高中数学-双曲线例题

合集下载

双曲线的综合问题-高中数学复习

双曲线的综合问题-高中数学复习
9
2
是双曲线 - y 2=1上的任意一点,则| AP |=
9
( −
10

9
min=
2

5)2 +
9

− 1=
10 2
9
− 10 + 24 =
( − 5)2 + 2 =
10
( 2
9
− 9) + 24 =
9
3
9
2
) + ,所以当 x = 时,| AP |取得最小值,| AP |
2
2
2
3
=
3
100
300
x ,由൞
3
3
= ,
3
1,
可得
.
目录
PART
2
微专题 12
“三案”破解圆锥曲线中的离心率问题
目录
高中总复习·数学
离心率是圆锥曲线的一个重要元素,它的变化直接导致曲线形状
甚至是类型的变化,求圆锥曲线的离心率或范围问题是近几年高考的
热点,这类问题所涉及的知识点较多、综合性强,解法灵活,内涵丰
1
2
2
2
2
2
2
2
2
所以 b < c ,即 b < c , a - c < c , a <2 c ,所以 e > ,
2
即e>

2
,又因为0< e <1,所以椭圆离心率的取值范围为
2
2
,1).故选A.
2
目录
高中总复习·数学

目录
高中总复习·数学
解析:如图,以接报中心为原点 O ,正东、正北
方向分别为 x 轴, y 轴的正方向,建立平面直角坐标

高中数学双曲线练习题及答案

高中数学双曲线练习题及答案

高中数学双曲线练习题及答案双曲线相关知识双曲线的焦半径公式:A。

$\frac{x^2}{12}-\frac{y^2}{24}=1$B。

$\frac{y^2}{12}-\frac{x^2}{24}=1$C。

$\frac{y^2}{24}-\frac{x^2}{12}=1$D。

$\frac{x^2}{24}-\frac{y^2}{12}=1$3.设 $e_1,e_2$ 分别是双曲线 $-\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ 和 $-\frac{y^2}{a^2}+\frac{x^2}{b^2}=1$ 的离心率,则$e_1^2+e_2^2$ 与 $e_1e_2$ 的大小关系是 $1:$定义:双曲线上任意一点 $P$ 与双曲线焦点的连线段,叫做双曲线的焦半径。

2.已知双曲线标准方程 $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$点 $P(x,y)$ 在左支上PF_1│=-(e x+a)$;$│PF_2│=-(e x-a)$点 $P(x,y)$ 在右支上PF_1│=ex+a$;$│PF_2│=ex-a$运用双曲线的定义例1.若方程 $x^2\sin\alpha+y^2\cos\alpha=1$ 表示焦点在$y$ 轴上的双曲线,则角 $\alpha$ 所在象限是()A。

第一象限 B。

第二象限 C。

第三象限 D。

第四象限练1.设双曲线 $\frac{x^2}{16}-\frac{y^2}{9}=1$ 上的点$P$ 到点 $(5,0)$ 的距离为 $15$,则 $P$ 点到 $(-5,0)$ 的距离是()A。

7 B。

23 C。

5 或 23 D。

7 或 232.已知双曲线的两个焦点是椭圆$\frac{x^2}{10}+\frac{5y^2}{32}=1$ 的两个顶点,双曲线的两条准线分别通过椭圆的两个焦点,则此双曲线的方程是()。

A。

$\frac{x^2}{6}-\frac{y^2}{4}=1$ B。

高中数学-直线与双曲线的位置关系练习

高中数学-直线与双曲线的位置关系练习

高中数学-直线与双曲线的位置关系练习基础达标(水平一 )1.已知直线l过点(,0),且与双曲线x2-y2=2仅有一个公共点,则这样的直线有().A.1条B.2条C.3条D.4条【解析】点(,0)即为双曲线的右顶点,过该点的直线有2条与双曲线渐近线平行且与双曲线仅有一个公共点,另过该点且与x轴垂直的直线也与双曲线只有一个公共点,故这样的直线只有3条.【答案】C2.已知双曲线C:-=1的一条渐近线方程为2x+3y=0,F1、F2分别是双曲线C的左、右焦点,点P在双曲线C上,且|PF1|=2,则|PF2|等于().A.4B.6C.8D.10【解析】依题意,有=,所以a=3,因为|PF1|=2,所以点P在双曲线的左支上,所以|PF2|-|PF1|=2a,解得|PF2|=8,故选C.【答案】C3.已知点P(3,-4)是双曲线-=1(a>0,b>0)渐近线上的一点,E,F是左、右两个焦点,若·=0,则双曲线的方程为().A.-=1B.-=1C.-=1D.-=1【解析】由题意知,点E(-c,0),F(c,0),则·=(3+c,-4)·(3-c,-4)=9-c2+16=0,所以c2=25.可排除A,B选项.又D选项中双曲线的渐近线方程为y=±x,点P不在渐近线上,排除D选项,故C正确.【答案】C4.若直线y=kx+2与双曲线x2-y2=6的右支交于不同的两点,则k的取值范围是().A.B.C.D.【解析】由得(1-k2)x2-4kx-10=0.由题意得解得-<k<-1.【答案】D5.过双曲线-=1(a>0)右焦点F作一条直线,当直线斜率为2时,直线与双曲线左、右两支各有一个交点;当直线斜率为3时,直线与双曲线右支有两个不同交点.则双曲线离心率的取值范围为.【解析】由题意可知从而4<<9,所以e=∈(,).【答案】(,)6.已知F为双曲线-=1(a>0,b>0)的左焦点,定点A为双曲线虚轴的一个端点,过F,A两点的直线与双曲线的一条渐近线在y轴右侧的交点为B,若=3,则此双曲线的离心率为.【解析】因为F为双曲线-=1(a>0,b>0)的左焦点,定点A为双曲线虚轴的一个端点, 所以可设点F(-c,0),A(0,b),B(x B,y B),直线AF:y=x+b.由题意知,直线AF与渐近线y=x相交.联立两直线消去x,得y B=.由=3,得y B=4b,所以=4b,解得离心率e=.【答案】7.从双曲线x2-y2=1上一点Q作直线x+y=2的垂线,垂足为N,求线段QN的中点P的轨迹方程.【解析】设点P(x,y),Q(x0,y0),则点N(2x-x0,2y-y0),代入x+y=2,得2x-x0+2y-y0=2. ①因为PQ垂直于直线x+y=2,所以=1,即x-y-x0+y0=0. ②由①②得x0=x+y-1,y0=x+y-1.由点Q(x0,y0)在双曲线x2-y2=1上,代入双曲线方程,得点P的轨迹方程为2x2-2y2-2x+2y=1.拓展提升(水平二)8.已知双曲线-=1(a>0,b>0),若存在过右焦点F的直线与双曲线交于A,B两点,且=3,则该双曲线离心率的最小值为().A.B.C.2 D.2【解析】因为过右焦点的直线与双曲线C相交于A,B两点,且=3,所以直线与双曲线相交只能交于左、右两支,即A在左支,B在右支.设点A(x1,y1),B(x2,y2),右焦点F(c,0),因为=3,所以c-x1=3(c-x2),即3x2-x1=2c.因为x1≤-a,x2≥a,所以-x1≥a,3x2≥3a,所以3x2-x1≥4a,即2c≥4a,≥2,即e≥2,故选C.【答案】C9.已知双曲线-=1上存在两点P,Q关于直线y=x+b对称,且PQ的中点M在直线2x+y-2=0上,则实数b的值为().A.-10B.-8C.-2D.2【解析】因为点P,Q关于直线y=x+b对称,所以线段PQ的垂直平分线的方程为y=x+b,所以直线PQ的斜率为-1.设直线PQ的方程为y=-x+m,令点P(x P,y P),Q(x Q,y Q),M(x M,y M),由得x2+4mx-2m2-6=0,所以x P+x Q=-4m,所以x M=-2m,所以点M(-2m,3m).又因为PQ的中点M在直线2x+y-2=0上,所以-4m+3m-2=0,解得m=-2,由PQ的中点M也在直线y=x+b上,得b=5m,所以b=-10,故选A.【答案】A10.连接双曲线-=1和-=1(其中a>0,b>0)的四个顶点的四边形的面积为S1,连接四个焦点的四边形的面积为S2,则当的值最大时,双曲线-=1的离心率为.【解析】由题意可知S1=×2a×2b=2ab,S2=×2c×2c=2c2,∴===≤,当且仅当=,即a2=b2=c2-a2时等号成立,此时双曲线-=1的离心率为e==.【答案】11.直线l:y=kx+1与双曲线C:2x2-y2=1的右支交于不同的两点A,B.(1)求实数k的取值范围.(2)是否存在实数k,使得以线段AB为直径的圆经过双曲线C的右焦点F?若存在,求出k的值;若不存在,说明理由.【解析】(1)将直线l的方程y=kx+1代入双曲线C的方程2x2-y2=1后,整理得(k2-2)x2+2kx+2=0. ①依题意,直线l与双曲线C的右支交于不同两点,故解得-2<k<-.(2)设A,B两点的坐标分别为(x1,y1),(x2,y2),则由①式得②假设存在实数k,使得以线段AB为直径的圆经过双曲线C的右焦点F(c,0).则由FA⊥FB,得(x1-c)(x2-c)+y1y2=0,即(x1-c)(x2-c)+(kx1+1)(kx2+1)=0.整理得(k2+1)x1x2+(k-c)(x1+x2)+c2+1=0. ③把②式及c=代入③式,化简得5k2+2k-6=0,解得k=-或k=(舍去).可知当k=-时使得以线段AB为直径的圆经过双曲线C的右焦点F.。

高中数学(学生+老师)高考总复习双曲线习题及详解

高中数学(学生+老师)高考总复习双曲线习题及详解

高中数学高考总复习双曲线习题及详解(教师)一、选择题1.(文)(2010·山东潍坊)已知焦点在y轴上的双曲线的渐近线方程是y=±4x,则该双曲线的离心率是()A.17B.15C.174 D.154[答案] C[解析]设双曲线方程为y2a2-x2b2=1,则由题意得,ab=4,∴a2c2-a2=16,∴e=174.(理)(2010·河北唐山)过双曲线x2a2-y2b2=1的一个焦点F作一条渐近线的垂线,若垂足恰在线段OF(O为原点)的垂直平分线上,则双曲线的离心率为()A.2 B. 5C. 2D. 3[答案] C[解析]如图,FM⊥l,垂足为M,∵M在OF的中垂线上,∴△OFM为等腰直角三角形,∴∠MOF=45°,即ba=1,∴e= 2.2.(2010·全国Ⅰ文)已知F1、F2为双曲线C x2-y2=1的左、右焦点,点P在C上,∠F1PF2=60°,则|PF1|·|PF2|=()A.2B.4C.6D.8[答案] B[解析]在△F1PF2中,由余弦定理cos60°=|PF1|2+|PF2|2-|F1F2|2 2|PF1|·|PF2|=(|PF 1|-|PF 2|)2-|F 1F 2|2+2|PF 1|·|PF 2|2|PF 1|·|PF 2|=4a 2-4c 22|PF 1||PF 2|+1=-2b 2|PF 1|·|PF 2|+1, ∵b =1,∴|PF 1|·|PF 2|=4.3.(文)(2010·合肥市)中心在原点,对称轴为坐标轴的双曲线C 的两条渐近线与圆(x -2)2+y 2=1都相切,则双曲线C 的离心率是( )A.233或2B .2或 3 C.3或62D.233或62[答案] A[解析] 焦点在x 轴上时,由条件知b a =13,∴c 2-a 2a 2=13,∴e =c a =233,同理,焦点在y 轴上时,ba=3,此时e =2.(理)已知F 1、F 2是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两个焦点,以线段F 1F 2为边作正△MF 1F 2,若边MF 1的中点在双曲线上,则双曲线的离心率为( )A .4+2 3 B.3-1 C.3+12D.3+1[答案] D[解析] 设线段MF 1的中点为P ,由已知△F 1PF 2为有一锐角为60°的直角三角形, ∴|PF 1|、|PF 2|的长度分别为c 和3c . 由双曲线的定义知:(3-1)c =2a , ∴e =23-1=3+1. 4.已知椭圆x 23m 2+y 25n 2=1和双曲线x 22m 2-y 23n 2=1有公共的焦点,那么双曲线的渐近线方程为( )A .x =±152y B .y =±152x C .x =±34yD .y =±34x[答案] D[解析] 由题意c 2=3m 2-5n 2=2m 2+3n 2, ∴m 2=8n 2,∴双曲线渐近线的斜率k =±3|n |2|m |=±34.方程为y =±34x .5.(文)(2010·湖南师大附中模拟)已知双曲线x 2m -y 27=1,直线l 过其左焦点F 1,交双曲线左支于A 、B 两点,且|AB |=4,F 2为双曲线的右焦点,△ABF 2的周长为20,则m 的值为( )A .8B .9C .16D .20[答案] B[解析] 由已知,|AB |+|AF 2|+|BF 2|=20,又|AB |=4,则|AF 2|+|BF 2|=16.据双曲线定义,2a =|AF 2|-|AF 1|=|BF 2|-|BF 1|,所以4a =|AF 2|+|BF 2|-(|AF 1|+|BF 1|)=16-4=12,即a =3,所以m =a 2=9,故选B.(理)(2010·辽宁锦州)△ABC 中,A 为动点,B 、C 为定点,B ⎝⎛⎭⎫-m 2,0,C ⎝⎛⎭⎫m2,0(其中m >0,且m 为常数),且满足条件sin C -sin B =12sin A ,则动点A 的轨迹方程为( )A.16y 2m 2-16x 23m2=1B.x 216-y 2163=1 C.16x 2m 2-16y 23m 2=1(x >m4)D.16x 2m 2-16y 23m2=1 [答案] C[解析] 依据正弦定理得:|AB |-|AC |=12|BC |=m2<|BC |∴点A 的轨迹是以B 、C 为焦点的双曲线的右支,且a =m 4,c =m 2,∴b 2=c 2-a 2=3m 216∴双曲线方程为16x 2m 2-16y 23m 2=1(x >m4)6.设双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两焦点为F 1、F 2,点Q 为双曲线左支上除顶点外的任一点,过F 1作∠F 1QF 2的平分线的垂线,垂足为P ,则点P 的轨迹是( )A .椭圆的一部分B .双曲线的一部分C .抛物线的一部分D .圆的一部分[答案] D[解析] 延长F 1P 交QF 2于R ,则|QF 1|=|QR |. ∵|QF 2|-|QF 1|=2a ,∴|QF 2|-|QR |=2a =|RF 2|,又|OP |=12|RF 2|,∴|OP |=a .7.(文)(2010·温州市十校)已知点F 是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点,点E 是该双曲线的右顶点,过F 且垂直于x 轴的直线与双曲线交于A 、B 两点,若△ABE 是锐角三角形,则该双曲线的离心率e 的取值范围是( )A .(1,+∞)B .(1,2)C .(1,1+2)D .(2,1+2)[答案] B[解析] 由题意易知点F 的坐标为(-c,0),A ⎝⎛⎭⎫-c ,b 2a ,B ⎝⎛⎭⎫-c ,-b2a ,E (a,0),因为△ABE 是锐角三角形,所以EA →·EB →>0,即EA →·EB →=⎝⎛⎭⎫-c -a ,b 2a ·⎝⎛⎭⎫-c -a ,-b 2a >0,整理得3e 2+2e >e 4,∴e (e 3-3e -3+1)<0,∴e (e +1)2(e -2)<0,解得e ∈(0,2),又e >1,∴e ∈(1,2),故选B.(理)(2010·浙江杭州质检)过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点F 引它的渐近线的垂线,垂足为M ,延长FM 交y 轴于E ,若FM =ME ,则该双曲线的离心率为( )A .3B .2 C. 3D. 2[答案] D[解析] 由条件知l :y =b a x 是线段FE 的垂直平分线,∴|OE |=|OF |=c ,又|FM |=|bc |a 2+b 2=b ,∴在Rt △OEF 中,2c 2=4b 2=4(c 2-a 2), ∵e =ca>1,∴e = 2.8.若直线y =kx +2与双曲线x 2-y 2=6的右支交于不同的两点,则k 的取值范围是( ) A.⎝⎛⎭⎫-153,153 B.⎝⎛⎭⎫0,153 C.⎝⎛⎭⎫-153,0D.⎝⎛⎭⎫-153,-1[答案] D[解析] 直线与双曲线右支相切时,k =-153,直线y =kx +2过定点(0,2),当k =-1时,直线与双曲线渐近线平行,顺时针旋转直线y =-x +2时,直线与双曲线右支有两个交点,∴-153<k <-1. 9.(文)(2010·福建理)若点O 和点F (-2,0)分别为双曲线x 2a 2-y 2=1(a >0)的中心和左焦点,点P 为双曲线右支上的任意一点,则OP →·FP →的取值范围为( )A .[3-23,+∞)B .[3+23,+∞)C .[-74,+∞)D .[74,+∞)[答案] B[解析] 由条件知a 2+1=22=4,∴a 2=3, ∴双曲线方程为x 23-y 2=1.设P 点坐标为(x ,y ),则OP →=(x ,y ),FP →=(x +2,y ), ∵y 2=x 23-1,∴OP →·FP →=x 2+2x +y 2 =x 2+2x +x 23-1=43x 2+2x -1 =43(x +34)2-74. 又∵x ≥3(P 为右支上任意一点) ∴OP →·FP →≥3+2 3.故选B.(理)(2010·新课标全国理)已知双曲线E 的中心为原点,F (3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为N (-12,-15),则E 的方程为( )A.x 23-y 26=1 B.x 24-y 25=1 C.x 26-y 23=1D.x 25-y 24=1 [答案] B[解析] 设双曲线的方程为x 2a 2-y 2b2=1(a >0,b >0),由题意知c =3,a 2+b 2=9,设A (x 1,y 1),B (x 2,y 2)则有:⎩⎨⎧x 12a 2-y 12b 2=1x 22a 2-y22b 2=1,两式作差得:y 1-y 2x 1-x 2=b 2(x 1+x 2)a 2(y 1+y 2)=4b 25a 2,∵k AB =y 1-y 2x 1-x 2,且k AB =-15-0-12-3=1,所以4b 2=5a 2代入a 2+b 2=9得a 2=4,b 2=5,所以双曲线标准方程是x 24-y 25=1,故选B. 10.(文)过椭圆x 2a 2+y 2b 2=1(a >b >0)的焦点垂直于x 轴的弦长为12a ,则双曲线x 2a 2-y 2b 2=1的离心率e 的值是( )A.54 B.52 C.32D.54[答案] B[解析] 将x =c 代入椭圆方程得,c 2a 2+y 2b 2=1,∴y 2=⎝⎛⎭⎫1-c 2a 2×b 2=a 2-c 2a 2×b 2=b 2a 2×b 2,∴y =±b 2a. ∴b 2a =14a ,∴b 2=14a 2,e 2=c 2a 2=a2+14a 2a 2=54, ∴e =52,故选B. (理)(2010·福建宁德一中)已知抛物线x 2=2py (p >0)的焦点F 恰好是双曲线y 2a 2-x 2b 2=1的一个焦点,且两条曲线交点的连线过点F ,则该双曲线的离心率为( )A. 2B .1±2C .1+ 2D .无法确定[答案] C[解析] 由题意知p2=c ,根据圆锥曲线图象的对称性,两条曲线交点的连线垂直于y 轴,对双曲线来说,这两个交点连线的长度是2b 2a ,对抛物线来说,这两个交点连线的长度是2p ,∵p =2c ,2b 2a=4c ,∴b 2=2ac ,∴c 2-a 2=2ac ,∴e 2-2e -1=0,解得e =1±2, ∵e >1,∴e =1+ 2. 二、填空题11.(文)(2010·广东实验中学)已知P 是双曲线x 2a 2-y 29=1右支上的一点,双曲线的一条渐近线的方程为3x -y =0.设F 1、F 2分别为双曲线的左、右焦点.若|PF 2|=3,则|PF 1|=________.[答案] 5[解析] 由双曲线的一条渐近线的方程为3x -y =0且b =3可得:a =1,由双曲线的定义知|PF 1|-|PF 2|=2a ,∴|PF 1|-3=2,∴|PF 1|=5.(理)(2010·东营质检)已知双曲线x 29-y 2a =1的右焦点为(13,0),则该双曲线的渐近线方程为________.[答案] y =±23x[解析] 由题意知9+a =13,∴a =4,故双曲线的实半轴长为a ′=3,虚半轴长b ′=2, 从而渐近线方程为y =±23x .12.(2010·惠州市模考)已知双曲线x 2a 2-y 2=1(a >0)的右焦点与抛物线y 2=8x 焦点重合,则此双曲线的渐近线方程是________.[答案] y =±33x[解析] y 2=8x 焦点是(2,0), ∴双曲线x 2a 2-y 2=1的半焦距c =2,又虚半轴b =1,又a >0,∴a =22-12=3, ∴双曲线渐近线的方程是y =±33x .13.(2010·北京东城区)若双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两个焦点为F 1,F 2,P 为双曲线上一点,且|PF 1|=3|PF 2|,则该双曲线离心率的取值范围是________.[答案] 1<e ≤2[解析] 由题意⎩⎪⎨⎪⎧|PF 1|-|PF 2|=2a|PF 1|=3|PF 2|,∴⎩⎪⎨⎪⎧|PF 1|=3a |PF 2|=a , ∵|PF 1|≥|AF 1|,∴3a ≥a +c , ∴e =ca ≤2,∴1<e ≤2.14.下列有四个命题:①若m 是集合{1,2,3,4,5}中任取的一个值,中心在原点,焦点在x 轴上的双曲线的一条渐近线方程为mx -y =0,则双曲线的离心率小于4的概率为35.②若双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =3x ,且其一个焦点与抛物线y 2=8x 的焦点重合,则双曲线的离心率为2;③将函数y =cos2x 的图象向右平移π6个单位,可以得到函数y =sin ⎝⎛⎭⎫2x -π6的图象; ④在Rt △ABC 中,AC ⊥BC ,AC =a ,BC =b ,则△ABC 的外接圆半径r =a 2+b 22;类比到空间,若三棱锥S -ABC 的三条侧棱SA 、SB 、SC 两两互相垂直,且长度分别为a 、b 、c ,则三棱锥S -ABC 的外接球的半径R =a 2+b 2+c 22.其中真命题的序号为________.(把你认为是真命题的序号都填上) [答案] ①②④[解析] ①设双曲线方程为m 2x 2-y 2=1, ∵a 2=1m 2,b 2=1,c 2=a 2+b 2=m 2+1m2 ∴e =ca =m 2+1<4,∴m <15∴m 取值1、2、3故所求概率为35,故①正确.②根据双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =3x ,可得ba =3,因此离心率e =ca =a 2+b 2a =a 2+(3a )2a=2,②正确;③函数y =cos2x 的图象向右平移π6个单位得y =cos2(x -π6)=cos(2x -π3)=sin[π2+(2x -π3)]=sin(2x +π6)的图象,③错误;④将三棱锥S -ABC 补成如图的长方体,可知三棱锥S -ABC 外接球的直径就等于该长方体的体对角线的长,则R =a 2+b 2+c 22,④正确.三、解答题15.(文)已知双曲线的中心在原点,离心率为2,一个焦点F (-2,0) (1)求双曲线方程;(2)设Q 是双曲线上一点,且过点F 、Q 的直线l 与y 轴交于点M ,若|MQ →|=2|QF →|,求直线l 的方程.[解析] (1)由题意可设所求的双曲线方程为 x 2a 2-y 2b 2=1(a >0,b >0) 则有e =ca =2,c =2,∴a =1,则b = 3∴所求的双曲线方程为x 2-y 23=1. (2)∵直线l 与y 轴相交于M 且过焦点F (-2,0) ∴l 的斜率k 一定存在,设为k ,则l :y =k (x +2) 令x =0得M (0,2k )∵|MQ →|=2|QF →|且M 、Q 、F 共线于l ∴MQ →=2QF →或MQ →=-2QF → 当MQ →=2QF →时,x Q =-43,y Q =23k∴Q ⎝⎛⎭⎫-43,23k , ∵Q 在双曲线x 2-y 23=1上, ∴169-4k 227=1,∴k =±212, 当MQ →=-2QF →时,同理求得Q (-4,-2k )代入双曲线方程得, 16-4k 23=1,∴k =±32 5则所求的直线l 的方程为: y =±212(x +2)或y =±352(x +2) (理)(2010·湖南湘潭市)已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为(3,0). (1)求双曲线C 的方程;(2)若直线l :y =kx +2与双曲线C 恒有两个不同的交点A 和B ,且OA →·OB →>2(其中O 为原点),求k 的取值范围.[解析] (1)设双曲线x 2a 2-y 2b2=1,由已知得a =3,c =2,再由a 2+b 2=22得,b 2=1, 故双曲线C 的方程为x 23-y 2=1.(2)将y =kx +2代入x 23-y 2=1中得,(1-3k 2)x 2-62kx -9=0.由直线l 与双曲线交于不同的两点得⎩⎨⎧1-3k 2≠0Δ=(62k )2+36(1-3k 2)=36(1-k 2)>0, ∴k 2≠13且k 2<1①设A (x A ,y A ),B (x B ,y B ), 则x A +x B =62k1-3k 2,x A x B =-91-3k 2由OA →·OB →>2得,x A x B +y A y B >2, x A x B +y A y B =x A x B +(kx A +2)(kx B +2) =(k 2+1)x A x B +2k (x A +x B )+2 =(k 2+1)·-91-3k 2+2k ·62k1-3k 2+2=3k 2+73k 2-1于是3k 2+73k 2-1>2,即-3k 2+93k 2-1>0,解此不等式得13<k 2<3②由①②得13<k 2<1,∴33<k <1或-1<k <-33.故k 的取值范围为⎝⎛⎭⎫-1,-33∪⎝⎛⎭⎫33,1. 16.(2010·江苏苏州模拟)已知二次曲线C k 的方程:x 29-k +y 24-k =1.(1)分别求出方程表示椭圆和双曲线的条件;(2)若双曲线C k 与直线y =x +1有公共点且实轴最长,求双曲线方程;(3)m 、n 为正整数,且m <n ,是否存在两条曲线C m 、C n ,其交点P 与点F 1(-5,0),F 2(5,0)满足PF 1→·PF 2→=0?若存在,求m 、n 的值;若不存在,说明理由.[解析] (1)当且仅当⎩⎪⎨⎪⎧9-k >04-k >0,即k <4时,方程表示椭圆.当且仅当(9-k )(4-k )<0,即4<k <9时,方程表示双曲线. (2)解法一:由⎩⎪⎨⎪⎧y =x +1x 29-k +y 24-k =1化简得, (13-2k )x 2+2(9-k )x +(9-k )(k -3)=0 ∵Δ≥0,∴k ≥6或k ≤4(舍)∵双曲线实轴最长,∴k 取最小值6时,9-k 最大即双曲线实轴最长, 此时双曲线方程为x 23-y 22=1.解法二:若C k 表示双曲线,则k ∈(4,9),不妨设双曲线方程为x 2a 2-y 25-a 2=1,联立⎩⎪⎨⎪⎧y =x +1x 2a 2-y 25-a 2=1消去y 得, (5-2a 2)x 2-2a 2x -6a 2+a 4=0 ∵C k 与直线y =x +1有公共点, ∴Δ=4a 4-4(5-2a 2)(a 4-6a 2)≥0, 即a 4-8a 2+15≥0,∴a 2≤3或a 2≥5(舍), ∴实轴最长的双曲线方程为x 23-y 22=1.解法三:双曲线x 29-k +y 24-k =1中c 2=(9-k )+(k -4)=5,∴c =5,∴F 1(-5,0),不妨先求得F 1(-5,0)关于直线y =x +1的对称点F (-1,1-5),设直线与双曲线左支交点为M ,则 2a =|MF 2|-|MF 1|=|MF 2|-|MF |≤|FF 2| =(-1-5)2+(1-5)2=2 3∴a ≤3,∴实轴最长的双曲线方程为x 23-y 22=1.(3)由(1)知C 1、C 2、C 3是椭圆,C 5、C 6、C 7、C 8是双曲线,结合图象的几何性质,任意两椭圆之间无公共点,任意两双曲线之间也无公共点设|PF 1|=d 1,|PF 2|=d 2,m ∈{1,2,3},n ∈{5,6,7,8}则根据椭圆、双曲线定义及PF 1→·PF 2→=0(即PF 1⊥PF 2),应有⎩⎨⎧d 1+d 2=29-m |d 1-d 2|=29-n d 12+d 22=20,所以m +n =8.所以这样的C m 、C n 存在,且⎩⎪⎨⎪⎧ m =1n =7或⎩⎪⎨⎪⎧ m =2n =6或⎩⎪⎨⎪⎧m =3n =5.17.(文)(2010·全国Ⅱ文)已知斜率为1的直线l 与双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)相交于B 、D 两点,且BD 的中点为M (1,3).(1)求C 的离心率;(2)设C 的右顶点为A ,右焦点为F ,|DF |·|BF |=17,证明:过A 、B 、D 三点的圆与x 轴相切.[解析] (1)由题意知,l 的方程为:y =x +2, 代入C 的方程并化简得, (b 2-a 2)x 2-4a 2x -4a 2-a 2b 2=0 设B (x 1,y 1),D (x 2,y 2),则x 1+x 2=4a 2b 2-a 2,x 1·x 2=-4a 2+a 2b 2b 2-a2①由M (1,3)为BD 的中点知x 1+x 22=1,故12×4a 2b 2-a 2=1即b 2=3a 2② 故c =a 2+b 2=2a , ∴C 的离心率e =ca=2.(2)由②知,C 的方程为3x 2-y 2=3a 2,A (a,0),F (2a,0),x 1+x 2=2,x 1·x 2=-4+3a 22<0,故不妨设x 1≤-a ,x 2≥a ,|BF |=(x 1-2a )2+y 12=(x 1-2a )2+3x 12-3a 2=a -2x 1, |FD |=(x 2-2a )2+y 22=(x 2-2a )2+3x 22-3a 2=2x 2-a ,|BF |·|FD |=(a -2x 1)(2x 2-a )=-4x 1x 2+2a (x 1+x 2)-a 2=5a 2+4a +8. 又|BF |·|FD |=17,故5a 2+4a +8=17, 解得a =1,或a =-95.故|BD |=2|x 1-x 2|=2(x 1+x 2)2-4x 1·x 2=6 连结MA ,则由A (1,0),M (1,3)知|MA |=3, 从而MA =MB =MD ,∠DAB =90°,因此以M 为圆心,MA 为半径的圆过A 、B 、D 三点,且在点A 处与x 轴相切, 所以过A 、B 、D 三点的圆与x 轴相切.(理)(2010·广东理)已知双曲线x 22-y 2=1的左、右顶点分别为A 1,A 2,点P (x 1,y 1),Q (x 1,-y 1)是双曲线上不同的两个动点.(1)求直线A 1P 与A 2Q 交点的轨迹E 的方程;(2)若过点H (0,h )(h >1)的两条直线l 1和l 2与轨迹E 都只有一个交点,且l 1⊥l 2.求h 的值. [分析] (1)由条件写出直线A 1P 与A 2Q 的方程,两式相乘后消去x 1,y 1得交点E 的方程;(2)l 1,l 2与E 只有一个交点,写出l 1与l 2的方程与曲线E 的方程联立,运用Δ=0求解. [解析] (1)由条件知|x 1|>2,∵A 1、A 2为双曲线的左、右顶点∴,A 1(-2,0),A 2(2,0).A 1P y =y 1-0x 1+2(x +2),A 2Q y =-y 1-0x 1-2(x -2),两式相乘得y 2=-y 12x 12-2(x 2-2),① 而点P (x 1,y 1)在双曲线上,所以x 122-y 12=1,即y 12x 12-2=12,代入①式,整理得, x 22+y 2=1. ∵|x 1|>2,∴点A 1(-2,0),A 2(2,0)均不在轨迹E 上,又双曲线的渐近线方程为y =±22x ,故过点(0,1)和A 2(2,0)的直线与双曲线仅有一个交点A 2(2,0),故点(0,1)不在轨迹E 上,同理点(0,-1)也不在轨迹E 上,∴轨迹E 的方程为x 22+y 2=1(x ≠±2,且x ≠0).(2)设l 1y =kx +h ,则由l 1⊥l 2知,l 2y =-1kx +h .将l 1y =kx +h 代入x 22+y 2=1得x 22+(kx +h )2=1,即(1+2k 2)x 2+4khx +2h 2-2=0, 由l 1与E 只有一个交点知,Δ=16k 2h 2-4(1+2k 2)(2h 2-2)=0, ∴1+2k 2=h 2.同理,由l 2与E 只有一个交点知,1+2·1k 2=h 2,消去h 2得1k2=k 2,即k 2=1,从而h 2=1+2k 2=3,即h = 3.又分别过A 1、A 2且互相垂直的直线与y 轴正半轴交于点(0,2),∴h =2符合题意,综上知h =2或 3.高中数学高考总复习双曲线习题(学生)一、选择题1.(文)(2010·山东潍坊)已知焦点在y 轴上的双曲线的渐近线方程是y =±4x ,则该双曲线的离心率是 ( )A.17B.15C.174D.154(理)(2010·河北唐山)过双曲线x 2a 2-y 2b 2=1的一个焦点F 作一条渐近线的垂线,若垂足恰在线段OF (O 为原点)的垂直平分线上,则双曲线的离心率为( )A .2 B. 5 C. 2D. 32.(2010·全国Ⅰ文)已知F 1、F 2为双曲线C x 2-y 2=1的左、右焦点,点P 在C 上,∠F 1PF 2=60°,则|PF 1|·|PF 2|=( )A .2B .4C .6D .83.(文)(2010·合肥市)中心在原点,对称轴为坐标轴的双曲线C 的两条渐近线与圆(x -2)2+y 2=1都相切,则双曲线C 的离心率是( )A.233或2B .2或 3C.3或62D.233或62(理)已知F 1、F 2是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两个焦点,以线段F 1F 2为边作正△MF 1F 2,若边MF 1的中点在双曲线上,则双曲线的离心率为( )A .4+2 3 B.3-1 C.3+12D.3+14.已知椭圆x 23m 2+y 25n 2=1和双曲线x 22m 2-y 23n 2=1有公共的焦点,那么双曲线的渐近线方程为( )A .x =±152y B .y =±152x C .x =±34yD .y =±34x5.(文)(2010·湖南师大附中模拟)已知双曲线x 2m -y 27=1,直线l 过其左焦点F 1,交双曲线左支于A 、B 两点,且|AB |=4,F 2为双曲线的右焦点,△ABF 2的周长为20,则m 的值为( )A .8B .9C .16D .20(理)(2010·辽宁锦州)△ABC 中,A 为动点,B 、C 为定点,B ⎝⎛⎭⎫-m 2,0,C ⎝⎛⎭⎫m2,0(其中m >0,且m 为常数),且满足条件sin C -sin B =12sin A ,则动点A 的轨迹方程为( )A.16y 2m 2-16x 23m2=1B.x 216-y 2163=1 C.16x 2m 2-16y 23m 2=1(x >m4)D.16x 2m 2-16y 23m2=1 6.设双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两焦点为F 1、F 2,点Q 为双曲线左支上除顶点外的任一点,过F 1作∠F 1QF 2的平分线的垂线,垂足为P ,则点P 的轨迹是( )A .椭圆的一部分B .双曲线的一部分C .抛物线的一部分D .圆的一部分7.(文)(2010·温州市十校)已知点F 是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点,点E 是该双曲线的右顶点,过F 且垂直于x 轴的直线与双曲线交于A 、B 两点,若△ABE 是锐角三角形,则该双曲线的离心率e 的取值范围是( )A .(1,+∞)B .(1,2)C .(1,1+2)D .(2,1+2)(理)(2010·浙江杭州质检)过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点F 引它的渐近线的垂线,垂足为M ,延长FM 交y 轴于E ,若FM =ME ,则该双曲线的离心率为( )A .3B .2 C. 3D. 28.若直线y =kx +2与双曲线x 2-y 2=6的右支交于不同的两点,则k 的取值范围是( ) A.⎝⎛⎭⎫-153,153 B.⎝⎛⎭⎫0,153 C.⎝⎛⎭⎫-153,0D.⎝⎛⎭⎫-153,-1 9.(文)(2010·福建理)若点O 和点F (-2,0)分别为双曲线x 2a 2-y 2=1(a >0)的中心和左焦点,点P 为双曲线右支上的任意一点,则OP →·FP →的取值范围为( )A .[3-23,+∞)B .[3+23,+∞)C .[-74,+∞)D .[74,+∞)(理)(2010·新课标全国理)已知双曲线E 的中心为原点,F (3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为N (-12,-15),则E 的方程为( )A.x 23-y 26=1 B.x 24-y 25=1 C.x 26-y 23=1D.x 25-y 24=1 10.(文)过椭圆x 2a 2+y 2b 2=1(a >b >0)的焦点垂直于x 轴的弦长为12a ,则双曲线x 2a 2-y 2b 2=1的离心率e 的值是( )A.54 B.52 C.32D.54(理)(2010·福建宁德一中)已知抛物线x 2=2py (p >0)的焦点F 恰好是双曲线y 2a 2-x 2b 2=1的一个焦点,且两条曲线交点的连线过点F ,则该双曲线的离心率为( )A. 2B .1±2C .1+ 2D .无法确定二、填空题11.(文)(2010·广东实验中学)已知P 是双曲线x 2a 2-y 29=1右支上的一点,双曲线的一条渐近线的方程为3x -y =0.设F 1、F 2分别为双曲线的左、右焦点.若|PF 2|=3,则|PF 1|=________.(理)(2010·东营质检)已知双曲线x 29-y 2a =1的右焦点为(13,0),则该双曲线的渐近线方程为________.12.(2010·惠州市模考)已知双曲线x 2a 2-y 2=1(a >0)的右焦点与抛物线y 2=8x 焦点重合,则此双曲线的渐近线方程是________.13.(2010·北京东城区)若双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两个焦点为F 1,F 2,P 为双曲线上一点,且|PF 1|=3|PF 2|,则该双曲线离心率的取值范围是________.14.下列有四个命题:①若m 是集合{1,2,3,4,5}中任取的一个值,中心在原点,焦点在x 轴上的双曲线的一条渐近线方程为mx -y =0,则双曲线的离心率小于4的概率为35.②若双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =3x ,且其一个焦点与抛物线y 2=8x 的焦点重合,则双曲线的离心率为2;③将函数y =cos2x 的图象向右平移π6个单位,可以得到函数y =sin ⎝⎛⎭⎫2x -π6的图象; ④在Rt △ABC 中,AC ⊥BC ,AC =a ,BC =b ,则△ABC 的外接圆半径r =a 2+b 22;类比到空间,若三棱锥S -ABC 的三条侧棱SA 、SB 、SC 两两互相垂直,且长度分别为a 、b 、c ,则三棱锥S -ABC 的外接球的半径R =a 2+b 2+c 22.其中真命题的序号为________.(把你认为是真命题的序号都填上) 三、解答题15.(文)已知双曲线的中心在原点,离心率为2,一个焦点F (-2,0) (1)求双曲线方程;(2)设Q 是双曲线上一点,且过点F 、Q 的直线l 与y 轴交于点M ,若|MQ →|=2|QF →|,求直线l 的方程.(理)(2010·湖南湘潭市)已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为(3,0). (1)求双曲线C 的方程;(2)若直线l :y =kx +2与双曲线C 恒有两个不同的交点A 和B ,且OA →·OB →>2(其中O 为原点),求k 的取值范围.16.(2010·江苏苏州模拟)已知二次曲线C k 的方程:x 29-k +y 24-k =1.(1)分别求出方程表示椭圆和双曲线的条件;(2)若双曲线C k 与直线y =x +1有公共点且实轴最长,求双曲线方程;(3)m 、n 为正整数,且m <n ,是否存在两条曲线C m 、C n ,其交点P 与点F 1(-5,0),F 2(5,0)满足PF 1→·PF 2→=0?若存在,求m 、n 的值;若不存在,说明理由.17.(文)(2010·全国Ⅱ文)已知斜率为1的直线l 与双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)相交于B 、D 两点,且BD 的中点为M (1,3).(1)求C 的离心率;(2)设C 的右顶点为A ,右焦点为F ,|DF |·|BF |=17,证明:过A 、B 、D 三点的圆与x轴相切.(理)(2010·广东理)已知双曲线x 22-y 2=1的左、右顶点分别为A 1,A 2,点P (x 1,y 1),Q (x 1,-y 1)是双曲线上不同的两个动点.(1)求直线A 1P 与A 2Q 交点的轨迹E 的方程;(2)若过点H (0,h )(h >1)的两条直线l 1和l 2与轨迹E 都只有一个交点,且l 1⊥l 2.求h 的值.。

【高中数学】3.2.1 双曲线及其标准方程

【高中数学】3.2.1 双曲线及其标准方程

3.2 双曲线3.2.1 双曲线及其标准方程基础过关练题组一 双曲线的定义及其应用1.(2020辽宁六校协作体高二上月考)已知M(-3,0),N(3,0),|PM|-|PN|=6,则动点P 的轨迹是( )A.一条射线B.双曲线右支C.双曲线D.双曲线左支2.设F 1,F 2分别是双曲线x 2-y29=1的左、右焦点.若点P 在双曲线上,且|PF 1|=5,则|PF 2|=( )A.5B.3C.7D.3或73.(2019河北唐山一中高二上月考)已知平面内两定点F 1(-2,0),F 2(2,0),下列条件中满足动点P 的轨迹为双曲线的是( ) A.|PF 1|-|PF 2|=±3 B.|PF 1|-|PF 2|=±4 C.|PF 1|-|PF 2|=±5 D.|PF 1|2-|PF 2|2=±44.已知双曲线x 24-y 25=1上一点P 到左焦点F 1的距离为10,则PF 1的中点N 到坐标原点O 的距离为( ) A.3或7B.6或14C.3D.75.已知F 1,F 2分别为双曲线C:x 2-y 2=1的左,右焦点,点P 在C 上,∠F 1PF 2=60°,则|PF 1|·|PF 2|等于 .6.已知双曲线的左,右焦点分别为F 1,F 2,过F 1的直线与双曲线的左支交于A,B 两点,线段AB 的长为5.若2a=8,那么△ABF 2的周长是 .题组二 双曲线的标准方程 7.(2019北京一一中学高二上期中)双曲线x 23-y 24=1的焦点坐标为()A.(±1,0)B.(±√7,0)C.(±√5,0)D.(±4,0) 8.已知动点P 到A(-5,0)的距离与它到B(5,0)的距离之差等于6,则P 点的轨迹方程是( )A.x 29-y 216=1B.y 29-x 216=1 C.x 29-y 216=1(x ≤3) D.x 29-y 216=1(x ≥3) 9.已知双曲线的一个焦点为F 1(-√5,0),点P 在该双曲线上,线段PF 1的中点坐标为(0,2),则该双曲线的标准方程是( )A.x 24-y 2=1 B.x 2-y24=1C.x 22-y 23=1 D.x 23-y 22=1 10.如图所示,已知双曲线以长方形ABCD 的顶点A,B 为左,右焦点,且双曲线过C,D 两顶点.若AB=4,BC=3,则此双曲线的标准方程为 .11.经过点P(-3,2√7)和Q(-6√2,-7)的双曲线的标准方程是 .12.已知与双曲线x 216-y 29=1共焦点的双曲线过点P (-√52,-√6),求该双曲线的标准方程.题组三 双曲线的综合运用13.椭圆x 24+y 2a 2=1与双曲线x 2a -y 22=1有相同的焦点,则a 的值为( )A.1B.1或-2C.1或12D.1214.已知方程x 21+k -y 21−k=1表示双曲线,则k 的取值范围是( )A.(-1,1)B.(0,+∞)C.[0,+∞)D.(-∞,-1)∪(1,+∞)15.若ax 2+by 2=b(ab<0),则这个曲线是( ) A.双曲线,焦点在x 轴上 B.双曲线,焦点在y 轴上 C.椭圆,焦点在x 轴上 D.椭圆,焦点在y 轴上16.(2020湖南长沙长郡中学高二上期中) 设F 1,F 2是双曲线x 25-y 24=1的两个焦点,P 是该双曲线上一点,且|PF 1|∶|PF 2|=2∶1,则△PF 1F 2的面积等于 .能力提升练题组一 双曲线的定义及其应用 1.(2020辽宁大连二十四中高二期中,)已知双曲线x 216-y 220=1的左,右焦点分别为F 1,F 2,P 为双曲线右支上一点,且PF 2的中点M 在以O 为圆心,OF 1为半径的圆上,则|PF 2|=( )A.6B.4C.2D.12.(2020湖南师大附中高二上期中检测,)已知双曲线C:x 216-y 29=1的左,右焦点分别是F 1,F 2,P 是双曲线C 的右支上的一点(不是顶点),过F 2作∠F 1PF 2的平分线的垂线,垂足是M,O 是原点,则|MO|=( ) A.随P 点变化而变化 B.2C.4D.53.(2020广东东莞高二上期末教学质量检查,)已知双曲线C:x 216-y 29=1的左、右焦点分别为F 1、F 2, P 为双曲线C 上一点,直线l 分别与以F 1为圆心,F 1P 为半径的圆和以F 2为圆心,F 2P 为半径的圆相切于点A,B,则|AB|=( ) A.2√7 B.6 C.8 D.104.()给出问题:F 1,F 2分别是双曲线x 216-y 220=1的左,右焦点,点P 在双曲线上,若点P 到焦点F 1的距离等于9,求点P 到焦点F 2的距离.某学生的解答如下: 由||PF 1|-|PF 2||=2a=8,即|9-|PF 2||=8,得|PF 2|=1或|PF 2|=17.该学生的解答是否正确?若正确,请将他的解题依据填在下面横线上;若不正确,将正确答案填在横线上..题组二 双曲线的标准方程及其应用 5.()在平面直角坐标系Oxy 中,点B 与点A(-1,1)关于原点O 对称,P 是动点,且直线AP 与BP 的斜率之积等于13,则动点P 的轨迹方程为( ) A.x 2-3y 2=-2 B.x 2-3y 2=2(x ≠±1) C.x 2-3y 2=2 D.x 2-3y 2=-2(x ≠±1) 6.(2020山东菏泽一中高二期中,)“实数mn<0”是“方程x 2m +y 2n=1表示焦点在x 轴上的双曲线”的( ) A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件 7.(2019河北邯郸一中高二期末,)如图,F 1,F 2分别是双曲线x 2a 2-y 2b2=1(a>0,b>0)的左,右焦点,过F 1(-√7,0)的直线l 与双曲线的左,右两支分别交于点A,B.若△ABF 2为等边三角形,则双曲线的方程为( )A.5x 27-5y 228=1B.x 26-y 2=1 C.x 2-y 26=1 D.5x 228-5y 27=1 8.()已知双曲线的两个焦点分别是F 1(-√5,0),F 2(√5,0),P 是双曲线上一点,且PF 1⃗⃗⃗⃗⃗⃗⃗ ·PF 2⃗⃗⃗⃗⃗⃗⃗ =0,|PF 1|·|PF 2|=2,则双曲线的标准方程为 . 题组三 双曲线的综合运用 9.()已知点P 在曲线C 1:x 216-y 29=1上,点Q 在曲线C 2:(x+5)2+y 2=1上,点R 在曲线C 3:(x-5)2+y 2=1上,则|PQ|-|PR|的最大值是( ) A.6 B.8 C.10 D.1210.(2019黑龙江齐齐哈尔四校联盟高二上期中,)已知双曲线x 2m -y 23m=1的一个焦点是(0,2),椭圆y 2n -x 2m=1的焦距等于4,则n= .11.(2019江西南昌二中高二上期中,)若点(x,y)在双曲线x 24-y 2=1上,则3x 2-2y 的最小值是 . 12.()已知双曲线x 24-y 29=1,F 1,F 2是其两个焦点,点M 在双曲线上.(1)若∠F 1MF 2=90°,求△F 1MF 2的面积;(2)若∠F 1MF 2=120°,△F 1MF 2的面积是多少?若∠F 1MF 2=60°,△F 1MF 2的面积又是多少?答案全解全析基础过关练1.A因为|PM|-|PN|=6=|MN|,所以动点P的轨迹是一条射线.故选A.2.D依题意得,a=1,b=3,因此c=√10,因为|PF1|=5>a+c=1+√10,所以点P可以在双曲线的左、右两支上,因此|PF1|-|PF2|=±2,即5-|PF2|=±2,所以|PF2|=3或7,故选D.3.A当|PF1|-|PF2|=±3时,||PF1|-|PF2||=3<|F1F2|=4,满足双曲线的定义,所以点P的轨迹是双曲线.故选A.4.A连接ON,PF2(F2为双曲线的右焦点),则ON是△PF1F2的中位线,∴|ON|=12|PF2|,∵||PF1|-|PF2||=4,|PF1|=10,∴|PF2|=14或6,∴|ON|=12|PF2|=7或3.5.答案4解析在△PF1F2中,|F1F2|2=|PF1|2+|PF2|2-2|PF1|·|PF2|·cos60°=(|PF1|-|PF2|)2+|PF1|·|PF2|,即(2√2)2=22+|PF1|·|PF2|,解得|PF1|·|PF2|=4.6.答案26解析|AF2|-|AF1|=2a=8,|BF2|-|BF1|=2a=8,∴|AF2|+|BF2|-(|AF1|+|BF1|)=16.∴|AF2|+|BF2|=16+5=21,∴△ABF2的周长为|AF2|+|BF2|+|AB|=21+5=26.7.B由题意得双曲线的焦点在x轴上,且a2=3,b2=4,∴半焦距c=√a2+b2=√7,∴双曲线的焦点坐标为(±√7,0).故选B.8.D由题意知,动点P的轨迹应为以A(-5,0),B(5,0)为焦点的双曲线的右支.由半焦距c=5,实半轴长a=3,知b2=16,所以P点的轨迹方程为x29-y216=1(x≥3).故选D.9.B 设双曲线的标准方程为x 2a2-y 2b 2=1(a>0,b>0),因为半焦距c=√5,c 2=a 2+b 2,所以b 2=5-a 2,所以x 2a2-y 25−a 2=1.因为线段PF 1的中点坐标为(0,2),所以点P 的坐标为(√5,4).将P(√5,4)代入双曲线方程,得5a2-165−a 2=1,解得a 2=1或a 2=25(舍去),所以双曲线的标准方程为x 2-y24=1.故选B.10.答案 x 2-y23=1解析 设双曲线的标准方程为x 2a2-y 2b2=1(a>0,b>0).由题意得B(2,0),C(2,3),∴{4=a 2+b 2,4a2-9b2=1,解得{a 2=1,b 2=3或{a 2=16,b 2=−12(舍去).∴双曲线的标准方程为x 2-y23=1.11.答案y 225-x 275=1解析 设双曲线的方程为mx 2+ny 2=1(mn<0), 则{9m +28n =1,72m +49n =1,解得{m =−175,n =125,故双曲线的标准方程为y 225-x 275=1.12.解析 已知双曲线x 216-y 29=1,则c 2=16+9=25,∴c=5.设所求双曲线的标准方程为x 2a2-y 2b2=1(a>0,b>0).∵所求双曲线与双曲线x 216-y 29=1共焦点,∴b 2=25-a 2,故所求双曲线方程可写为x 2a 2-y 225−a 2=1.∵点P (-√52,-√6)在所求双曲线上, ∴(-√52)2a 2-(-√6)225−a 2=1,化简得4a 4-129a 2+125=0,解得a 2=1或a 2=1254.当a 2=1254时,b 2=25-a 2=25-1254=-254<0,不合题意,舍去,∴a 2=1,b 2=24,∴所求双曲线的标准方程为x 2-y224=1.13.A 由题意知{a >0,0<a 2<4,4−a 2=a +2,解得a=1.14.A 由题意得(1+k)(1-k)>0, 所以(k-1)(k+1)<0,所以-1<k<1. 故选A.15.B 原方程可化为x 2b a+y 2=1,因为ab<0,所以ba<0,所以方程表示的曲线是双曲线,且焦点在y 轴上.16.答案 12解析 ∵F 1,F 2是双曲线x 25-y 24=1的两个焦点,∴可设F 1(-3,0),F 2(3,0),∴|F 1F 2|=6,∵|PF 1|∶|PF 2|=2∶1,∴设|PF 2|=x(x>0),则|PF 1|=2x. 由双曲线的性质知2x-x=2√5,解得x=2√5. ∴|PF 1|=4√5,|PF 2|=2√5, ∴cos ∠F 1PF 2=2×4√5×2√5=45,∴sin ∠F 1PF 2=35.∴△PF 1F 2的面积为12×4√5×2√5×35=12.能力提升练 1.B 依题意得,a 2=16,b 2=20,∴c 2=36,从而c=6. 且|OM|=|OF 2|=c=6,由M 是PF 2的中点,O 是F 1F 2的中点得,|PF 1|=2|OM|=12. ∵P 在双曲线的右支上,∴|PF 1|-|PF 2|=2a=8,因此|PF 2|=12-8=4,故选B.2.C 延长F 2M 交PF 1于Q,据题意得PM 是线段F 2Q 的中垂线,即|PQ|=|PF 2|,由双曲线的定义得|PF 1|-|PF 2|=|PF 1|-|PQ|=|QF 1|=8,又线段MO 是△F 2F 1Q 的中位线,所以|MO|=4.3.B 依题意得,a=4,b=3,c=√a 2+b 2=5.设点P 在双曲线的右支上,如图所示,过F 2作F 2D ⊥AF 1于点D.易得四边形ABF 2D 为矩形.∵|AF 1|=|PF 1|,|BF 2|=|PF 2|,∴|F 1D|=|AF 1|-|AD|=|AF 1|-|BF 2|=|PF 1|-|PF 2|=2a=8. 又∵|F 1F 2|=2c=10,∴在Rt △F 1DF 2中,|F 2D|=√|F 1F 2|2-|F 1D|2=√102-82=6, ∴|AB|=|F 2D|=6.4.答案 学生的解答不正确,|PF 2|=17解析 由双曲线的定义知,||PF 1|-|PF 2||=2a,即|PF 1|-|PF 2|=±2a.正负号的取舍取决于点P 的位置是在双曲线的左支上还是右支上.因为点(4,0)到左焦点(-6,0)的距离为10>9,所以点P 只能在双曲线的左支上. 所以|PF 2|=17.5.D 由题意得,A(-1,1),B(1,-1),设P(x,y)(x ≠±1),则k AP =y -1x+1,k BP =y+1x -1.由k AP ·k BP =13,得x 2-3y 2=-2(x ≠±1).6.B 若曲线x 2m+y 2n=1是焦点在x 轴上的双曲线,则m>0,n<0,因此mn<0;若mn<0,可能有m<0,n>0的情况,此时双曲线的焦点在y 轴上,因此“mn<0”是“曲线x 2m+y 2n=1是焦点在x 轴上的双曲线”的必要而不充分条件.故选B.7.C 根据双曲线的定义,有|AF 2|-|AF 1|=2a ①,|BF 1|-|BF 2|=2a ②,由于△ABF 2为等边三角形,因此|AF 2|=|AB|=|BF 2|,①+②,得|BF 1|-|AF 1|=4a, 则|AB|=|AF 2|=|BF 2|=4a,|BF 1|=6a,又∠F 1BF 2=60°,所以(2c)2=(6a)2+(4a)2-2×6a×4a×12,即7a 2=c 2=7,解得a 2=1,则b 2=c 2-a 2=6,所以双曲线的方程为x 2-y26=1.8.答案x 24-y 2=1解析 由题意得,双曲线的焦点在x 轴上,且|F 1F 2|=2c=2√5.由双曲线的定义,知||PF 1|-|PF 2||=2a,得|PF 1|2-2|PF 1|·|PF 2|+|PF 2|2=4a 2.① 由PF 1⃗⃗⃗⃗⃗⃗⃗ ·PF 2⃗⃗⃗⃗⃗⃗⃗ =0知PF 1⊥PF 2,∵|PF 1|·|PF 2|=2, ∴|PF 1|2+|PF 2|2=|F 1F 2|2=20. 代入①式,解得a 2=4. 又c=√5,∴b 2=c 2-a 2=1, ∴双曲线的标准方程为x 24-y 2=1.9.C 由双曲线的知识,不妨设C 1:x 216-y 29=1的两个焦点分别是F 1(-5,0)与F 2(5,0),且|PF 1|-|PF 2|=8,而这两点恰好是两圆(x+5)2+y 2=1和(x-5)2+y 2=1的圆心,且两圆的半径分别是r 2=1,r 3=1,所以|PQ|max =|PF 1|+1,|PR|min =|PF 2|-1,所以|PQ|-|PR|的最大值为(|PF 1|+1)-(|PF 2|-1)=|PF 1|-|PF 2|+2=8+2=10. 故选C. 10.答案 5解析 因为双曲线的一个焦点是(0,2),所以设双曲线的标准方程为y 2a2-x 2b 2=1,a>0,b>0,又由题意得,双曲线的标准方程是y 2-3m -x 2-m=1,所以a 2=-3m,b 2=-m,所以c 2=-4m=4,即m=-1,所以椭圆方程是y 2n+x 2=1,因为椭圆的焦距2c=4,所以c=2,所以n-1=4,解得n=5.11.答案14312解析 因为点(x,y)在双曲线x 24-y 2=1上,所以x 24=1+y 2,则3x 2-2y=3(1+y 2)×4-2y=12y 2-2y+12,令f(y)=12y 2-2y+12,则二次函数的图象的对称轴为y=112,结合二次函数的图象及性质可知,当y=112时,f(y)最小,为14312.12.解析 设|MF 1|=r 1,|MF 2|=r 2(不妨设r 1>r 2),θ=∠F 1MF 2, 因为S △F 1MF 2=12r 1r 2sin θ,θ已知,所以只需求r 1r 2即可.(1)当θ=90°时,S △F 1MF 2=12r 1r 2sin θ=12r 1r 2.由双曲线方程知a=2,b=3,c=√13,由双曲线的定义,得r 1-r 2=2a=4,两边平方,得r 12+r 22-2r 1r 2=16,又r12+r22=|F1F2|2,即|F1F2|2-4S△F1MF2=16,也即52-16=4S△F1MF2,求得S△F1MF2=9.(2)若∠F1MF2=120°,则在△F1MF2中,|F1F2|2=r12+r22-2r1r2cos120°=(r1-r2)2+3r1r2=52,所以r1r2=12,求得S△F1MF2=12r1r2sin120°=3√3.同理,可求得∠F1MF2=60°时,S△F1MF2=9√3.高考数学:试卷答题攻略一、“六先六后”,因人因卷制宜。

高中数学双曲线经典考点及例题讲解

高中数学双曲线经典考点及例题讲解

双曲线考纲解读 1.根据双曲线的定义和性质求标准方程;2.根据双曲线的标准方程求双曲线的性质:离心率、渐近线等;3.利用双曲线定义及性质解决简单的直线与双曲线的关系问题.[基础梳理]1.双曲线的定义(1)平面内与两个定点F1,F2的距离之差的绝对值(|F1F2|=2c>0)为非零常数2a(2a<2c)的点的轨迹叫做双曲线.这两个定点叫作双曲线的焦点,两焦点间的距离叫作焦距.(2)集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a,c为常数且a>0,c>0.①当2a<|F1F2|时,M点的轨迹是双曲线;②当2a=|F1F2|时,M点的轨迹是两条射线;③当2a>|F1F2|时,M点不存在.2.双曲线的标准方程与几何性质x2y2y2x2[三基自测]1.双曲线x 23-y 22=1的焦距为( )A .32 B.5 C .2 5 D .45答案:C2.若双曲线E :x 29-y 216=1的左、右焦点分别为F 1,F 2,点P 在双曲线E 上,且|PF 1|=3,则|PF 2|等于( )A .11B .9C .5D .3 答案:B3.x 22+m -y 2m +1=-1表示双曲线,则m 的范围为________. 答案:(-∞,-2)∪(-1,+∞) 4.(2017·高考全国卷Ⅰ改编)双曲线x 2-y 23=1的渐近线方程为________. 答案:y =±3x考点一 双曲线定义及应用|易错突破[例1] (1)已知两圆C 1:(x +4)2+y 2=2,C 2:(x -4)2+y 2=2,动圆M 与两圆C 1,C 2都相切,则动圆圆心M 的轨迹方程是( )A .x =0 B.x 22-y 214=1(x ≥2) C.x 22-y 214=1 D.x 22-y 214=1或x =0 (2)已知双曲线x 2-y 224=1的两个焦点为F 1,F 2,P 为双曲线右支上一点.若|PF 1|=43|PF 2|,求△F 1PF 2的面积.[解析] (1)动圆M 与两圆C 1,C 2都相切,有四种情况:①动圆M 与两圆都外切;②动圆M 与两圆都内切;③动圆M 与圆C 1外切、与圆C 2内切;④动圆M 与圆C 1内切、与圆C 2外切.在①②情况下,显然,动圆圆心M 的轨迹方程为x =0;在③的情况下,设动圆M 的半径为r ,则|MC 1|=r +2,|MC 2|=r - 2.故得|MC 1|-|MC 2|=22;在④的情况下,同理得|MC 2|-|MC 1|=2 2. 由③④得|MC 1|-|MC 2|=±2 2.已知|C 1C 2|=8,根据双曲线定义,可知点M 的轨迹是以C 1(-4,0),C 2(4,0)为焦点的双曲线,且a =2,c =4,b 2=c 2-a 2=14,其方程为x 22-y 214=1.(2)由双曲线的定义可得|PF 1|-|PF 2|=13|PF 2|=2a =2,解得|PF 2|=6,故|PF 1|=8,又|F 1F 2|=10,故三角形PF 1F 2为直角三角形,因此S △PF 1F 2=12|PF 1|×|PF 2|=24.[答案] (1)D[易错提醒][纠错训练]1.(2018·陕西师大附中模拟)设过双曲线x 2-y 2=9右焦点F 2的直线交双曲线的左支于点P ,Q ,F 2为双曲线的右焦点.若|PQ |=7,则△F 2PQ 的周长为( )A .19B .26C .43D .50解析:如图,由双曲线的定义可得⎩⎪⎨⎪⎧|PF 2|-|PF 1|=2a , ①|QF 2|-|QF 1|=2a , ②①+②得|PF 2|+|QF 2|-|PQ |=4a , ∴△F 2PQ 的周长为|PF 2|+|QF 2|+|PQ | =4a +|PQ |+|PQ |=4×3+2×7=26.答案:B2.已知F 1,F 2为双曲线x 25-y 24=1的左,右焦点,P (3,1)为双曲线内一点,点A 在双曲线上,求|AP |+|AF 2|的最小值.解析:由题意知,|AP |+|AF 2|=|AP |+|AF 1|-2a ,要求|AP |+|AF 2|的最小值,只需求|AP |+|AF 1|的最小值,当A ,P ,F 1三点共线时,取得最小值,则|AP |+|AF 1|=|PF 1|=37,∴|AP |+|AF 2|=|AP |+|AF 1|-2a =37-2 5.考点二 双曲线的方程及性质|方法突破命题点1 求双曲线的方程[例2] (1)已知焦点在y 轴上的双曲线C 的一条渐近线与直线l :x +3y =0垂直,且C 的一个焦点到l 的距离为3,则双曲线C 的标准方程为( )A.y 29-x 23=1 B.x 29-y 23=1 C.y 24-x 26=1 D.x 24-y 26=1 (2)若双曲线经过点(3,2),且渐近线方程是y =±13x ,则双曲线的方程是________。

高中数学选择性必修一课件:双曲线及其标准方程(第2课时)

高中数学选择性必修一课件:双曲线及其标准方程(第2课时)

(2)已知 F1,F2 分别为双曲线x52-y42=1 的左、右焦点,P(3,1)为双曲线内一
点,点 A 在双曲线的右支上,则|AP|+|AF2|的最小值为( C )
A. 37+4
B. 37-4
C. 37-2 5
D. 37+2 5
【解析】 因为|AP|+|AF2|=|AP|+|AF1|-2 5,所以要求|AP|+|AF2|的最小 值,只需求|AP|+|AF1|的最小值.
【解析】 双曲线的两个焦点 F1(-4,0),F2(4,0)分别为两圆的圆心,且 两圆的半径分别为 r1=2,r2=1,易知|PM|max=|PF1|+2,|PN|min=|PF2|-1,故|PM| -|PN|的最大值为|PF1|+2-(|PF2|-1)=|PF1|-|PF2|+3=2+3=5.
(2)如图,已知双曲线的方程为 x2-y42=1,点 A 的坐标为(- 5,0),B 是圆 x2+(y- 5)2=1 上的点,点 C 为其圆心,点 M 在双曲线的右支上,求|MA|+|MB| 的最小值.
思考题 1 (1)如图,在△ABC 中,已知|AB|=4 2,且三内角 A,B,C 满 足 2sin A+sin C=2sin B,建立适当的坐标系,求顶点 C 的轨迹方程.
【思路分析】 建立坐标系后利用正弦定理与双曲线的定义确定轨迹方程. 【解析】 以 AB 边所在的直线为 x 轴,AB 的垂直平分线为 y 轴,建立平面 直角坐标系如图所示,则 A(-2 2,0),B(2 2,0).
如图,连接 F1P 交双曲线的右支于点 A0.当点 A 位于点 A0 处时,|AP|+|AF1| 最小,最小值为|PF1|= [3-(-3)]2+12= 37.故|AP|+|AF2|的最小值为 37- 2 5.

高中数学圆锥曲线(椭圆、双曲线、抛物线)经典习题

高中数学圆锥曲线(椭圆、双曲线、抛物线)经典习题

高中数学圆锥曲线(椭圆、双曲线、抛物线)经典习题1.已知圆$x^2+y^2-6x-7=0$与抛物线$y^2=2px(p>0)$的准线相切,则抛物线方程为$y^2=8x$。

2.与双曲线$2x^2-2y^2=1$有公共焦点,离心率互为倒数的椭圆方程为$\dfrac{x^2}{9}+\dfrac{y^2}{16}=1$。

3.方程$k-\dfrac{35}{k}+\dfrac{x^2}{y^2}=1$表示双曲线,则$m$的取值范围是$(-\infty,-7)\cup(0,7)$。

4.经过点$M(3,-2),N(-2,3)$的椭圆的标准方程是$\dfrac{x^2}{16}+\dfrac{y^2}{9}=1$。

5.与双曲线$x^2-y^2=53$有公共渐近线且焦距为8的双曲线方程为$\dfrac{x^2}{16}-\dfrac{y^2}{9}=1$。

6.过点$P(-2,4)$的抛物线的标准方程为$y=\dfrac{1}{8}(x+2)^2$。

7.以$\dfrac{x^2}{4}-\dfrac{y^2}{12}=-1$的上焦点为顶点,下顶点为焦点的椭圆方程为$\dfrac{x^2}{16}+\dfrac{y^2}{48}=1$。

重点二:1.椭圆$16x+25y=400$的焦点为$F_1,F_2$,直线$AB$过$F_1$,则$\triangle ABF_2$的周长为$10$。

2.动圆的圆心在抛物线$y^2=8x$上,且动圆恒与直线$x+2=0$相切,则动圆必过定点$(-1,2)$。

3.椭圆$\dfrac{x^2}{25}+\dfrac{y^2}{9}=1$上的一点$M$到左焦点$F_1$的距离为$2$,$N$是$MF_1$的中点,则$ON=\dfrac{4}{3}$。

4.设椭圆$\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1$和双曲线$\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=1$有公共焦点$F_1,F_2$,点$P$是两曲线的一个公共点,则$\cos\angleF_1PF_2=\dfrac{3}{5}$。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学-双曲线典型例题
一、根据方程的特点判断圆锥曲线的类型。

例1 讨论19252
2=-+-k
y k x 表示何种圆锥曲线,它们有何共同特征. 解:(1)当9<k 时,025>-k ,09>-k ,所给方程表示椭圆,此时k a -=252,k b -=92,
16222=-=b a c ,这些椭圆有共同的焦点(-4,0)
,(4,0). (2)当259<<k 时,025>-k ,09<-k ,所给方程表示双曲线,此时,k a -=252,k b -=92,16222=+=b a c ,这些双曲线也有共同的焦点(-4,0),)(4,0).
(3)25<k ,9=k ,25=k 时,所给方程没有轨迹.
二、根据已知条件,求双曲线的标准方程。

例2 根据下列条件,求双曲线的标准方程.
(1)过点⎪⎭⎫ ⎝⎛4153,P ,⎪⎭⎫ ⎝⎛-5316
,Q 且焦点在坐标轴上.
(2)6=c ,经过点(-5,2),焦点在x 轴上.
(3)与双曲线14162
2
=-y x 有相同焦点,且经过点()223,
解:(1)设双曲线方程为12
2=+n y m x
∵ P 、Q 两点在双曲线上, ∴⎪⎪⎩⎪⎪⎨⎧
=+=+1
25
92561
162259n m n m 解得⎩⎨⎧=-
=916
n m ∴所求双曲线方程为19162
2=+-y x
说明:采取以上“巧设”可以避免分两种情况讨论,得“巧求”的目的.
(2)∵焦点在x 轴上,6=c , ∴设所求双曲线方程为:162
2=--λλy x (其中60<<λ)
∵双曲线经过点(-5,2),∴164
25=--λλ
∴5=λ或30=λ(舍去) ∴所求双曲线方程是15
22
=-y x 说明:以上简单易行的方法给我们以明快、简捷的感觉.
(3)设所求双曲线方程为:()16014162
2<<=+--λλ
λy x ∵双曲线过点()223,,∴1441618=++-λ
λ ∴4=λ或14-=λ(舍) ∴所求双曲线方程为18
122
2=-y x 三、求与双曲线有关的角度问题。

例3 已知双曲线116
92
2=-y x 的右焦点分别为1F 、2F ,点P 在双曲线上的左支上且3221=PF PF ,求21PF F ∠的大小.
解:∵点P 在双曲线的左支上 ∴621=-PF PF ∴362212221=-+PF PF PF PF ∴10022
21=+PF PF ∵()100441222221=+==b a c F F
∴ο9021=∠PF F
(2)题目的“点P 在双曲线的左支上”这个条件非常关键,应引起我们的重视,若将这一条件改为“点P 在双曲线上”结论如何改变呢?请读者试探索.
四、求与双曲线有关的三角形的面积问题。

例 4 已知1F 、2F 是双曲线14
22
=-y x 的两个焦点,点P 在双曲线上且满足ο9021=∠PF F ,求21PF F ∆的面积.
分析:利用双曲线的定义及21PF F ∆中的勾股定理可求21PF F ∆的面积.
解:∵P 为双曲线14
22
=-y x 上的一个点且1F 、2F 为焦点. ∴4221==-a PF PF ,52221==c F F
∵ο9021=∠PF F
∴在21F PF Rt ∆中,202
2122
21==+F F PF PF
∵()162212
221221=-+=-PF PF PF PF PF PF ∴1622021=-PF PF ∴221=⋅PF PF ∴12
12121=⋅=
∆PF PF S PF F 五、根据双曲线的定义求其标准方程。

例5 已知两点()051,
-F 、()052,F ,求与它们的距离差的绝对值是6的点的轨迹. 解:根据双曲线定义,可知所求点的轨迹是双曲线. ∵5=c ,3=a
∴164352
22222==-=-=a c b ∴所求方程116
92
2=-y x 为动点的轨迹方程,且轨迹是双曲线. 例 P 是双曲线136
642
2=-y x 上一点,1F 、2F 是双曲线的两个焦点,且171=PF ,求2PF 的值. 解:在双曲线136
642
2=-y x 中,8=a ,6=b ,故10=c . 由P 是双曲线上一点,得1621=-PF PF . ∴12=PF 或332=PF . 又22=-≥a c PF ,得332=PF .
六、求与圆有关的双曲线方程。

例6 求下列动圆圆心M 的轨迹方程:
(1)与⊙()2222
=++y x C :内切,且过点()02,A (2)与⊙()11221=-+y x C :和⊙()412
22=++y x C :都外切. (3)与⊙()93221=++y x C :外切,且与⊙()1322
2=+-y x C :内切. 解:设动圆M 的半径为r
(1)∵⊙1C 与⊙M 内切,点A 在⊙C 外 ∴2-=r MC ,r MA =,2=-MC MA
∴点M 的轨迹是以C 、A 为焦点的双曲线的左支,且有: 22=
a ,2=c ,27222=-=a c b
∴双曲线方程为()
217222
2-≤=-x y x (2)∵⊙M 与⊙1C 、⊙2C 都外切 ∴11+=r MC ,22+=r MC , 112=-MC MC
∴点M 的轨迹是以2C 、1C 为焦点的双曲线的上支,且有: 21=a ,1=c ,4
3222=-=a c b ∴所求的双曲线的方程为: ⎪⎭⎫ ⎝⎛≥=-43134422
y x y (3)∵⊙M 与⊙1C 外切,且与⊙2C 内切 ∴31+=r MC ,12-=r MC ,421=-MC MC ∴点M 的轨迹是以1C 、2C 为焦点的双曲线的右支,且有: 2=a ,3=c ,5222=-=a c b ∴所求双曲线方程为:
()215
42
2≥=-x y x。

相关文档
最新文档