EFHG是两个平面内的四边形,它们的4个角的度数分别为a°,b°,c°,d°与e°,f°,g°,h°,它们的四条边长分别为AB、AD、CD与EF、EG、GH。
八年级数学《全等三角形性质》教学反思

八年级数学《全等三角形性质》教学反思本节课教学让学生通过观看和动手操作猎取学问,激发学生的学习兴趣。
转变了传统的“传递—承受”式教学,尝试用“问题—探究”的教学方法,教学过程中注意学习方法、思维方法、探究方法,让学生尽可能的经受沟通与合作,通过互动体验熟悉数学和数学思想,培育与他人合作的意识和态度。
产生学习数学的兴趣和自信念,让学生在互动中学到数学的学问和阅历、思想和方法。
一、设计好玩的图形和动画激发学生的兴趣。
在介绍全等形和全等三角形对应元素的概念时,我设计不同的图形变换使它们完全重合,如:孙悟空飞奔接着翻跟头等。
旨在学生直观感受概念的内涵。
二、引导学生动手操作,猎取学问。
在学习全等三角形相关概念、探究全等三角形性质以及运用符号表示全等三角形时,通过学生动手操作学具来猎取这些学问,加深对“全等三角形”“对应元素”“对应顶点写在对应的位置上”含义的理解。
在这里使我意外的是,许多学生采纳多种图形变换使两个全等三角形完全重合并找出对应元素。
三、学生存在的问题。
在找全等三角形的对应元素时局部学生还没找对,是由于这局部学生对“对应元素”的概念不清,在操作的过程中观看不认真。
针对这局部学生教师应当带着他们一起操作两个全等三角形重合的过程,使他们深刻体会“对应元素”。
八年级数学《全等三角形性质》教学反思2教师的成长在于不断地总结教学阅历和进展教学反思,下面就是我对我的这一节课的得失分析。
本课为本章的起始课,主要是一些根底的概念和性质,本节课的设计注意学生的直观感知和情感体验,从学生熟识的生活中的全等现象和全等图形引入,借助直观、形象、生动的多媒体课件演示,激发学生兴趣,充分调动学生的学习积极性。
在教学过程中,增加了很多教材中没有的一些常见图形和课例,由易到难充分展现,给学生供应一个观看、思索的平台。
通过学生的观看、思索、沟通、总结归纳出概念和性质,培育了学生初步的识图力量。
在整个教学过程中,学生在自主探究和合作沟通中,经受了观看、操作、思索等思维过程,而这样的`过程能够促进学生对数学的真正理解和把握,符合学生思维进展,培育了学生分析、解决问题的力量和规律思维力量。
《全等三角形》教学反思

《全等三角形》教学反思
1、在上课时我先点评学生的自学提要部分,引出这一小节的知识结构。
2、在第2题、第3题的添加条件中,应引导学生如何去找。
可以分为三类,第一类:已知一角一边,可以增加这个角的另一边,构成SAS;也可以增加另一个角,构成ASA或AAS。
第二类:已知两个角,则只能找边。
三条边可以找任一边,构成ASA或AAS。
第三类:已知两条边,这时可以找第三边,构成SSS,或这两边的夹角构成SAS。
但这份学案这部分的不足之处没有将这三种情况都体现出来。
3、本章在说理上对学生提出了较高的要求。
在学习过程中学生根据图形和间接条件挖掘三角形全等的条件有一些困难,而且不知道究竟选用什么方法进行说理。
有的几何题图形比较复杂,在教学的过程中,我采取两种方法:①把不同的线段用不同的颜色来标注,而相等的线段用相同的颜色来标注。
比如:AB线段用蓝色,BC线段用红色,而和AB线段相等的CD线段用同样的蓝色,和BC相等的线段AD用同样的红色。
在分析的过程中,引导学生根据颜色来找相等的线段,而且也可以根据颜色的提示来寻找下一组相等的线段。
②对于识图有困难的学生还可以引导学生将图形进行分离。
这两个个方法有助于学生理解SAS,ASA定理中夹边和夹角的概念。
对提高学生学习几何的兴趣有一定的帮助。
4、通过本节课的教学,让我意识到在几何教学中,对于复杂图形的教学,教师应开动脑筋化难为易,化繁为简从而消除学生学习几何图形的畏难情绪,并培养学生的学习兴趣。
八年级数学上册《三角形全等的判定》教学反思

八年级数学上册《三角形全等的判定》教学反思1、八年级数学上册《三角形全等的判定》教学反思昨天对三角形全等进行复习,教学目的是:使学生能灵活运用“SSS”、“SAS”、“ASA”、“AAS”和“HL”来判定三角形全等;体会文字命题转化为数学符号语言的过程,掌握文字命题的证明。
对于本单元的知识内容,学生很容易掌握,但是,与单纯的知识内容相比,更重要的是利用这些知识内容解决问题。
因此,本课的复习就是重在证明题的分析方法上。
这一课的教学案设计是这样的,预习导学部分安排复习了定义、性质、判定方法;安排复习三角形全等的条件思路;安排复习找三角形全等的条件时经常见到的隐含条件;三个对应相等的条件不能使三角形全等的情况及其反例。
前置学习第二部分的三个选择题,有效地复习了“对应相等”、“两边夹角”、“边边角”和“角角角”不能的注意点。
又安排了两次全等的证明题,并由命题的.证明归纳文字命题:“等腰三角形底边的中点到两腰的距离相等”,为学习文字命题的证明作好了准备,也训练了学生语言表达能力。
在前置学习的基础上,我让学生上台叙述例题1的证明思路,并由两条题目的分析思路的探究体会怎样分析和总结证题时常有的合理联想,如“由垂直想互余,互余多了自有同角或等角的余角相等”、“由角平分线想折叠”等等。
接着学习例2和练习学习文字命题的证明步骤:根据题意画图形,结合图形写“已知”和“求证”,认真分析得“证明”。
这一课复习安排的内容比较多,学生思维训练很充分,证明和分析方法体会得不少,学生动手写证明的全过程偏少,文字命题的训练占全课的比重较小。
收获:利用学生主动的探究,学生对三角形判定和性质掌握比较好,而且由于学生对每一个判定和性质都进行了数学语言和符号语言的书写练习,因此提高了学生的书写能力,在习题课上大部分的学生都能写出比较完整的证明过程。
不足:1、学生识别图形的能力差、如:“ASA”与“AAS”“HL”判别不清。
2、几何证明题一直是学生的一个弱点。
人教版八年级数学上《全等三角形的性质》教学反思

《全等三角形的性质》教学反思
一、教学目标达成情况
本节课的教学目标是让学生掌握全等三角形的性质,包括全等三角形的对应边相等、对应角相等。
通过讲解、讨论和练习,学生基本掌握了这些性质,并能运用它们进行简单的推理和证明。
二、教学方法和手段
本节课采用了讲解、讨论和练习相结合的教学方法。
首先,通过回顾全等三角形的定义,引出全等三角形的性质。
然后,通过讲解和讨论,让学生了解全等三角形的性质及其应用。
最后,通过练习巩固所学知识。
三、学生表现
在课堂中,大部分学生能够积极参与讨论和练习,表现出较高的学习热情和积极性。
但也存在一些问题,如部分学生对于全等三角形的性质理解不够深入,需要进一步加强练习和指导。
四、改进措施
针对本节课存在的问题,可以采取以下措施加以改进:
1.加强学生对全等三角形性质的深入理解,可以通过更多的实例和练习加以
巩固。
2.针对学生的不同学习水平,可以设计不同难度的练习题,以满足不同层次
学生的需求。
3.加强课堂互动,鼓励学生提出问题和意见,以便更好地了解学生的学习情
况和需求。
总之,本节课的教学效果基本达到了预期目标,但也存在一些需要改进的地方。
在今后的教学中,我将继续努力,不断改进教学方法和手段,提高教学效果。
八年级数学上册第十二章全等三角形全等三角形教学反思

《全等三角形》教学反思
一、教学细节方面
1、在字体大小上,以前自己亲手制作的几何图形在字母大小的表示很小,学生看起来肯定是比较吃力;这样不利于学生对知识的阅读与理解。
2、在概念关键字上,比如能够重合的两个图形称为全等图形,全等图形的形状和大小都相等;上课的时候学生是直接给出,没有对概念的中关键词“形状”、“大小”加以强调,在课上学生是用声音重和慢来突出关键词“形状"、“大小",并追问:“判断两个图形是不是全等图形关键是看这两个图形的什么?”提高学生对知识的理解深化。
二、课后反思
1、在上全等三角形这节课中,全等指的是两个图形之间的关系,直接给出两个图形,这样学生对全等图形是指两个图形之间的关系很模糊,而逐步呈现,这样有利于学生的理解全等图形是两个图形之间的关系有了更加深刻的认识。
我认为在基本概念分析透彻上是非常有必要的。
2、拿出两个全等三角形纸片,当这两个全等三角形独立的时候,让学生找它们对应顶点、对应边、对应角;如果将两个全等的三角形摆放的位置发生变化:这时在课堂上呈现两个全等三角形摆放成“蝴蝶型”、“Z字型”等,让学生感受,进行分析;在最后增加利用全等三角形对应边相等、对应角相等练习.
3、练习部分的内容在课堂的时间上一般是后半部分,练习部
分的题目设计上我认为最好的是既能将各个练习之间内在的关系挖掘出来,给学生呈现内在的美与气质,更需要将有气质的题目以新颖的形式呈现出来,;这样能够有效调动学生各方面的感官为学习服务.就能有效地提高教学的效率。
《全等三角形》教学反思

《全等三角形》教学反思XXX全等三角形这节课上完之后,我感觉成功之处在于:1.能驾驭教材,对学生提出的问题有灵活的解决办法。
2.在小组合作研究产生争议的时候,教师能放能收,处理的到位,符合新的课堂教学理念。
3.在处理课堂练时,让学生选择自己喜欢的问题来回答,照顾了学生的个体差异,关注了学生的个性发展,真正成为学生研究的组织者、参与者、合作者、促进者。
4.建立了民主、平等、和谐的师生关系。
5.我觉得教师角色转变的重心在于使传统意义上的教师教和学生学,不断让位于师生互教互学,彼此形成一个真正的“研究共同体”。
本节课,若按老的教学路子,应先告诉学生什么叫做全等,然后让学生把全等的特征和性质背下来,最后应用全等的性质去解决实际问题,这样就完成了教学任务。
而新的课程标准则要求教师引导学生经历从具体情境中抽象出数学知识的过程,并在这个过程中与学生平等地交流和给以恰到好处的点拨。
在这点上,我处理的比较好。
6.运用当代信息手艺,实现了学生的研究方式、教师的教学方式和师生互动方式的厘革,实现当代信息手艺与学科课程的整合。
新课的引入、生活中平移征象的举例及平移在实际生活中的应用,都使用了多媒体的手段,为辅助我上好这节课,我设计了大量形象、直观的课件。
本节课缺乏之处:1.在介绍对应顶点、对应线段、对应角时破费时间较多。
2.应该多举生活中的全等实例。
通过本节课教学,使我意识到此后应注意如下几个方面:1.教学看法还要不断更新,使数学教育面向部分学生,实现——人人学有价值的数学,人人都能获得必须的数学,不同的人在数学上得到不同的开展。
2.要不断研究新的教育理论,充实自己头脑,指导新课程教学实践。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《全等三角形》教学反思
桂平市石龙民族中学吴炯
全等三角形是八年级上册数学教材第十三章第一节的教学内容。
本节课是“全等三角形”的开篇,也是进一步学习其它图形的基础之一。
通过本章的学习,可以丰富和加深学生对已学图形的认识,同时为学习其它图形知识打好基础。
因此,在教学过程中,我有意创设诱人的知识情景,增加学生的好奇心、求知欲,产生自觉学习的内在动机,不断提高学生的智慧,发挥其潜力,促进学生的智能发展。
并且从央馆资源库,下载了许多有关素材,制作成课件,利用多媒体课件辅助教学,以激发学生课堂的学习兴趣和提高学生的课堂注意力。
准备就绪,我和学生们在本学期的公开课中登台亮相。
一节课下来感触良多,现在作如下反思:
一、课件辅助,突出重点。
首先,我利用多媒体课件展示教材上的图案以及制作的一些图案,引导学生读图,激发学生兴趣,从图中去发现有形状与大小完全相同的图形。
然后我安排学生自己动手随意去做两个形状与大小相同的图形,通过动手实践,合作交流,直观感知全等形和全等三角形的概念。
其次,通过阅读法让学生找出全等形和全等三角形的概念。
然后,我随即演示一个三角形经平移,翻折,旋转后构成的两个三角形全等。
通过课件演示让学生体会对应顶点、对应边、对应角的概念,并以找朋友的形式练习指出对应顶点、对应边、对应角,加强对对应元素的熟练程度。
此时给出全等三角形的表示方法,提示对应顶点,写在对应的位置,然后再给出用全等符号表示全等三角形练习,加强对知识的巩固,再给出练习判断哪一种表示全等三角形的方法正确,通过对图形及文字语言的综合阅读,由此去理解“对应顶点写在对应的位置上”的含义。
此外,多媒体应用上,解决了以前在用重合的方法来证明两个三角形全等的时候,只是静态地呈现书本上的例题,虽然当时也用纸板进行折叠,但是现在这节课,我通过用FLASH动画,动态的呈现两个三角形重合,这种直观、形象地演示,学生们很快就弄明白了重合的方法。
二、巧妙运用,突破难点
全等三角形这一章的说理对学生的要求较高,尤其是学生根据图形和间接条件挖掘三角形全等的条件有一些困难,而且不知道究竟选用什么方法进行说理。
有一道几何题图形比较复杂,在教学的过程中,我利用课件把不同的线段用不同的颜色来标注,而相等的线段用相同的颜色来标注。
比如:AB线段用蓝色,BC线段用红色,而和AB线段相等的CD线段用同样的蓝色,和BC相等的线段AD用同样的红色。
在分析的过程中,引导学生根据颜色来找相等的线段。
在这过程中,我发现学生逐渐跟上我的思路,而且也可以根据我的提示来寻找下一组相等的线段。
此外对于识图有困难的学生还可以引导学生将图形进行分离。
这两个方法有助于学生理解SAS,ASA定理中夹边和夹角的概念。
对提高学生学习几何的兴趣有一定的帮助。
这节课,让我深刻体会到了利用远教资源辅助于课堂教学具有许多优越性,它以直观、立体、生动、形象的特点进一步激发了学生的兴趣,提高了学生的积极性。
在今后的教学中,我要加强运用远教资源来教学,不断提高课堂教学质量。
附:上课教案
全等三角形
桂平市石龙民族中学 吴 炯
教学目标
1.知道什么是全等形、全等三角形及全等三角形的对应元素;
2.知道全等三角形的性质,能用符号正确地表示两个三角形全等;
3.能熟练找出两个全等三角形的对应角、对应边.
教学重点
全等三角形的性质.
教学难点
找全等三角形的对应边、对应角. 教学过程 一.课件呈现,提出问题,创设情境
1、问题:你能发现这两个三角形有什么美妙的关系吗? C 1B 1C A B A 1
2.学生自己动手(同桌两名同学配合)
3.获取概念 让学生用自己的语言叙述:全等形、全等三角形、对应顶点、对应角、
对应边,以及有关的数学符号. 二、导入新课 1、将△ABC 沿直线BC 平移得△DEF ;将△ABC 沿BC 翻折180°得到
△DBC ;将△ABC 旋转180°得△AED . 甲D C A B F E 乙D
C A B 丙
D C A B E
议一议:各图中的两个三角形全等吗?
不难得出:△ABC ≌△DEF ,△ABC ≌△DBC ,△ABC ≌△AED . (注意强调书写时对应顶点字母写在对应的位置上)
启示:一个图形经过平移、翻折、旋转后,位置变化了,•但形状、大小都没有改变,所以平移、翻折、旋转前后的图形全等,这也是我们通过运动的方法寻求全等的一种策略.
2、观察与思考:
(课件出示两个三角形)
寻找甲图中两三角形的对应元素,它们的对应边有什么关系?对应角
呢?
(引导学生从全等三角形可以完全重合出发找等量关系)
得到全等三角形的性质:全等三角形的对应边相等. 全等三角形的对应角相等. [例1]如图(课件出示),△OCA ≌△OBD ,C 和B ,A 和D 是对应顶点,•说出这两个三角形中相等的边和角. D C A B
O
问题:△OCA ≌△OBD ,说明这两个三角形可以重合,•思考通过怎样变换可以使两三角形重合?
将△OCA 翻折可以使△OCA 与△OBD 重合.因为C 和B 、A 和D 是对应顶点,•所以C 和B 重合,A 和D 重合.
∠C=∠B ;∠A=∠D ;∠AOC=∠DOB .AC=DB ;OA=OD ;OC=OB . 总结:两个全等的三角形经过一定的转换可以重合.一般是平移、翻
转、旋转的方法.
[例2]如图(课件出示),已知△ABE ≌△ACD ,∠ADE=∠AED ,∠B=∠C ,•指出其他的对应边和对应角. D C A B E
分析:对应边和对应角只能从两个三角形中找,所以需将△ABE 和△ACD 从复杂的图形中分离出来.
根据位置元素来找:有相等元素,它们就是对应元素,•然后再依据已知的对应元素找出其余的对应元素.常用方法有:
(1)全等三角形对应角所对的边是对应边;两个对应角所夹的边也是对应边.
(2)全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角. 解:对应角为∠BAE 和∠CAD .
对应边为AB 与AC 、AE 与AD 、BE 与CD . [例3] (课件出示)已知如图△ABC ≌△ADE ,试找出对应边、对应
角.(由学生讨论完成) D C A
B E O
借鉴例2的方法,可以发现∠A=∠A ,•在两个三角形中∠A 的对边分别是BC 和DE ,所以BC 和DE 是一组对应边.而AB 与AE 显然不重合,所以AB•与AD 是一组对应边,剩下的AC 与AE 自然是一组对应边了.再根据对应边所对的角是对应角可得∠B 与∠D 是对应角,∠ACB 与∠
AED是对应角.所以说对应边为AB与AD、AC与AE、BC与DE.对应角为∠A与∠A、∠B与∠D、∠ACB与∠AED.
做法二:沿A与BC、DE交点O的连线将△ABC•翻折180°后,它正好和△ADE重合.这时就可找到对应边为:AB与AD、AC与AE、BC与DE.对应角为∠A与∠A、∠B与∠D、∠ACB与∠AED.
三.课堂练习
四.课时小结
找对应元素的常用方法有两种:(课件出示)
(一)从运动角度看
1.翻转法:找到中心线,沿中心线翻折后能相互重合,从而发现对应元素.
2.旋转法:三角形绕某一点旋转一定角度能与另一三角形重合,从而发现对应元素.
3.平移法:沿某一方向推移使两三角形重合来找对应元素.
(二)根据位置元素来推理
1.全等三角形对应角所对的边是对应边;两个对应角所夹的边是对应边.
2.全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角.
五.作业布置
六、板书设计
13.1 全等三角形
一、概念
二、全等三角形的性质
三、性质应用
例1:(运动角度看问题)
例2:(根据位置来推理)
例3:(根据位置和运动角度两种办法来推理)。