函数.1函数(教学设计)

合集下载

苏科版数学八年级上册6.2《一次函数》教学设计1

苏科版数学八年级上册6.2《一次函数》教学设计1

苏科版数学八年级上册6.2《一次函数》教学设计1一. 教材分析苏科版数学八年级上册 6.2《一次函数》是学生在学习了初中数学基础知识后,对函数概念的进一步理解。

本节内容主要让学生掌握一次函数的定义、性质和图像,以及如何运用一次函数解决实际问题。

教材通过丰富的实例和生动的语言,引导学生探究一次函数的本质特征,培养学生的数学思维能力和解决问题的能力。

二. 学情分析学生在学习本节内容前,已经掌握了实数、方程、不等式等基础知识,对数学概念有一定的理解能力。

但部分学生对函数概念的理解可能仍存在模糊之处,对一次函数的应用能力和解决实际问题的能力有待提高。

因此,在教学过程中,要关注学生的个体差异,针对不同学生的学习需求进行有针对性的指导。

三. 教学目标1.理解一次函数的定义和性质,掌握一次函数的图像特点。

2.能够运用一次函数解决实际问题,提高学生的数学应用能力。

3.培养学生的数学思维能力和团队合作精神。

四. 教学重难点1.一次函数的定义和性质。

2.一次函数图像的特点。

3.运用一次函数解决实际问题。

五. 教学方法1.情境教学法:通过生活实例引入一次函数,让学生感受数学与生活的紧密联系。

2.合作学习法:引导学生分组讨论,共同探究一次函数的性质和图像特点。

3.启发式教学法:教师提问,引导学生思考,激发学生的学习兴趣和探究欲望。

4.反馈评价法:及时了解学生的学习情况,针对性地进行指导。

六. 教学准备1.教学课件:制作一次函数的相关课件,包括图片、动画和实例等。

2.练习题:准备一次函数的相关练习题,包括基础题、应用题和拓展题。

3.教学工具:准备黑板、粉笔、直尺等教学工具。

七. 教学过程1.导入(5分钟)利用生活实例引入一次函数的概念,如“某商品的原价是80元,打8折后的价格是多少?”引导学生思考,激发学生的学习兴趣。

2.呈现(10分钟)展示一次函数的定义和性质,如y=kx+b(k≠0,k、b为常数)。

通过动画和实例,让学生直观地感受一次函数的图像特点,如直线、斜率、截距等。

北师大版数学八年级上册1《函数》教学设计3

北师大版数学八年级上册1《函数》教学设计3

北师大版数学八年级上册1《函数》教学设计3一. 教材分析《函数》是北师大版数学八年级上册的教学内容,本节课主要让学生了解函数的概念,理解函数的性质,以及掌握函数的表示方法。

通过本节课的学习,使学生能够理解生活中的函数现象,提高解决实际问题的能力。

二. 学情分析学生在七年级时已经学习了代数知识,对变量、方程有一定的认识。

但函数作为一种新的数学概念,对学生来说较为抽象,需要通过实例让学生感受函数的意义,从而更好地理解函数的内涵。

三. 教学目标1.了解函数的概念,知道函数的表示方法。

2.理解函数的性质,能够分析生活中的函数现象。

3.提高学生解决实际问题的能力,培养学生的数学思维。

四. 教学重难点1.函数的概念及表示方法。

2.函数的性质的理解与应用。

五. 教学方法采用情境教学法、实例教学法和小组合作学习法。

通过生活实例引入函数概念,让学生在实际问题中感受函数的意义;通过小组讨论,引导学生探索函数的性质,提高学生的合作能力。

六. 教学准备1.教学课件:制作课件,展示生活中的函数现象。

2.实例材料:收集相关的实际问题,用于引入函数概念。

3.学习任务单:设计学习任务单,引导学生探究函数的性质。

七. 教学过程1.导入(5分钟)利用课件展示生活中的函数现象,如温度随时间的变化、物价随时间的变化等,引导学生思考这些现象背后的数学规律。

2.呈现(10分钟)介绍函数的概念,让学生了解函数的定义,并通过实例解释函数的表示方法。

如y=2x+1,x表示自变量,y表示因变量,2和1为常数。

3.操练(10分钟)让学生分组讨论,分析给定的实际问题,尝试用函数表示这些问题。

如一个人骑自行车行驶的路程s与时间t的关系,可以表示为s=10t(假设速度为10km/h)。

4.巩固(10分钟)让学生根据函数的性质,判断给定的实际问题是否为函数。

如一个人身高与年龄的关系,是否为函数?通过讨论,使学生理解函数的内涵。

5.拓展(10分钟)引导学生思考函数在实际生活中的应用,如购物时优惠券的使用、手机话费的计算等。

3.1.1函数概念(第1课时)教学设计.docx

3.1.1函数概念(第1课时)教学设计.docx

3.1.1函数的概念(第一课时)(人教A版普通高中教科书数学必修第一册第三章)一、教材地位本节课是普通高中课程标准实验教科书人教A版第三章第一节第一课时(第60~64页).1.概念本身角度:函数是高中数学最抽象的概念,初中曾用运动变化的观点给出函数的描述性定义,并把函数看作两个变量间的依赖关系,但这一定义有一定的阶段性和局限性.2.学科角度:函数是高中数学的核心概念,是整个高中函数知识体系的基石,它不仅将函数概念由“对应论”发展到“集合论”,更承上启下,为后继研究基本初等函数,比如指数函数、对数函数、幂函数、三角函数以及函数的性质等提供研究方法和理论依据,让我们体会到重要概念对数学发展和数学学习的巨大作用;同时,函数的基础知识在日常生活、社会经济、以及等其他学科也有着广泛应用.3.高考角度:函数是高考数学的热点,函数图象性质、函数与代数式方程不等式数列三角解析几何导数的结合问题常考常新,从基础题、中档题到压轴题,每年高考都是绝对重点,高考所考察的五大数学思想中的数形结合思想、函数与方程思想贯穿高中数学学习的全过程.有人说,“得函数者得数学,得数学者得高考”,更是形象的道出了函数在高考中的重要地位.二、学情分析1.从学生知识层面看:通过初中函数相关知识的学习,学生具备了一定的知识经验和基础;通过必修一第一章“集合”的学习,对集合思想的认识也日渐提高,为重新定义函数、从根本上揭示函数的本质提供了知识保证.2.从学生能力层面看:学生已有一定的分析、推理和概括能力,初步具备了运用数形结合思想解决问题的能力,但数形结合的意识和思维的深刻性还有待进一步加强.3.从学生情感培养方面看:多数学生对教学新内容的学习有很高学习兴趣和积极性,但探究能力以及合作交流等能力仍需要通过课堂主渠道加以培养和提高.三、教学目标1.知识与技能:会用集合与对应的语言来刻画函数,理解函数的概念;理解函数符号y=f(x)的含义;了解函数的三要素;会求一些简单函数的定义域.(重点)2.过程与方法:让学生亲身经历函数概念的形成过程,经历从具体到抽象、从特殊到一般、从感性到理性的认知过程,培养学生抽象概括能力,让学生学会数学表达和交流,激发数学学习兴趣,发展数学应用意识.(难点)3.情感、态度与价值观:培养学生细心观察、认真分析、严谨表达的良好思维习惯,养成用函数模型描述和解决现实世界中蕴含的规律,培养学生提出问题的能力,培养创新意识.四、教学重点用集合语言和对应关系刻画函数的概念.五、教学难点对函数概念的理解.六、教学过程1.函数概念的形成1.1创设情境,引发思考思考1:(1)若正方形的边长为1,则其周长l= ;(2)若正方形的边长为2,则其周长l= ; (3)若正方形的边长为x ,则其周长l= ;【预设答案】(1)4(2)8(3)4x【设计意图】通过具体的例子复习函数的概念,让学生再次体会函数高度“抽象”的作用.思考2:初中学习的函数的概念是什么?【预设答案】设在一个变化过程中有两个变量x 和y ,如果对于x 的每一个值,y 都有唯一的值与它对应,那么就说y 是x 的函数.其中x 叫自变量,y 叫因变量.【设计意图】复习初中函数概念,强调函数是一种特殊的对应.思考3:请同学们考虑以下两个问题【设计意图】从初中的概念来看,这两组中的两个函数没什么不同,但我们有感觉它们是不同函数.让学生体会初中函数概念不够精确,从而有些问题解决不了.1.2探究典例,形成概念问题1: 某“复兴号”高速列车到350km/h 后保持匀速运行半小时.这段时间内,列车行进的路程S (单位:km )与运行时间t (单位:h )的关系可以表示为 S=350t.思考:根据对应关系S=350t ,这趟列车加速到350km/h 后,运行1h 就前进了350km ,这个说法正确吗?44y x l x ==(1)与周长是同一函数吗?22x y x y x==()与是同一函数吗?【预设答案】不正确.对应关系应为S=350t ,其中 }1750|{},5.00|{11≤≤=∈≤≤=∈s s B s t t A t .问题2 :某电气维修告诉要求工人每周工作至少1天,至多不超过6天.如果公司确定的工资标准是每人每天350元,而且每周付一次工资,那么你认为该怎样确定一个工人每周的工资?一个工人的工资w (单位:元)是他工作天数d 的函数吗?【预设答案】是函数,对应关系为w=350d,其中},6,5,4,3,2,1{2=∈A d}2100,1750,1400,1050,700,350{2=∈B w .思考:在问题1和问题2中的函数有相同的对应关系,你认为它们是同一个函数吗?为什么?【预设答案】不是.自变量的取值范围不一样.问题3 :如图,是北京市2016年11月23日的空气质量指数变化图.如何根据该图确定这一天内任一时刻th 的空气质量指数的值I ?你认为这里的I 是t 的函数吗?【预设答案】是,t 的变化范围是}240|{A 3≤≤=t t ,I 的范围是}1500|{I B 3<<=I .问题4: 国际上常用恩格尔系数)总支出金额食物支出金额=r r ( 反映一个地区人民生活质量的高低,恩格尔系数越低,生活质量越高.上表是我国某省城镇居民恩格尔系数变化情况,从表中可以看出,该省城镇居民的生活质量越来越高.你认为该表给出的对应关系,恩格尔系数r 是年份y 的函数吗?思考:上述问题1到问题4中的函数有哪些共同点和不同点?【预设答案】共同点有:(1)都包含两个非空数集,用A ,B 来表示;(2)都有一个对应关系不同点有:(1)(2)是通过解析式表示对应关系,(3)是通过图象,(4)是通过表格【设计意图】通过四个具体的例子,发现要在集合的基础上定义函数会比较准确,同时让学生体会函数对应关系的3种表示形式.函数概念:一般地,设A , B 是非空的实数集,如果对于集合A 中的任意一个数x ,按照某种确定的对应关系f ,在集合B 中都有唯一确定的数y 和它对应,那么就称f :A B →为从集合A 到集合B 的一个函数,记作y =f (x ),x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{}()f x x A |∈叫做函数的值域.函数的三个要素:定义域,对应关系,值域.常见函数的三要素:正比例函数:y kx =的定义域是R ,值域也是R .对应关系f 把R 中的任意一个数x ,对应到R 中唯一确定的数(0)ax b a +≠.一次函数:(0)y ax b a =+≠的定义域是R ,值域也是R .对应关系f 把R 中的任意一个数x ,对应到R 中唯一确定的数(0)ax b a +≠.二次函数:2(0)y ax bx c a =++≠的定义域是R ,值域是B .当a >0时,244ac b B y y a ⎧⎫-⎪⎪=≥⎨⎬⎪⎪⎩⎭;当a <0时,244ac b B y y a ⎧⎫-⎪⎪=≤⎨⎬⎪⎪⎩⎭.对应关系f 把R 中的任意一个数x ,对应到B 中唯一确定的数2(0)ax bx c a ++≠. 反比例函数:(0)k y k x =≠的定义域为{}0x x ≠,对应关系为“倒数的k 倍”,值域为{}0y y ≠.反比例函数用函数定义叙述为:对于非空数集{}0A x x =≠中的任意一个x 值,按照对应关系f :“倒数(0)k k ≠倍”,在集合{}0B y y =≠中都有唯一确定的数k x 和它对应,那么此时f :A B →就是集合A 到集合B 的一个函数,记作()(0),.k f x k x A x=≠∉2.例题讲解,理解概念例1.判断下列对应是否是函数【预设答案】(1)是(2)是(3)不是【设计意图】让学生体会函数只能是“一对一”或“多对一”,不能“一对多”.例2. 判断下列图象能表示函数图象的是()【预设答案】D【设计意图】让学生体会概念中的“唯一”二字例3 .你能构建一个问题情景,使其中函数的对应关系为y=x(10-x)吗?【预设答案】长方形的周长为20,设一边长为x,面积为y,那么y=x(10-x),其中x的取值范围是A={x|0<x<10},y的取值范围是B={y|0<y≤25}.对应关系f把每一个长方形的边长x,对应到唯一确定的面积x(10-x)【设计意图】让学生体会数学建模,数学应用思想,同时巩固函数概念是建立在集合基础上的.3.课堂练习,巩固新知练习1.若函数y=f(x)的定义域为{x|−3≤x≤8,x≠5},值域为{y|−1≤y≤2,y≠0},则y=f(x)的图象可能是()A. B.C. D.【答案】B练习2.已知函数f(x),g(x)分别由下表给出.则g(f(5))=;f(g(2))=.【答案】4 3练习3.集合A,B与对应关系f,如图所示,f:A→B是否为从集合A到集合B的函数?如果是,那么定义值域与对应关系各是什么?【答案】由图知A中的任意一个数,B中都有唯一确定数,与之对应,所以f:A→B 是从A 到B的函数定义域是A={1,2,3,4,5},值域C={2,3,4,5}4.构建一个问题情景,使其中的变量关系能用解析式y=√x来描述.【答案】正方形的面积为x,其边长为y,则y=√x,其中x的取值范围是A={x|0<x},y的取值范围是B={y|0<y}4.课堂小结,思想升华本节课主要是在集合的基础上重新定义了函数,让函数的概念更加清晰准确.。

初中数学_中考一轮复习一次函数教学设计学情分析教材分析课后反思

初中数学_中考一轮复习一次函数教学设计学情分析教材分析课后反思

中考一轮复习一次函数教学设计一、教学内容分析一次函数是初中数学中的一种最简单、最基本的函数,是反映现实世界的数量关系和变化规律的常见数学模型之一,它的研究方法具有一般性和代表性,是进一步研究反比例函数及二次函数的基本工具,也是学习高中代数、解析几何及其他数学分支的重要基础。

这部分的难点是构建一次函数模型解决实际问题的能力以及综合运用所学知识解决、分析问题的能力,学好这部分知识对发展学生的数学应用意识和建模能力起着至关重要的作用。

一次函数在中考中常常考察一次函数关系式的确定、图像和性质、一次函数的实际应用、一次函数与反比例函数、二次函数的综合题等.,二、学情分析大部分学生都感觉函数比较难,有些学生对一次函数的性质与图像遗忘了,还有些同学上新课时对这部分知识没有理解,学好这部分知识很重要一点就是会用数形结合思想去解决问题、构建一次函数模型解决实际问题,目前这两部分都是学生的难点,综合复习时与其他知识联系也较多,所以对于解决综合题学生感觉难度也较大。

鉴于以上分析本节课分三个模块来进行复习,第一模块复习一次函数的定义、图像及性质,第二模块复习确定一次函数的表达式,第三模块复习用一次函数解决实际问题。

三、教学目标、重难点分析新课标指出,三维目标是紧密联系的一个有机整体,在教学中应以知识与技能为主线,渗透情感态度价值观,并把前面两者充分体现在过程与方法中。

因此确定本节课的教学目标为:知识目标:1、掌握一次函数的系统知识,提高学生解题能力。

2、利用数形结合思想,解决函数问题,破解中考难点。

过程与方法:通过问题的解决体会用数形结合解题的优越性,培养学生的观察能力。

情感目标:体会数学来源于生活,增强用数学的意识教学重点:一次函数的图像、性质,确定一次函数的表达式以及实际应用。

教学难点:一次函数的实际应用,数形结合的灵活运用。

四、教学媒体:电子白板、几何画板、课件五、教学过程分析一次函数复习学习目标:(1)结合具体情境体会一次函数的意义,根据已知条件确定一次函数表达式。

北师大版数学八年级上册《1 函数》教案1

北师大版数学八年级上册《1 函数》教案1

北师大版数学八年级上册《1 函数》教案1一. 教材分析北师大版数学八年级上册《1 函数》是学生在学习了初中数学基础知识后,对函数概念、性质和应用进行初步了解的一节课。

本节课的内容包括函数的定义、函数的性质和函数图像的识别。

通过本节课的学习,学生将对函数有更深入的认识,为今后的数学学习打下基础。

二. 学情分析学生在学习本节课之前,已经掌握了实数、方程、不等式等基础知识,具备了一定的逻辑思维能力和抽象思维能力。

但函数概念较为抽象,学生可能难以理解。

因此,在教学过程中,教师需要运用生动形象的教学手段,帮助学生建立函数概念,引导学生理解函数的性质和图像。

三. 教学目标1.了解函数的定义,掌握函数的基本性质。

2.能够识别和绘制简单的函数图像。

3.培养学生的逻辑思维能力和抽象思维能力。

4.提高学生运用数学知识解决实际问题的能力。

四. 教学重难点1.函数的定义及其性质。

2.函数图像的识别和绘制。

五. 教学方法1.情境教学法:通过生活实例引入函数概念,激发学生兴趣。

2.讲授法:讲解函数的定义、性质和图像,引导学生理解。

3.实践操作法:让学生动手绘制函数图像,加深对函数的理解。

4.小组讨论法:分组讨论函数问题,培养学生的合作意识。

六. 教学准备1.教学PPT:包含函数的定义、性质、图像及实例。

2.练习题:包括简单函数的识别和绘制。

3.教学用具:黑板、粉笔、直尺、圆规等。

七. 教学过程1.导入(5分钟)通过一个生活实例,如温度随时间的变化,引入函数的概念。

引导学生思考:如何表示这种变化关系?引出函数的定义。

2.呈现(10分钟)讲解函数的定义、性质和图像,引导学生理解。

用PPT展示函数图像,让学生观察、分析。

3.操练(10分钟)让学生动手绘制一些简单函数的图像,如正比例函数、一次函数、二次函数等。

在绘制过程中,引导学生掌握函数图像的特点。

4.巩固(10分钟)出示一些练习题,让学生识别和绘制函数图像。

教师巡回指导,解答学生疑问。

初中《函数》教案设计

初中《函数》教案设计

初中《函数》教案设计教学目标:1. 理解函数的概念,能够识别函数的各个组成部分。

2. 掌握函数的表示方法,包括解析式和表格法。

3. 能够运用函数解决实际问题,提高解决问题的能力。

教学重点:1. 函数的概念及组成部分。

2. 函数的表示方法。

教学难点:1. 函数概念的理解。

2. 函数表示方法的运用。

教学准备:1. 教学课件或黑板。

2. 函数相关例题和练习题。

教学过程:一、导入(5分钟)1. 引导学生回顾之前学过的数学知识,如变量、自变量、因变量等。

2. 提问:同学们,你们认为什么是函数呢?函数有哪些组成部分?二、新课讲解(15分钟)1. 讲解函数的概念,引导学生理解函数的定义。

2. 解释函数的各个组成部分,如定义域、值域、对应关系等。

3. 举例说明函数的表示方法,包括解析式和表格法。

4. 引导学生通过实例理解函数的实际应用。

三、课堂练习(10分钟)1. 布置一些简单的函数题目,让学生独立完成。

2. 选取部分学生的作业进行讲解和点评。

四、巩固知识(10分钟)1. 通过课件或黑板,展示一些常见的函数图像,如正比例函数、一次函数、二次函数等。

2. 引导学生观察图像,分析函数的特点和性质。

五、拓展提高(10分钟)1. 引导学生思考:函数在实际生活中有哪些应用?2. 举例说明函数在生活中的应用,如温度与海拔的关系、商品价格与数量的关系等。

六、总结(5分钟)1. 回顾本节课所学的内容,让学生总结函数的概念和表示方法。

2. 强调函数在实际生活中的重要性。

教学反思:本节课通过讲解、练习、巩固和拓展等环节,帮助学生理解和掌握函数的基本概念和表示方法。

在教学过程中,要注意关注学生的学习情况,及时解答学生的疑问,提高学生的学习兴趣和积极性。

同时,结合实际生活中的例子,让学生感受函数的应用价值,提高学生的数学素养。

2.1.1函数(一)变量与函数的概念

2.1.1函数(一)变量与函数的概念
解 (1)f(2)=f(3-1)=9-2×3+7=10;
f(a)=f((a+1)-1) =(a+1)2-2(a+1)+7=a2+6.
(2)方法一
(配凑法)
f(x)=f((x+1)-1)=(x+1)2-2(x+1)+7=x2+6, (或 f(x-1)=(x-1)2+6), ∴f(x)=x2+6. ∴f(x+1)=(x+1)2+6=x2+2x+7. 方法二 (换元法)设 t=x-1,即 x=t+1, ∴f(t)=(t+1)2-2(t+1)+7=t2+6, 故 f(x)=x2+6. f(x+1)=(x+1)2+6=x2+2x+7.
( B )
解析
1 2-1 2 2 -1 3 1 2 3 ∵f(2)= 2 =5,f2=1 =-5 2 +1 2+1 2
f(2) ∴ 1 =-1 f2
(x-1)0 4.函数 y= 的定义域是 |x|+x A.(0,+∞) B.(-∞,0) C.(0,1)∪(1,+∞) D.(-∞,-1)∪(-1,0)∪(0,+∞)
1 010.
1 2 2 2 x 2 4 1 1 2 解 (1)∵f(x)= 2,∴f(2)= 2= ,f = 1 =5, 5 2 1+x 1+2 1+22 1 2 2 3 9 1 1 3 f(3)= ,f3= 2= 1 =10. 1+3 10 1+32
(5)把满足 x≥a,x>a,x≤b,x<b 的全体实数 x 的集合分 别表示为 [a,+∞),(a,+∞),(-∞,b],(-∞,b) .
对点讲练
知识点一 例1 已知解析式求函数的定义域 求下列函数的定义域: 1 3 (1)y=3- x;(2)y= ; 2 1- 1-x -x 1 1 (3)y= 2 ;(4)y= 2x+3- + . 2x -3x-2 2-x x 点拨

《一次函数》数学教案

《一次函数》数学教案

《一次函数》数学教案
标题:《一次函数》数学教案
一、教学目标
1. 知识与技能:理解并掌握一次函数的概念和性质;能够正确地表示一次函数,并进行简单计算。

2. 过程与方法:通过实例引入一次函数,让学生在观察、思考和讨论中理解和掌握一次函数的相关知识。

3. 情感态度与价值观:培养学生对数学的兴趣,提高他们的逻辑思维能力和解决问题的能力。

二、教学内容与重点难点
1. 教学内容:一次函数的概念、图象、性质及应用。

2. 重点:一次函数的概念、图象和性质。

3. 难点:一次函数的应用。

三、教学过程
1. 导入新课:通过生活中的实例(如出租车计费方式)引出一次函数的概念。

2. 新知探索:讲解一次函数的定义、图象和性质,并配以适当的例题进行解析。

3. 巩固练习:设计一系列习题,包括基础题、提高题和挑战题,帮助学生巩固所学知识。

4. 小结与作业:回顾本节课的重点内容,布置相关的课后作业。

四、教学策略
1. 创设情境:通过生活实例引发学生的兴趣,使他们更容易理解和接受新知识。

2. 启发引导:采用问题驱动的教学方式,引导学生主动思考,培养他们的探究精神。

3. 分层教学:针对不同层次的学生,设计不同的学习任务,满足他们的个性化需求。

五、教学评价
1. 形成性评价:通过课堂问答、小组讨论和作业批改等方式,及时了解学生的学习情况,给予反馈和指导。

2. 总结性评价:通过期中、期末考试等,对学生的学习成果进行全面的评估。

六、教学反思
在每次教学结束后,教师应反思自己的教学过程,总结经验,找出不足,以便更好地改进教学。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
沪科版初中数学八年级上册
课题:12.1 函 数
(第一课时)
12.1函数(第一课时)
教材分析
函数是研究现实世界变化规律的一个重要模型,是中学数学学习的核心内容。本节课是函数的启蒙课,在这里学生初步接触了变量的概念,它是函数学习的入门,是后继学习数学的基础,同时在物理、化学等自然科学中有着广泛的应用。函数概念比较抽象,学生的理解与掌握有一定困难,因而教科书从展示大量实际情境入手,螺旋式地上升对函数概念的理解,对培养学生比较、分析、概括的思维能力具有重要意义。
创设
情境
激发
兴趣
在乌鸦喝水的故事中也蕴含着数学的知识,学完今天这节课,我们就可以用数学的眼光去解释乌鸦喝水的过程中所蕴含的数学道理了。
教师用多媒体出示《乌鸦喝水》的故事视频,创设情境,提出问题,引入新课。
用学生熟悉的故事引入新课,激发学生探究新知的兴趣。
问题
探究,
形成
新知
问题1:
小刚从家骑自行车去上学,以每分钟300米的速度匀速驶向滁州六中。(速度v=300米/分钟)
学情分析
函数的学习对初中生来说是一大难点,是常量数学到变量数学学习的一次飞跃。八年级学生的观察能力有所发展,能按照教学的要求有意识地观察,但观察的精确性、深入性不够,不能透过复杂的现象看本质,其抽象的思维还依赖感性经验的支持。
教 学 目 标
知识技能
1、通过生活实例,了解常量与变量的概念,会在实际问题中辨别常量和变量,自变量与因变量。
教师课件出示问题2
引导学生思考:
1、观察表格,热气球在升空的过程中平均每分上升多少米?
2、你能用关系式表示出高度h与时间t的关系吗?
3、在这个变化过程中有几个量?
4、哪些量是常量?哪些量是变量?有几个变量?
5、随着时间t的变化,高度h会发生变化吗?
6、你能求出上升后3min、6min时热气球到达的海拔高度吗?求出的值是唯一确定的吗?
问题2:
如图,用热气球探测高空气象。设热气球从海拔1800m处的某地升空,在一段时间内,它匀速上升,它上升过程中到达的海拔高度h m与上升时间t min的关系记录如下表:
时间t/min
0
1
2
3
4

海拔高度h/m
1800
1830
1860
1890
1920

变量h随着t的变化而变化。当给定变量t的一个值时,就可以相应地得到变量h的一个唯一确定的值。
常量与变量、自变量与因变量
变量s随着t的变化而变化。当给定变量t的一个值时,就可以相应地得到变量s的一个唯一确定的值。
教师多媒体出示问题1
师:你能用关系式表示出路程s与时间t的关系吗?
引导学生思考:
1、在这个变化过程中有几个量?
2、哪些是没有变化的量?哪些是发生变化的量?
3、在这个变化过程中,有几个变量?
请同学们根据以上几个问题总结出变量h与变量t的关系。
用师生共同探究的方法来唤起学生的参与意识,同时也活跃了课堂气氛,锻炼了学生的合作能力。
教 学
环 节教学内容师生 Nhomakorabea为设计意图
问题
探究,
形成
新知
问题3:下图是我市某日自动测量仪记下的用电负荷曲线。
变量y随着t的变化而变化。当给定变量t的一个值时,就可以相应地得到变量y的一个唯一确定的值。
教师课件出示问题3
引导学生思考:
1、这个问题中,有哪几个变量?
2、给出这天中的某一时刻,如4.5h、20h,能找到这一时刻的负荷y
(×103兆瓦)是多少吗?找到的值是唯一确定的吗?
3、这一天的用电高峰、用电低谷时负荷各是多少?它们是在什么时刻达到的?
请同学们根据以上几个问题总结出变量y与变量t的关系。
2、通过实例,让学生多角度、多层面地认识和理解函数的意义。
数学思考
经历观察、分析、思考等数学活动过程,由具体实例到抽象概括,进一步发展学生的抽象思维能力。
问题解决
培养学生利用函数的观点认识现实世界的意识和能力,会运用运动、变化的观点思考问题。
情感态度
积极参与数学活动,激发学习兴趣,让学生认识数学与人类生活的密切联系和对人类历史发展的作用,提高学生参加数学学习活动的积极性和好奇心。
教 学
环 节
教学内容
师生行为
设计意图
快乐
之旅
巩固
提升
砸金蛋游戏:4个金蛋你可以任选一个,如果出现“恭喜你”的字样,老师将给你介绍一下有关函数的历史;否则将有考验你的数学问题,当然你可以自己作答,也可以求助你的同学。
金蛋A:一石激起千层浪,水滴泛起层层波。水滴激起的波纹可以看作是一个不断向外扩展的圆,变化中圆的面积与半径的大小密切相关,你能说出这两个变量之间的关系吗?
重 点
认识常量、变量、函数的概念
难 点
理解函数的概念
教学
方法
问题的探究分析、观察法、数形结合法
教学
流程
本节课教学流程共分为五个环节,依次是:
环节一创设情境,激发兴趣
环节二问题探究,形成新知
环节三归纳总结,深化理解
环节四快乐之旅,巩固提升
环节五课堂小结,布置作业
学习过程
教 学
环 节
教学内容
师生行为
设计意图
4、随着时间t的变化,路程s有变化吗?
5、当时间t取定一个值比如t=2时,对应路程s的值是多少?是唯一确定的吗?
请同学们根据以上几个问题总结出变量s与变量t的关系。
通过“提出问题——寻找其中的量——对量进行分类——归纳概念”,让学生亲身经历概念形成的全过程,感受数学概念形成的自然性与合理性,加深学生对概念的理解。
通过这个问题再次强调自变量与因变量的确定方法,同时说明用图像也可表明两变量的关系,为下节课做铺垫,更说明了因变量的值唯一确定的思想。
归纳
总结
深化
理解
归纳总结:
1、每个变化过程中都有两个变量。
2、其中一个变量(自变量)变化时,另一个变量(因变量)也随着变化。
3、当一个变量确定时,另一个变量有唯一确定的值与它对应。
3、当一个变量确定时,另一个变量的值唯一确定吗?
师生共同小结函数概念,找出概念中的关键词。
请学生说一说:问题1、问题2、问题3 中,什么量是自变量,什么量是函数?
由于学生首次接触函数概念,因此在学习中重在让学生感受概念。通过大量的具体实例,让学生充分认识事物的变化过程,并探索在这个过程中两个变量之间的相互关系,提升认识,形成函数概念。
函数概念:
一般地, 设在一个变化过程中有两个变量x,y, 如果对于x在它允许取值范围内的每一个值, y都有唯一确定的值与它对应,那么就说x是自变量,y是x的函数。
教师出示PPT课件,提出问题:
你能根据下面的问题总结出这三个变化过程的共同特点吗?
1、每个变化过程中都有几个变量?
2、其中一个变量发生变化时,另一个变量也随着变化吗?
相关文档
最新文档