高中二年级下学期数学期末考试试卷(理科)

合集下载

高二下学期期末考试数学(理)试题及答案

高二下学期期末考试数学(理)试题及答案

第二学期高二数学(理)期末考试试卷一、选择题:(共10个小题,每小题4分;在每小题给出的四个选项中,只有一项符合题目要求,请将正确选项代号填入答题卡对应符号栏内)1.已知集合}{2,A x x x R =≤∈,{|4,}B x x x Z =≤∈,则A B ⋂= ( )(A)(0,2) (B) {0,1,2} (C){}0,2 (D) [0,2]2.抛物线的顶点在坐标原点,焦点与双曲线22154y x -=的一个焦点重合,则该抛物线的标准方程可能是 ( ) A .24=x y B .24=-x y C .212=-x y D .212=-y x 3.已知向量()2,1=a ,()3,2-=b ,若向量c 满足()b a c //+,()b ac -⊥,则向量c = ( ) A. ⎪⎭⎫ ⎝⎛--177,1735 B.⎪⎭⎫ ⎝⎛1735,177 C. ⎪⎭⎫ ⎝⎛177,1735 D.⎪⎭⎫⎝⎛--1735,1774.复数z=22ii-+(i 为虚数单位)在复平面内对应的点所在象限为 ( ) A .第一象限 B. 第二象限 C.第三象限 D.第四象限5. 下列命题中,真命题是 ( ) A. 存在[0,],sin cos 22∈+≥x x x π; B. 任意2(3,),21∈+∞>+x x x ;C. 存在2,1∈+=-x R x x ;D. 任意[,],tan sin ;2∈>x x x ππ6.设函数)(x f 是定义在R 上的奇函数,且对任意R ∈x 都有)4()(+=x f x f ,当),(20∈x 时,x x f 2)(=,则)2011()2012(f f -的值为 ( ) A .2 B .2 C .12 D .127.设,a b 是两条不重合的直线,,αβ是两个不同的平面,则下列命题中错误的是 ( )A .若⊥a α,⊥a β,则//αβB .若b 是β内任意一条直线,aα,a b 则αβC .若a α,b ⊥α,则a bD .若a//α,b α,则a //b8.在在ABC 中,AB3,AC4,BC13,则AC 边上的高为 ( )A.223 B. 233 C. 23D. 33 9.设函数()sin(2)cos(2)44=+++f x x x ππ,则A .()=y f x 在(0,)2π单调递增,其图象关于直线4=x π对称B .()=y f x 在(0,)2π单调递增,其图象关于直线2=x π对称C .()=y f x 在(0,)2π单调递减,其图象关于直线4=x π对称D .()=y f x 在(0,)2π单调递减,其图象关于直线2=x π对称 10.直线20(0)-+=≥ax y a a 与圆229+=x y 的位置关系是 ( )A .相离B .相交C .相切D .不确定 二、填空题(共四个小题,每小题4分)11.已知函数()bx x x f 22+=过(1, 2)点,若数列()⎭⎬⎫⎩⎨⎧n f 1的前n 项和为n S ,则2012S 的值为_________.12.若将()()x a x b --逐项展开得2x ax bx ab --+,则2x 出现的概率为14,x 出现的概率为12,如果将()()()()()x a x b x c x d x e -----逐项展开,那么3x 出现的概率为 .13.对于三次函数d cx bx ax x f +++=23)((0≠a ),定义:设)(x f ''是函数()y f x =的导数'()y f x =的导数,若方程)(x f ''=0有实数解0x ,则称点00(,())x f x 为函数()y f x =的“拐点”.有同学发现“任何一个三次函数都有‘拐点’;任何一个三次函数都有对称中心;且‘拐点’就是对称中心.”请你将这一发现为条件,函数3231()324f x x x x =-+-,则它的对称中心为_____;正视图 侧视图 俯视图 3 1 2 2 3 2 B A C S (第14题图)14.三棱锥S ABC 的三视图如下(尺寸的长度单位为m ).则这个三棱锥的体积为 _________;参考答案一、选择题(本题共10小题,每题4分,共40分) 题号 1 2 3 4 5 6 7 8 9 10 答案 BCAD BAD BD B二、填空题(本题共4小题,每题4分,共16分) 题号11 1213 14答案20132012516(12, 1) 34m三、解答题15.(本题满分10分)如图所示,已知α的终边所在直线上的一点P 的坐标为(3,4)-,β的终边在第一象限且与单位圆的交点Q 的纵坐标为210.⑴求α-βtan()的值; ⑵若2παπ<<,20πβ<<,求αβ+.解:⑴由三角函数的定义知43tan α=-又由三角函数线知210sin β=,∵β为第一象限角,∴17tan β=,∴41--tan α-tan β3137tan(α-β)===-411+tan αtan β171+(-)37. ……5分 ⑵∵35cos α=-,2παπ<<,∴45sin α=.又210sin β=,20πβ<<,∴2721sin 10cos ββ-==. …7分∴4723225105102sin()sin cos cos sin αβαβαβ+=+=⨯-⨯=.由2παπ<<,20πβ<<,得322ππαβ<+<,∴34παβ+=. ……10分(2)2583n 138n a a a a a -+、、是首项为22a =,公比为8,项数为n+8项的等比数列,882583n 1382(18)2(81)187n n n a a a a a ++-+-++++==--++17.(本小题满分10分)学校在高二开设了当代战争风云、投资理财、汽车模拟驾驶与保养、硬笔书法共4门选修课,每个学生必须且只需选修1门选修课,对于该年级的甲、乙、丙3名学生。

高二数学(理科)下学期期末考试试题(带参考答案)

高二数学(理科)下学期期末考试试题(带参考答案)

高二数学(理科)下学期期末考试试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.用反证法证明命题“设a ,b 为实数,则方程31x ax be ++=至少有一个实根”时,要做的假设是( )A .方程31x ax be ++=没有实根 B .方程31x ax b e ++=至多有一个实根 C .方程31x ax be++=至多有两个实根 D .方程31x ax b e ++=恰好有两个实根2.设i 是虚数单位,若2i 1iz=+-,则复数z 的共轭复数是( ) A .1i + B .2i + C .3i - D .3i + 3.13aedx x=⎰,则a =( ) A .212e B .4e C .3e D .2e 4.已知随机变量ξ服从正态分布(),16N μ,且()()261P P <-+≤=ξξ,则=μ( ) A .4- B .4 C .2- D .25.已知直线l 过点()1,1P ,且与曲线3y x =在点P 处的切线互相垂直,则直线l 的方程为( ) A .340x y ++= B .340x y +-= C .320x y -+= D .320x y --= 6.用数学归纳法证明“11112321n n ++++<-L (2n ≥)”时,由n k =的假设证明1n k =+时,不等式左边需增加的项数为( ) A .12k - B .21k - C .2k D .21k+7.一批产品的合格率为90%,检验员抽检时出错率为10%,则检验员抽取一件产品,检验为合格品的概率是( )A .0.81B .0.82C .0.90D .0.918.为大力提倡“厉行节约,反对浪费”,某市通过随机询问100名性别不同的居民是否能做到“光盘”行动,得到如下的22⨯列联表:附:()()()()()22n ad bc K a b c d a c b d -=++++参照附表,得到的正确结论是( )A .在犯错误的概率不超过5%的前提下,认为“该市居民能否做到‘光盘’与性别有关”B .在犯错误的概率不超过2.5%的前提下,认为“该市居民能否做到‘光盘’与性别有关”C .有90%以上的把握认为“该市居民能否做到‘光盘’与性别无关”D .有90%以上的把握认为“该市居民能否做到‘光盘’与性别有关”9.如果42a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数之和为2,则展开式中x 的系数是( )A .8B .8-C .16D .16-10.已知()2cos 4f x x x =+,()f x '为()f x 的导函数,则()f x '的图象大致是( )A .B .C .D .11.已知6件不同产品中有2件是次品,现对它们依次进行测试,直至找出所有次品为止.若恰在第4次测试后,就找出了所有次品,则这样的不同测试方法数是( ) A .24 B .72 C .96 D .36012.已知()y f x =为定义在R 上的单调递增函数,()y f x '=是其导函数,若对任意x ∈R 总有()()12017f x f x <',则下列大小关系一定正确的是( )A .()102017f e f ⎛⎫>⋅⎪⎝⎭ B .()102017f e f ⎛⎫<⋅ ⎪⎝⎭C .()2102017f e f ⎛⎫>⋅⎪⎝⎭D .()2102017f e f ⎛⎫<⋅ ⎪⎝⎭第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.曲线2y x =与y =所围成的封闭图形的面积为 .14.设某种机械设备能够连续正常工作10000小时的概率为0.85,能够连续正常工作15000小时的概率为0.75,现有一台连续工作了10000小时的这种机械,它能够连续正常工作到15000小时的概率是 . 15.若()2017201212x a a x a x -=++20172017a x ++L (x ∈R ),则12323111222a a a ++2017201712a ++L 的值为 .16.如果对定义在区间D 上的函数()f x ,对区间D 内任意两个不相等的实数1x ,2x ,都有()()1122x f x x f x +()()1221x f x x f x >+,则称函数()f x 为区间D 上的“H 函数”.给出下列函数及函数对应的区间 ①()32111322f x x x x =-+,(x ∈R );②()3cos sin f x x x x =+-,0,2x ⎛⎫∈ ⎪⎝⎭π; ③()()1xf x x e -=+,(),1x ∈-∞;④()ln f x x x =,10,x e ⎛⎫∈ ⎪⎝⎭.以上函数为区间D 上的“H 函数”的序号是 .(写出所有正确的序号)三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知复数()22431233a a z a a i a --=++-+(a ∈R ). (Ⅰ)若z z =,求a ;(Ⅱ)a 取什么值时,z 是纯虚数. 18.已知函数()321233f x x x x b =-++(b ∈R ). (Ⅰ)当0b =时,求()f x 在[]1,4上的值域;(Ⅱ)若函数()f x 有三个不同的零点,求b 的取值范围.19.在一次抽样调查中测得样本的6组数据,得到一个变量y 关于x 的回归方程模型,其对应的数值如下表:(Ⅰ)请用相关系数r 加以说明y 与x 之间存在线性相关关系(当0.81r >时,说明y 与x 之间具有线性相关关系);(Ⅱ)根据(Ⅰ)的判断结果,建立y 关于x的回归方程并预测当9x =时,对应的y 值为多少(ˆb精确到0.01).附参考公式:回归方程ˆˆa =+中斜率和截距的最小二乘法估计公式分别为: 1221ˆni ii nii x y nx ybxnx==-=-∑∑,ˆˆ=-ay bx ,相关系数r公式为:ni ix y nx yr -=∑参考数据:6147.64i ii x y==∑,621139i i x ==∑ 4.18= 1.53=.20.近几年来,我国许多地区经常出现干旱现象,为抗旱经常要进行人工降雨.现由天气预报得知,某地在未来5天的指定时间的降雨概率是:前3天均为12,后2天均为45,5天内任何一天的该指定时间没有降雨,则在当天实行人工降雨,否则,当天不实施人工降雨. (Ⅰ)求至少有一天需要人工降雨的概率; (Ⅱ)求不需要人工降雨的天数X 的分布列和期望. 21.已知函数()21ln 2f x x ax =-,a ∈R . (Ⅰ)求函数()f x 的单调区间;(Ⅱ)若关于x 的不等式()()11f x a x ≤--恒成立,求整数a 的最小值.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1C 的参数方程为cos x y =⎧⎪⎨=⎪⎩αα(α为参数),以原点O 为极点,x 轴正半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为sin 4⎛⎫+= ⎪⎝⎭πρθ(Ⅰ)求直角坐标系下曲线1C 与曲线2C 的方程;(Ⅱ)设P 为曲线1C 上的动点,求点P 到2C 上点的距离的最大值,并求此时点P 的坐标. 23.选修4-5:不等式选讲 已知函数()1f x x x a =++-. (Ⅰ)当3a =时,解不等式()5f x >;(Ⅱ)若关于x 的不等式()21f x a ≥-恒成立,求实数a 的取值范围.高二数学(理科)试题参考答案一、选择题1-5:ADBDB 6-10:CBDCA 11、12:CA二、填空题13.13 14.151715.1- 16.①② 三、解答题17.解:(Ⅰ)230230a a a +≠⎧⎨+-=⎩解得331a a a ≠-⎧⎨=-=⎩或所以1a =(Ⅱ)22304310230a a a a a +≠⎧⎪--=⎨⎪+-≠⎩解得311413a a a a a ≠-⎧⎪⎪==-⎨⎪≠≠-⎪⎩或且所以14a =-18.解:(Ⅰ)当0b =时,()321233f x x x x =-+,()243f x x x '=-+=()()13x x --, 当()1,3x ∈时,()0f x '<,故函数()f x 在()1,3上单调递减, 当()3,4x ∈时,()0f x '>,故函数()f x 在()3,4上单调递增. 由()30f =,()()4143f f ==. ∴()f x 在[]1,4上的值域为40,3⎡⎤⎢⎥⎣⎦;(Ⅱ)由(Ⅰ)可知,()243f x x x '=-+()()13x x =--,由()0f x '<得13x <<,由()0f x '>得1x <或3x >所以()f x 在()1,3上单调递减,在(),1-∞,()3,+∞上单调递增;所以()()413f x f b ==+极大值,()()3f x f b ==极小值 所以当403b +>且0b <,即403b -<<时,()10,1x ∃∈,()21,3x ∈,()33,4x ∈.使得()()()1230f x f x f x ===. 由()f x 的单调性知,当且仅当4,03b ⎛⎫∈- ⎪⎝⎭时,()f x 有三个不同零点. 19.解:(Ⅰ)由题意,计算()1234567 4.56x =⨯+++++=, ()13 2.48 2.08 1.86 1.48+1.10=26y =⨯++++,且6147.64i ii x y==∑4.18=1.53=ni ix y nx yr -=∑47.646 4.52 6.36=4.18 1.53 6.3954-⨯⨯=-⨯0.99≈-;∵0.81r >,说明y 与x 之间存在线性相关关系;(Ⅱ)1221ˆni ii ni i x y nx ybx nx==-=-∑∑247.646 4.52 6.360.361396 4.517.5-⨯⨯==-≈--⨯, ∴ˆˆ2ay bx =-=+0.36 4.5 3.62⨯= ∴y 与x 的线性回归方程是ˆ0.369 3.62y=-⨯+, 将9x =代入回归方程得ˆ0.369 3.620.38y=-⨯+=. 20.解:(Ⅰ)5天全不需要人工降雨的概率是3211422525P ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭ 故至少有1天需要人工降雨的概率是123125P -=.(Ⅱ)X 的取值是0,1,2,3,4,5()32111025200P X ⎛⎫⎛⎫==⨯=⎪ ⎪⎝⎭⎝⎭()321311125P X C ⎛⎫⎛⎫==⨯⨯+ ⎪ ⎪⎝⎭⎝⎭31211411255200C ⎛⎫⨯⨯⨯=⎪⎝⎭()32321331112252P X C C ⎛⎫⎛⎫⎛⎫==⨯⨯+⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭121455C ⨯⨯⨯+32144325200⎛⎫⎛⎫⨯= ⎪ ⎪⎝⎭⎝⎭ ()321314325P X C ⎛⎫⎛⎫==⨯⨯+ ⎪ ⎪⎝⎭⎝⎭32132114255C C ⎛⎫⨯⨯⨯⨯+⎪⎝⎭32117325200⎛⎫⎛⎫⨯= ⎪ ⎪⎝⎭⎝⎭ ()3121414255P X C ⎛⎫==⨯⨯⨯ ⎪⎝⎭3223145672520025C ⎛⎫⎛⎫+⨯⨯==⎪ ⎪⎝⎭⎝⎭ ()3214252525P X ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭∴不需要人工降雨的天数X 分布列是不需要人工降雨的天数X 的期望是()11143012200200200E X =⨯+⨯+⨯7372345 3.12002525+⨯+⨯+⨯= 21.解:(Ⅰ)()211ax f x ax x x-'=-=,函数()f x 的定义域为()0,+∞当0a ≤时,()0f x '>,则()f x 在()0,+∞上单调递增 当0a >时,令()0f x '=,则x =当0x <<()0f x '>,()f x 为增函数;当x >()0f x '<,()f x 为减函数.∴当0a ≤时,()f x 的单调递增区间为()0,+∞,无减区间. 当0a >时,()f x的单调递增区间为⎛ ⎝,单调递减区间为⎫+∞⎪⎪⎭(Ⅱ)由()21ln 112x ax a x -≤--得()()22ln 12x x a x x ++≤+ ∵0x >∴原命题等价于()22ln 12x x a x x++≥+在()0,+∞上恒成立.令()()22ln 12x x g x x x++=+, 则()()()()22212ln 2x x x g x xx -++'=+令()2ln h x x x =+,则()h x 在()0,+∞上单调递增 由()110h =>,112ln 2022h ⎛⎫=-+<⎪⎝⎭∴存在唯一01,12x ⎛⎫∈⎪⎝⎭,使()00h x =,002ln 0x x += ∴当00x x <<时,()0g x '>,()g x 为增函数 当0x x >时,()0g x '<,()g x 为减函数 ∴0x x =时()()002max 002ln 12x x g x x x ++==+()0000112x x x x +=+ ∴01a x ≥又01,12x ⎛⎫∈⎪⎝⎭,则()011,2x ∈由a ∈Z ,所以2a ≥ 故整数a 的最小值为2.22.解:(Ⅰ)由曲线1C:cos x y =⎧⎪⎨=⎪⎩αα,可得cos sin x =⎧⎪=αα,两式两边平方相加得:2213y x +=, 即曲线1C 在直角坐标系下的方程为:2213y x +=. 由曲线2C:()sin sin cos 4⎛⎫+=+= ⎪⎝⎭πρθθθ,即s i n c o s 80+-=ρθρθ,所以80x y +-=,即曲线2C 在直角坐标系下的方程为:80x y +-=.(Ⅱ)由(Ⅰ)知椭圆1C 与直线2C无公共点,椭圆上的点()cos P αα到直线80x y +-=的距离为d ==46⎛⎫=+- ⎪⎝⎭πα,∴当sin 16⎛⎫+=- ⎪⎝⎭πα即43=πα时,d的最大值为 此时点P 的坐标为13,22⎛⎫-- ⎪⎝⎭. 23.解:(Ⅰ)当3a =时,()135f x x x =++->,等价于:①1135x x x ≤-⎧⎨---+>⎩,得32x <-;②13135x x x -<<⎧⎨+-+>⎩,无解;③3135x x x ≥⎧⎨++->⎩,得72x >;综上,解集为32x x ⎧<-⎨⎩或72x ⎫>⎬⎭. (Ⅱ)()1f x x x a =++-=1x a x ++-≥1x a x ++-121a a =+≥-,则121a a +≥-或()121a a +≤--,11 得2a ≤,所以a 的取值范围为(],2-∞.。

高二下学期数学期末考试题理科(解析版)

高二下学期数学期末考试题理科(解析版)



, ,
所求线性回归方程为 ;
(2)由(1)知, ,故 年至 年该地区居民家庭人均纯收入逐年增加,平均每年增加 万元,
A. B.
C. D.
【答案】A
【解析】
【分析】
先求导数,再利用二次求导研究导函数零点以及对应区间导函数符号,即可判断选择.
【详解】
因此当 时, ;当 时, ;当 时, ;
故选:A
【点睛】本题考查利用导数研究函数单调性以及零点,考查基本分析判断能力,属中档题.
8.设函数 在区间 上单调递减,则实数 的取值范围是()
是偶函数,所以当 时, ,当 时, ,
所以使得 成立的 的取值范围是 .
故答案为:
【点睛】此题考查利用导函数讨论函数的单调性解决不等式相关问题,关键在于准确构造函数,需要在平常的学习中多做积累,常见的函数构造方法.
三、解答题(本题共6小题,共70分)
17.在平面直角坐标系xOy中,以原点O为极点, 轴的非负半轴为极轴建立极坐标系,曲线 的极坐标方程为 ,曲线 的参数方程为 ( 为参数),若曲线 与 相交于A、B两点.
【答案】8和9
【解析】
【分析】
根据 求得 ,利用二项式系数的性质可得展开式中二项式系数的最大.
【详解】解:由题意可得, ,即 ,解得 ,
∵ ,
故展开式中二项式系数的最大的项为第8项或第9项,
故答案为:8和9.
【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,二项式系数的性质,属于基础题.
P(X=50)= = ,
∴X的分布列为:
X
30
35
40
45
50
P

高二下学期期末考试数学(理)试卷(解析版)

高二下学期期末考试数学(理)试卷(解析版)

高二下学期期末考试数学(理)试卷 数学 注意事项: 1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、单选题 1.已知集合,,则 A .B .C .D .2.已知(为虚数单位) ,则 A .B .C .D .3.函数是定义在上的奇函数,当时,,则 A .B .C .D .4.下列命题中,真命题是 A . 若,且,则中至少有一个大于1 B .C .的充要条件是 D .5.因为对数函数是增函数,而是对数函数,所以是增函数,上面的推理错误的是A . 大前提B . 小前提C . 推理形式D . 以上都是6.已知向量,,若∥,则 A .B .C .D .7.若二项式的展开式中二项式系数的和是64,则展开式中的常数项为 A .B .C . 160D . 240 8.把边长为1的正方形ABCD 沿对角线BD 折起,使得平面ABD ⊥平面CBD ,形成三棱锥C ABD -的正视图与俯视图如图所示,则侧视图的面积为( ) A . 12 B .2 C . 14 D .4 9.某班级有6名同学去报名参加校学生会的4项社团活动。

若甲,乙两位同学不参加同一社团,每个社团都有人参加,每个人只参加一个社团,则不同的报名方案数为 A . 2160 B . 1320 C . 2400 D . 4320 10.已知双曲线C :的离心率e=2,圆A 的圆心是抛物线的焦点,且截双曲线C 的渐近线所得的弦长为2,则圆A 的方程为 A .B .C .D .11.设随机变量~(2,),~(4,)B p B p ξη若5(1)9P ξ≥=,则(2)P η≥的值为 A .3281 B .1127 C .6581 D .1681 12.已知函数的图像为曲线C ,若曲线C 存在与直线垂直的切线,则实数m 的取值范围是 A .B .C .D .此卷只装订不密封 班级姓名准考证号考场号座位号二、填空题13.等于____________.14.下表提供了某学生做题数量x (道)与做题时间y (分钟)的几组对应数据:根据上表提供的数据,得y 关于x 的线性回归方程为则表中t 的值为_____.15.某班有50名同学,一次数学考试的成绩X 服从正态分布2(110,10)N ,已知(100110)0.34P X ≤≤=,估计该班学生数学成绩在120分以上有 人.16.已知函数的图像关于直线对称,则__________.三、解答题17.在锐角三角形中,角的对边分别为,且.(1)求角的大小;(2)若,求的值.18.某学生社团对本校学生学习方法开展问卷调查的过程中发现,在回收上来的1000份有效问卷中,同学们背英语单词的时间安排有两种:白天背和晚上临睡前背。

2022年年高二下学期数学(理)期末试卷(附答案)

2022年年高二下学期数学(理)期末试卷(附答案)

年高二下学期数学(理)期末试卷考试说明:(1)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分, 满分150分.考试时间为120分钟;(2)第I 卷,第II 卷试题答案均答在答题卡上,交卷时只交答题卡.第I 卷 (选择题, 共60分)一、选择题(本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的)1. 若复数z 满足()543=-z i ,则z 的虚部为 A. i 54- B.54- C. i 54 D.542. 命题“0232,2≥++∈∀x x R x ”的否定为A.0232,0200<++∈∃x x R xB. 0232,0200≤++∈∃x x R xC. 0232,2<++∈∀x x R xD. 0232,2≤++∈∀x x R x3. 已知随机变量ξ服从正态分布2(1,)N σ,且(2)0.6P ξ<=,则(01)P ξ<<= A. 0.4 B. 0.3 C. 0.2 D. 0.14. 在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为A.()()q p ⌝∨⌝B.()q p ⌝∨C.()()q p ⌝∧⌝D.q p ∨5. 某校从高一中随机抽取部分学生,将他们的模块测试成绩分成6组:[)[),60,50,50,40[)[),80,70,70,60 [)[)100,90,90,80加以统计,得到如图所示的频率分布直方图.已知 高一共有学生600名,据此 统计,该模块测试成绩不少于60分的学生人数为A.588B.480C.450D.120 6. 若不等式62<+ax 的解集为()2,1-,则实数a 等于A.8B.2C.4-D.8- 7. 在极坐标系中,圆2cos 2sin ρθθ=+的圆心的极坐标是A. (1,)2πB. (1,)4πC. (2,)4πD. (2,)2π8. 已知2=x 是函数23)(3+-=ax x x f 的极小值点, 那么函数)(x f 的极大值为 A. 15 B. 16 C. 17 D. 189. 阅读如下程序框图, 如果输出5=i ,那么在空白矩形框中应填入的语句为 A. 22-*=i S B. 12-*=i S C. i S *=2 D. 42+*i10. 袋中有20个大小相同的球,其中记上0号的有10个,记上n 号的有n 个(n =1,2,3,4).现从袋中任取一球,ξ表示所取球的标号. 若η2-=ξa ,1)(=ηE , 则a 的值为A. 2B.2-C. 5.1D. 311. 观察下列数的特点:1,2,2,3,3,3,4,4,4,4,… 中,第100项是A .10 B. 13 C. 14 D.10012. 若函数x x f a log )(=的图象与直线x y 31=相切,则a 的值为 A. 2e e B. e3e C. e e5D. 4ee第Ⅱ卷 (非选择题, 共90分)二、填空题(本大题共4小题,每小题5分,共20分.将答案填在答题卡相应的位置上)13. 曲线⎩⎨⎧==ααsin 4cos 6y x (α为参数)与曲线⎩⎨⎧==θθsin 24cos 24y x (θ为参数)的交点个数 为__________个.14. 圆222r y x =+在点()00,y x 处的切线方程为200r y y x x =+,类似地,可以求得椭圆183222=+y x 在()2,4处的切线方程为________.15. 执行右面的程序框图,若输入的ε的值为25.0,则输出的n 的值为_______.16. 商场每月售出的某种商品的件数X 是一个随机变量, 其分布列如右图. 每售出一件可 获利 300元, 如果销售不出去, 每件每月需要保养费100元. 该商场月初进货9件这种商品, 则销售该商品获利的期望为____.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) X 1 2 3···12P121121 121 ···1210,1==S i1+=i i 输出i结束开始i 是奇数12+*=i S10<S是否否 是第9题图17. 在平面直角坐标系xOy 中,直线l 的参数方程为232252x t y t ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数).在极 坐标系(与直角坐标系xOy 取相同的单位长度,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为25sin ρθ=. (I )求圆C 的直角坐标方程;(II )设圆C 与直线l 交于,A B 两点,若点P 坐标为(3,5),求PB PA ⋅的值.18. 目前四年一度的世界杯在巴西举行,为调查哈三中高二学生是否熬夜看世界杯用简单随机抽样的方法调查了110名高二学生,结果如下表:男 女 是 40 20 否2030(I )若哈三中高二共有1100名学生,试估计大约有多少学生熬夜看球; (II )能否有99%以上的把握认为“熬夜看球与性别有关”? 2()P K k ≥0.050 0.010 0.001 k3.8416.63510.82822()()()()()n ad bc K a b c d a c b d -=++++19. 数列{}n a 中,11=a ,且12111+=++n a a nn ,(*∈N n ). (Ⅰ) 求432,,a a a ;(Ⅱ) 猜想数列{}n a 的通项公式并用数学归纳法证明.20. 已知函数x x f ln )(=,函数)(x g y =为函数)(x f 的反函数.(Ⅰ) 当0>x 时, 1)(+>ax x g 恒成立, 求a 的取值范围; (Ⅱ) 对于0>x , 均有)()(x g bx x f ≤≤, 求b 的取值范围.性别是否熬夜看球21. 哈三中高二某班为了对即将上市的班刊进行合理定价,将对班刊按事先拟定的价格进行试销,得到如下单价x (元) 8 8.2 8.4 8.6 8.8 9 销量y (元)908483807568(I )求回归直线方程y bx a =+;(其中121()(),()n i i i ni i x x y y b a y bx x x ==∑--==-∑-)(II )预计今后的销售中,销量与单价服从(I )中的关系,且班刊的成本是4元/件,为了获得最大利润,班刊的单价定为多少元?22. 已知函数a x f -=)(x2ex a e )2(-+x +,其中a 为常数.(Ⅰ) 讨论函数)(x f 的单调区间;(Ⅱ) 设函数)e 2ln()(x ax h -=2e 2--+x a x (0>a ),求使得0)(≤x h 成立的x 的最小值; (Ⅲ) 已知方程0)(=x f 的两个根为21,x x , 并且满足ax x 2ln 21<<.求证: 2)e e (21>+x x a .数学答案一. 解答题:22. (Ⅰ) 因为)1)(12()(+-+='xxae e x f ,所以, 当0≤a 时, 函数)(x f 在),(+∞-∞上为单调递增函数; 当0>a 时, 函数)(x f 在)1ln,(a-∞上为单调递增, 在).1(ln ∞+a 上为单调递减函数.(Ⅲ) 由(Ⅰ)知当0≤a 时, 函数)(x f 在),(+∞-∞上为单调递增函数, 方程至多有一根,所以0>a ,211ln ,0)1(ln x ax a f <<>,又因为 =--)())2(ln(11x f e a f x 022)2ln(111>--+-x ae e a xx ,所以0)())2(ln(11=>-x f e a f x , 可得2)2ln(1x e ax<-.即212xx e e a<-, 所以2)(21>+x x e e a .。

高二下学期数学期末考试卷(解析版)理科

高二下学期数学期末考试卷(解析版)理科
所以 7分
法二:把 化为普通方程得 ,5分
令 得点P坐标为 ,又因为直线 恰好经过圆 的圆心 ,
故 7分
考点:1、求圆的极坐标方程;2、直线与圆相交.
20.已知函数f(x)= x2+lnx.
(1)求函数f(x)的单调区间;
(2)求证:当x>1时, x2+lnx< x3.
【答案】(1) f(x)的单调增区间为(0,+∞) (2)略
14. 5个人站成一排,其中甲、乙两人不相邻的排法有种(用数字作答).
【答案】72
【解析】
可分两个步骤完成,第一步骤先排除甲乙外的其他三人,有 种,第二步将甲乙二人插入前人形成的四个空隙中,有 种,则甲、乙两不相邻的排法有 种.
15.如果复数 的实部和虚部互为相反数,那么实数 的值为__
【答案】
【解析】
试题解析:(1)∵C1的参数方程为
∴(x-4)2+(y-5)2=25(cos2t+sin2t)=25,
即C1的直角坐标方程为(x-4)2+(y-5)2=25,
把 代入(x-4)2+(y-5)2=25,
化简得: .
(2)C2的直角坐标方程为x2+y2=2y,C1的直角坐标方程为(x-4)2+(y-5)2=25,
9.点 的直角坐标是 ,则点 的极坐标为( )
A. B. C. D.
【答案】C
【解析】
分析:利用 , , ,先将点M的直角坐标是 ,之后化为极坐标即可.
详解:由于 ,得 ,
由 ,得 ,
结合点在第二象限,可得 ,
则点M的坐标为 ,故选C.
点睛:该题考查的是有关平面直角坐标与极坐标的转化,需要注意极坐标的形式,以及极径 和极角 的意义,利用 来得,根据点所属的象限得到相应的正角,从而得到结果.

高二数学下学期期末考试理科试题含答案

高二数学下学期期末考试理科试题含答案

第二学期高二年级期末考试数学试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.每小题给出的四个选项中只有一项是符合题目要求的.1.复数z 满足()134i z i -=+,则z =( )A.52B.2C. D.52.设集合{}419A x x =-≥,03x B xx ⎧⎫=≤⎨⎬+⎩⎭,则A B ⋂等于( )A.(3,2]--B.5(3,2]0,2⎡⎤--⋃⎢⎥⎣⎦C.5(,2],2⎛⎫-∞-⋃+∞ ⎪⎝⎭ D.5(,3),2⎡⎫-∞-⋃+∞⎪⎢⎣⎭3.二项式(52x +的展开式中,3x 的系数为( )A.80B.40C.20D.104.由直线2y x =及曲线24y x x =-围成的封闭图形的面积为( ) A.1B.43C.83D.45.已知命题:p 若0x >,则sin x x <,命题 :q 函数2()2xf x x =-有两个零点,则下列说法正确的是( )①p q ∧为真命题;②p q ⌝∨⌝为真命题;③p q ∨为真命题;④p q ⌝∨为真命题 A.①②B.①④C.②③D.①③④6.函数3()1f x ax x =++有极值的一个充分不必要条件是( ) A.1a <- B.1a <C.0a <D.0a >7.为了解某社区居民的家庭年收入年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:但是统计员不小心丢失了一个数据(用m 代替),在数据丢失之前得到回归直线方程为0.760.4y x =+,则m 的值等于( )A.8.60B.8.80C.9.25D.9.528.2020年全国高中生健美操大赛,某市高中生代表队运动员由2名男生和3名女生共5名同学组成,这5名同学站成一排合影留念,则3名女生中有且只有两位女生相邻的排列种数共有( ) A.36B.54种C.72种D.144种9.《易经》是中国传统文化中的精髓.下图是易经先天八卦图(记忆口诀:乾三连、坤六断、巽下断、震仰盂、坎中满、离中虚、艮覆碗、兑上缺),每一卦由三根线组成(“”表示一根阳线,“”表示一根阴线),现从八卦中任取两卦,已知每卦都含有阳线和阴线,则这两卦的六根线中恰有四根阳线和两根阴线的概率为( )A.13B.514C.314D.1510.观察下列算式:311=3235=+ 337911=++ 3413151719=+++若某数3n 按上述规律展开后,发现等式右边含有“2021”这个数,则n =( ) A.42B.43C.44D.4511.如图是一个质地均匀的转盘,一向上的指针固定在圆盘中心,盘面分为A ,B ,C 三个区域,每次转动转盘时,指针最终都会随机停留在A ,B ,C 中的某一个区域,且指针停留在区域A ,B 的概率分别是p 和1206p p ⎛⎫<<⎪⎝⎭.每次转动转盘时,指针停留在区域A ,B ,C 分别获得积分10,5,0.设某人转动转盘3次获得总积分为5的概率为()f p ,则()f p 的最大值点0p 的值为( )A.17B.18C.19D.11012.定义在(2,2)-上的函数()f x 的导函数为()f x ',已知2(1)f e =,且()2()f x f x '>,则不等式24(2)xe f x e -<的解集为( )A.(1,4)B.(2,1)-C.(1,)+∞D.(0,1)二、填空题:本大题共4小题,每小题5分,共20分. 13.命题“0x ∃<,220x x -->”的否定是“______”. 14.曲线1ln y x x=-在1x =处的切线在y 轴上的截距为______. 15.我国在2020年11月1日零时开始展开第七次全国人口普查,甲、乙等5名志愿者参加4个不同社区的人口普查工作,要求每个社区至少安排1名志愿者,每名志愿者只去一个社区,则不同的安排方法共有______种.16.甲乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时停止.设甲、乙在每局中获胜的概率均为12,且各局胜负相互独立,比赛停止时一共打了ξ局,则ξ的方差()D ξ=______.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)已知函数()|3|f x x =-,()|4|g x x m =-++. (1)当9m =时,解关于x 的不等式()()f x g x >;(2)若()()f x g x >对任意x R ∈恒成立,求实数m 的取值范围. 18.(本小题满分12分)盲盒里面通常装的是动漫、影视作品的周边,或者设计师单独设计出来的玩偶.由于盒子上没有标注,购买者只有打开才会知道自己买到了什么,因此这种惊喜吸引了众多年轻人,形成了“盲盒经济”.某款盲盒内可能装有某一套玩偶的A ,B ,C 三种样式,且每个盲盒只装一个.(1)某销售网点为调查该款盲盒的受欢迎程度,随机发放了200份问卷,并全部收回.经统计,有30%的人购买了该款盲盒,在这些购买者当中,女生占23;而在未购买者当中,男生女生各占50%.请根据以上信息填写下表,并判断是否有95%的把握认为购买该款盲盒与性别有关?附:)22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.参考数据:(2)该销售网点已经售卖该款盲盒6周,并记录了销售情况,如下表:由于电脑故障,第二周数据现已丢失,该销售网点负责人决定用第4、5、6周的数据求线性回归方程,再用第1,3周数据进行检验.①请用4,5,6周的数据求出)关于x 的线性回归方程y bx a =+;(注:()()()1122211n niii ii i nniii i x x y y x y nx yb x x xnx====---==--∑∑∑∑,a y bx =-)②若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2盒,则认为得到的线性回归方程是可靠的,试问①中所得的线性回归方程是否可靠? 19.(本小题满分12分)在某学校某次射箭比赛中,随机抽取了100名学员的成绩(单位:环),并把所得数据制成了如下所示的频数分布表; (1)求抽取的样本平均数x (同一组中的数据用该组区间的中点值作代表);(2)已知这次比赛共有2000名学员参加,如果近似地认为这次成绩Z 服从正态分布()2,N μσ(其中μ近似为样本平均数x ,2σ近似为样本方差2 1.61s =),且规定8.27环是合格线,那么在这2000名学员中,合格的有多少人?(3)已知样本中成绩在[9,10]的6名学员中,有4名男生和2名女生,现从中任选3人代表学校参加全国比赛,记选出的男生人数为ξ,求ξ的分布列与期望E ξ. [附:若()2~,Z N μσ,则()0.6827P Z μσμσ-<<+=,(22)0.9545P Z μσμσ-<<+=, 1.27≈,结果取整数部分]20.(本小题满分12分) 已知()23x x f e x e =--. (1)求函数()f x 的解析式; (2)求函数()f x 的值域;(3)若函数1()g x f kx x ⎛⎫=-⎪⎝⎭在定义域上是增函数,求实数k 的取值范围. 21.(本小题满分12分)随着5G 通讯技术的发展成熟,移动互联网短视频变得越来越普及,人们也越来越热衷于通过短视频获取资讯和学习成长.某短视频创作平台,为了鼓励短视频创作者生产出更多高质量的短视频,会对创作者上传的短视频进行审核,通过审核后的短视频,会对用户进行重点的分发推荐.短视频创作者上传一条短视频后,先由短视频创作平台的智能机器人进行第一阶段审核,短视频审核通过的概率为35,通过智能机器人审核后,进入第二阶段的人工审核,人工审核部门会随机分配3名员工对该条短视频进行审核,同一条短视频每名员工审核通过的概率均为12,若该视频获得2名或者2名以上员工审核通过,则该短视频获得重点分发推荐.(1)某创作者上传一条短视频,求该短视频获得重点分发推荐的概率;(2)若某创作者一次性上传3条短视频作品,求其获得重点分发推荐的短视频个数的分布列与数学期望.22.(本小题满分12分)已知2()sin sin xxf x x e xe x ax a x =--+. (1)当()f x 有两个零点时,求a 的取值范围; (2)当1a =,0x >时,设()()sin f x g x x x=-,求证:()ln g x x x ≥+.六安一中2020~2021学年第二学期高二年级期末考试数学试卷(理科)参考答案一、选择题:二、填空题:13.0x ∀<,220x x --≤ 14.-315.240 16.114三、解答题:17.解:(1)当9m =时,由()()f x g x >,得341x x -++>,4349x x x <-⎧⎨--->⎩或43349x x x -≤≤⎧⎨-++>⎩或3349x x x >⎧⎨-++>⎩ 解得,5x <-或x 无解或4x >, 故不等式的解集为(,5)(4,)x ∈-∞-⋃+∞.(2)因为()()f x g x >恒成立,即|3||4|x x m ->-++恒成立, 所以|3||4|m x x <-++恒成立,所以min (|3||4|)m x x <-++, 因为|3||4||(3)(4)|7x x x x -++≥--+=(当43x -≤≤时取等号)所以min (|3||4|)7x x -++=,所以实数m 的取值范围是(,7)-∞. 18.解:(1)则2 4.714 3.8411109060140K =≈>⨯⨯⨯,故有95%的把握认为“购买该款盲盒与性别有关”. (2)①由数据,求得5x =,27y =,由公式求得222(45)(2527)(55)(2627)(65)(3027)5ˆ(45)(55)(65)2b--+--+--==-+-+-, 5ˆˆ27514.52ay bx =-=-⨯=, 所以y 关于x 的线性回归方程为ˆ 2.514.5yx =+. ②当1x =时,ˆ 2.5114.517y=⨯+=,|1716|2-<; 同样,当3x =时,ˆ 2.5314.522y=⨯+=,|2223|2-<. 所以,所得到的线性回归方程是可靠的.19.解:(1)由所得数据列成的频数分布表,得样本平均数4.50.055.50.186.50.287.50.268.50.179.50.067x =⨯+⨯+⨯+⨯+⨯+⨯=(2)由(1)知~(7,1.61)Z N ,10.6827(8.27)0.158652P Z -∴≥==∴在这2000名学员中,合格的有:20000.15865317⨯≈人(3)由已知得ξ的可能取值为1,2,31242361(1)5C C P C ξ===,2142363(2)5C C P C ξ===,3042361(3)5C C P C ξ===, ξ∴的分布列为:1232555E ξ=⨯+⨯+⨯=(人)20.解:(1)令x e t =,(0)t >,则ln x t =,由()23x x f e x e =--,得()ln 23f t t t =--, 所以函数()f x 的解析式为()ln 23f x x x =--.(2)依题意知函数的定义域是(0,)+∞,且1()2f x x'=-, 令()0f x '>,得102x <<,令()0f x '<,得12x >,故()f x 在10,2⎛⎫ ⎪⎝⎭上单调递增,在1,2⎛⎫+∞⎪⎝⎭上单调递减, 所以max 1()ln 242f x f ⎛⎫==--⎪⎝⎭;又因为0x →,()f x →-∞, 所以函数()f x 的值域为(,ln 24]-∞--.(3)因为12()ln 3g x f kx x kx x x ⎛⎫=-=---- ⎪⎝⎭在(0,)+∞上是增函数, 所以212()0g x k x x '=-+-≥在(0,)+∞上恒成立, 则只需2min 12k x x ⎛⎫≤-+ ⎪⎝⎭,而221211112488x x x ⎛⎫-+=--≥- ⎪⎝⎭(当4x =时取等号),所以实数k 的取值范围为1,8⎛⎤-∞- ⎥⎝⎦.21.解:(1)设“该短视频获得重点分发推荐”为事件A ,则21302333311113()C 115222210P A C ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=⨯⨯-+⨯-=⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦ (2)设其获得重点分发推荐的短视频个数为随机变量X ,X 可取0,1,2,3.则3~3,10X B ⎛⎫⎪⎝⎭, 030333343(0)110101000P X C ⎛⎫⎛⎫==⨯-= ⎪ ⎪⎝⎭⎝⎭;121333441(1)110101000P X C ⎛⎫⎛⎫==⨯-= ⎪ ⎪⎝⎭⎝⎭; 212333189(2)110101000P X C ⎛⎫⎛⎫==⨯-= ⎪ ⎪⎝⎭⎝⎭;30333327(3)110101000P X C ⎛⎫⎛⎫==⨯-= ⎪ ⎪⎝⎭⎝⎭, 所以随机变量X 的分布列如下:343441189279()0123100010001000100010E X =⨯+⨯+⨯+⨯=(或39()31010E X =⨯=) 22.解:(1)由题知,()()(sin )x f x xe a x x =--有两个零点,sin 0x x -=时,0x =故当0x xe a -=有一个非零实根设()x h x xe =,得()(1)xh x x e '=+,()h x ∴在(,1)-∞-上单调递减,在(1,)-+∞上单调递增.又1(1)h e-=-,(0)0h =,0x >时,(0)0h >;0x <时,(0)0h <. 所以,a 的取值范围是1a e=-或0a >. (2)由题,()()1sin x f x g x xe x x==--法一:()1ln ln x x xe x x xe -≥+=,令0x t xe =>,令()ln 1(0)H t t t t =-->11()1t H t t t -'=-=()H x ∴在(0,1)上单调递减,在(1,)+∞上单调递增. ()(1)0H x H ∴≥=.1ln x xe x x ∴-≥+法二:要证1ln x xe x x -≥+成立故设()ln 1xM x xe x x =---,1()(1)xM x x e x ⎛⎫'=+-⎪⎝⎭,(0)x >, 令1()x N x e x =-,则21()0x N x e x'=+>,()N x ∴在(0,)+∞上单调递增又1202N ⎛⎫=<⎪⎝⎭,(1)10N e =->, 01,12x ⎛⎫∴∃∈ ⎪⎝⎭使()00N x =.001x e x ∴=,00ln x x =-,()M x ∴在()00,x 上单调递减,在()0,x +∞上单调递增.()0min 0000[()]ln 10x M x M x x e x x ∴==---=.1ln x xe x x ∴-≥+。

高中二年级下期理科数学期末试题、

高中二年级下期理科数学期末试题、

高中二年级下期理科数学期末试题一.选择题:(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1、曲线y=x 3-2x 2+2xx ln 在点(1,-1)处切线的倾斜角为( )A 30º B 45º C 135º D 150º2、(1+x)2+(1+x)3+…+(1+x)100中的x 2的系数等于 ( ) A.161700, B.161699, C.166649, D.166650 3、给出以下命题: ⑴若,⎰<bdx x f a0)(则f(x)<0; ⑵dx x ⎰ππ2-cos =6;⑶f(x)的原函数为F(x),且F(x)是以T 为周期的函数,则⎰adx x f 0)(=⎰+aT Tdx x f )(=aF 0|x )(=T a T F +|x )(;其中正确命题的个数为( ) (A)1 (B)2 (C)3 (D)04、如果复数(1+2i )(b-i)是纯虚数,则|ii ++23b 2|的值为 ( )A.5B.2C.5D.155、我国航天员杨利伟在神州六的太空实验中,要先后实施6个程序,其中程序B 只能出现在第一步或最后一步,程序C.D 必须相邻,请问实验顺序的编排方法共有 ( ) A.24种 B.96种C.120种D.144种6、(原创)函数y=|x 3+3x 2-9x+5|的极值和x 轴的交点各有几个 ( )A. 1、2B. 2、2C. 3、2 D 3、37、设随即变量ξ服从正态分布N (0,1)p(ξ>a)=P ,则P(-a<ξ<0)=( )(a>0)A .2p B .C .D .21-p8、已知ξ的分布列如下:η=2ξ-10ηA.36179 B. 36143 C. 72299 D. 722279、已知f(x)=x +3x +x 5+x 7, 且x 1+x 2>0, x 2+x 3>0, x 3+x 1>0则 ( ) A .f(x 1)+f(x 2)+f(x 3)>0 B .f(x 1)+f(x 2)+f(x 3)<0C. f(x 1)+f(x 2)+f(x 3)=0 D .f(x 1)+f(x 2)+f(x 3)符号不能确定.10、(原创)已知函数y=f(x)是定义在(0,10)上的可导函数,满足x )(f x ' <2f(x),则( )A.f(2)>4f(1).B.4f(2)>9f(3).C.9f(5)<25f(3).D.f(1)<25f(5)p -1p 21-二、填空题:本大题共5小题,每小题5分,共25分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D. x∈{x是无理数},x2是有理数
4.将甲、乙两枚骰子先后各抛一次,a、b分别表示抛掷甲、乙两枚骰子所出现的点数.若点P(a,b)落在直线x+y=m(m为常数)上,且使此事件的概率最大,则此时m的值为()
A. 6B. 5C. 7D. 8
5.已知点 在抛物线 上,则当点 到点 的距离与点 到抛物线焦点距离之和取得最小值时,点 的坐标为()
(1)求椭圆 的方程;
(2)当 的面积最大时,求 的方程.
22.(本小题12分)已知函数 .
(1)讨论 的单调性;
(2)若存在 ,求 的取值围.
2017年下学期期末考试试卷
高二数学(理科)参考答案
1.D
解析:由已知动点P的轨迹是以F1,F2为焦点的双曲线的右支,且a=3,c=5,b2=c2-a2=16,
高二下学期数学期末考试试卷(理科)
(时间:120分钟,分值:150分)
一、单选题(每小题5分,共60分)
1.平面有两个定点F1(-5,0)和F2(5,0),动点P满足|PF1|-|PF2|=6,则动点P的轨迹方程是()
A. - =1(x≤-4)B. - =1(x≤-3)
C. - =1(x≥4)D. - =1(x≥3)
数据:参考公式:用最小二乘法求出 关于 的线性回归方程为: ,
其中: , ,
参考数值: 。
(Ⅰ)求出 ;
(Ⅱ)根据上表提供的数据可知公司所获利润 万元与科研费用支出 万元线性相关,请用最小二乘法求出 关于 的线性回归方程 ;
(Ⅲ)试根据(Ⅱ)求出的线性回归方程,预测该公司科研费用支出为10万元时公司所获得的利润。
2.用九韶算法计算f(x)=3x6+4x5+5x4+6x3+7x2+8x+1当x=0.4时的值,需要进行乘法运算和加法运算的次数分别为( )
A.6,6B.5,6C.6,5D.6,12
3.下列存在性命题中,假命题是( )
A. x∈Z,x2-2x-3=0
B.至少有一个x∈Z,x能被2和3整除
C.存在两个相交平面垂直于同一条直线
7.A
【解பைடு நூலகம்】因为函数 在 上是增函数,所以 在 上恒成立,所以 ,故选A.
考点:由函数在区间上的单调性求参数围.
8.B
【解析】从茎叶图中可以发现这样本中空气质量优的天数为2,
空气质量良的天数为4,
该样本中空气质量优良的频率为 ,从而估计该月空气质量优良的天数为
19.(本小题12分)已知棱长为 的正方体 中, 是 的中点, 为 的中点.
(1)求证: ;
(2)求异面直线 与 所成角的余弦值.
20.(本小题12分)已知抛物线 和直线 , 为坐标原点.
(1)求证: 与 必有两交点;
(2)设 与 交于 两点,且直线 和 斜率之和为 ,求 的值.
21.(本小题12分)已知椭圆 : 的左、右焦点分别为 且离心率为 ,过左焦点 的直线 与 交于 两点, 的周长为 .
由于S=1+2+3+…+i= ,
当i=12时,S= =78<81,
当i=13时,S= =91>81,满足退出循环的条件,故输出i的值为13+1=14.
故选:A.
点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括顺序结构、条件结构、循环结构,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.
A. B. C. D.
6.按右图所示的程序框图,若输入 ,则输出的 =()
A.14B.17
C.19D.21
7.若函数 在上是增函数,则实数k的取值围是()
A. B.
C. D.
8.空气质量指数(Air Quality Index,简称AQI)是定量描述空气质量状况的无量纲指数,空气质量按照AQI大小分为六级:0~50为优,51~100为良。101~150为轻度污染,151~200为中度污染,201~250为重度污染,251~300为严重污染。一环保人士记录去年某地某月10天的AQI的茎叶图。利用该样本估计该地本月空气质量状况优良(AQI≤100)
12.已知函数 在区间 上存在极值,则实数a的取值围是( )
A. B. C. D.
二、填空题(每小题5分,共20分)
13.已知函数 ,在区间 上任取一个实数 ,则使得 的概率为____________.
14.直线 与曲线 围成图形的面积为________
15.设经过点 的等轴双曲线的焦点为 ,此双曲线上一点 满足 ,则 的面积___________
∴所求轨迹方程为 - =1(x≥3).
答案:D
2.A
【解析】改写多项式 ,则需进行6次乘法和6次加法运算,故选A.
3.C
【解析】 x=-1,x2-2x-3=0;x=6时x能被2和3整除;两个平面垂直于同一条直线则这两个平面必平行;x= 时x2是有理数,所以假命题是C.
4.C
【解析】由题意易知将甲、乙两枚骰子先后各抛一次,点(a,b)共有36种情况,其中当a+b=7时,共有6种情况,即(1,6),(2,5),(3,4),(4,3),(5,2),(6,1),此时概率最大,故当m=7时,事件的概率最大.选C。
16.函数 ,对任意 ,恒有 ,则 的最小值为________.
三、解答题
17.(本小题10分)已知命题p:实数x满足x2-5ax+4a2<0,其中a>0,命题q:实数x满足 .
(1)若a=1,且p∧q为真,数x的取值围;
(2)若¬p是¬q的充分不必要条件,数a的取值围.
18.(本小题12分)某公司近年来科研费用支出 万元与公司所获利润 万元之间有如表的统计
的天数(这个月按30计算) ()
A.15B.18
C.20D.24
9.向量 ,若 ,则 的值为()
A. B.
C. D.
10.已知 为自然对数的底数,则曲线 在点 处的切线方程为()
A. B. C. D.
11.已知双曲线 ( )的一条渐近线被圆 截得的弦长为2,则该双曲线的离心率为()
A. B. C. D.
5.D
【解析】根据抛物线的定义P到焦点的距离等于P到准线的距离,所以点 到点 的距离与点 到抛物线焦点距离之和最小,只需点 到点 的距离与点P到准线的距离之和最小,过点 作准线的垂线,交抛物线于点P,此时距离之和最小,点P的坐标为 .
6.A
【解析】执行程序,可得程序框图的功能是计算S=1+2+3+ 的值,当S>81时,输出i+1的值.
相关文档
最新文档