小学数学行程问题
小学数学中的行程问题公式及解析

小学数学中的行程问题公式及解析一、基本行程问题行程问题的三个基本量是距离、速度和时间,按所行方向的不同可分为三种:(1)相遇问题:(2)相离问题;(3)追及问题。
行程问题的主要数量关系是:距离=速度x时间。
它大致分为以下三种情况:(1)相向而行:相遇时间=距离÷速度和(2)相背而行:相背距离=速度和*时间。
(3)同向而行:速度慢的在前,快的在后。
追及时间=追及距离÷速度差在环形跑道上,速度快的在前,慢的在后。
追及距离=速度差x时间。
解决行程问题时,要注意充分利用图示把题中的情节形象地表示出来,有助于分析数量关有助于迅速地找到解题思路。
(一)相遇问题行程问题是研究相向运动中的速度、时间和路程三者之间关系的问题,(涉及两个或两个物体运动的问题)指两个运动的物体同时由两地出发相向而行,在途中相遇,这类应用题相遇问题。
数量关系:路程÷速度和=相遇时间路程÷相遇时间=速度和速度和x相遇时间=路程温馨提示:(1)在处理相遇问题时,一定要注意公式的使用时二者发生关系那一时刻所处的状态;(2)在行程问题里所用的时间都是时间段,而不是时间点(非常重要);(3)无论是在哪类行程问题里,只要是相遇,就与速度和有关。
(2)解题秘诀:(3)(1)必须弄清物体运动的具体情况,运动方向(相向),出发地点(两地),出发时间(同时、先后),运动路径(封闭、不封闭),运动结果(相遇)等。
(4)(2)要充分运用图示、列表等方法,正确反映出数量之间的关系,帮助我们理解题意,迅速的找到解题思路。
(二)追及问题追及问题也是行程问题中的一种情况。
这类应用题的特点是:①两个物体同时同一方向运动;②出发的地点不同(或从同一地点不同时出发,向同一方向运动);迫及路程=路程差=两个物体之间相距的路程迫及速度=速度差=快的速度-慢的速度慢的物体追上快的物体的所用的时间为追及时间③慢者在前,快者在后,因而快者离慢者越来越近,最后终于可以追上。
小学数学典型应用题行程问题

行程问题经典题型(一)1、甲、乙两地相距6千米,某人从甲地步行去乙地,前一半时间平均每分钟行80米,后一半时间平均每分钟行70米。
问他走后一半路程用了多少分钟?2、小明从家到学校有两条一样长的路,一条是平路,另一条是一半上坡路、一半下坡路。
小明上学走两条路所用的时间一样多。
已知下坡的速度是平路的1.5倍,那么上坡的速度是平路的多少倍?3、一只小船从甲地到乙地往返一次共用2小时,回来时顺水,比去时的速度每小时多行驶8千米,因此第二小时比第一小时多行驶6千米。
那么甲、乙两地之间的距离是多少千米?4、一条电车线路的起点站和终点站分别是甲站和乙站,每隔5分钟有一辆电车从甲站发出开往乙站,全程要走15分钟。
有一个人从乙站出发沿电车线路骑车前往甲站。
他出发的时候,恰好有一辆电车到达乙站。
在路上他又遇到了10辆迎面开来的电车。
到达甲站时,恰好又有一辆电车从甲站开出。
问他从乙站到甲站用了多少分钟?5、甲、乙两人在河中游泳,先后从某处出发,以同一速度向同一方向游进。
现在甲位于乙的前方,乙距起点20米,当乙游到甲现在的位置时,甲将游离起点98米。
问:甲现在离起点多少米?6、甲、乙两辆汽车同时从东西两地相向开出,甲每小时行56千米,乙每小时行48千米,两车在离两地中点32千米处相遇。
问:东西两地的距离是多少千米?7、李华步行以每小时4千米的速度从学校出发到20.4千米外的冬令营报到。
0.5小时后,营地老师闻讯前往迎接,每小时比李华多走1.2千米。
又过了1.5小时,张明从学校骑车去营地报到。
结果3人同时在途中某地相遇。
问:骑车人每小时行驶多少千米?8、快车和慢车分别从甲、乙两地同时开出,相向而行,经过5小时相遇。
已知慢车从乙地到甲地用12.5小时,慢车到甲地停留0.5小时后返回,快车到乙地停留1小时后返回,那么两车从第一次相遇到第二次相遇需要多少时间?9、某校和某工厂之间有一条公路,该校下午2时派车去该厂接某劳模来校作报告,往返需用1小时。
小学数学10种经典行程问题解法总结

小学数学10种经典行程问题解法总结行程问题是小学数学应用题中的基本问题,它包含了简单的相遇及追及问题、多人相遇追及问题、多次相遇追及问题、流水行船问题、环形跑道问题、钟面行程问题、火车过桥问题、猎狗追兔问题等,但万变不离其宗。
行程问题是物体匀速运动的应用题。
不论是同向运动还是相向运动,最后反映出来的基本关系式都可以归纳为:路程=速度×时间。
要想解答行程问题,首先要弄清物体的具体运动情况,可以在纸上画出相应的运动轨迹,更方便观察思考。
以下是总结的10种经典行程问题的相关解法。
一、简单相遇及追及问题相遇问题:总路程=(甲速+乙速)×相遇时间相遇时间=总路程÷(甲速+乙速)甲速或乙速=总路程÷相遇时间-乙速或甲速追及问题:距离差=速度差×追及时间追及时间=距离差÷速度差速度差=距离差÷追及时间速度差=快速-慢速相离问题:两地距离=速度和×相离时间相离时间=两地距离÷速度和速度和=两地距离÷相离时间二、流水行船问题(1)船速+水速=顺水速度(2)船速-水速=逆水速度(3) (顺水速度+逆水速度)÷2=船速(4) (顺水速度-逆水速度)÷2=水速两船在水流中的相遇问题与在静水中及两车在陆地上的相遇问题一样,与水速没有关系因为:甲船顺水速度+乙船逆水速度=(甲船速+水速) + (乙船速-水速)=甲船速+乙船速如果两只船在水流中同向运动,一只船追上另一只船的时间,也与水速无关因为:甲船顺水/逆水速度-乙船顺水/逆水速度=(甲船速+/-水速)-(乙船速+/-水速)=甲船速-乙船速三、环形跑道问题从同一地点出发(1)如果是相向而行,则每走一图相遇一次(2)如果是同向而行,则每追上一图相過一次四、多人相遇追及问题基本公式:路程和=速度和×相遇时间路程差=速度差×追及时间例题:有甲、乙、丙三人,甲每分钟走80米,乙每分钟走60米,丙每分钟走40米,现在甲从东端,乙、丙两人从西端同时出发相向而行,在途中甲与乙相遇6分钟后,甲又与丙相遇。
小学奥数必做的30道行程问题

1、邮递员早晨7时出发送一份邮件到对面的山坳里,从邮局开始要走12千米的上坡路,8 千米的下坡路。
他上坡时每小时走4千米,下坡时每小时走5千米,到达目的地后停留1小时,又从原路返回,邮递员什么时候可以回到邮局?【解析】去时:T=12/4+8/5=4.6小时返回:T’=8/4+12/5=4.4小时T总=4.6+4.4+1=10小时7:00+10:00=17:00整体思考:全程共计:12+8=20千米去时的上坡变成返回时的下坡,去时的下坡变成返回时的上坡因此来回走的时间为:20/4+20/5=9小时所以总的时间为:9+1=10小时 7:00+10:00=17:002、小明从甲地到乙地,去时每小时走6千米,回时每小时走9千米,来回共用5小时。
小明来回共走了多少千米?【解析】速度比=6:9=2:3时间比=3:2 3+2=5小时,正好S=6×3=18千米来回为18×2=36千米3、A、B两城相距240千米,一辆汽车原计划用6小时从A城开到B城,汽车行驶了一半路程,因故在途中停留了30分钟。
如果按照原定的时间到达B城,汽车在后半段路程速度应该加快多少?【解析】前半程开了3小时,因故障停留30分钟,因此接下来的路程需要2.5小时来完成V=120÷2.5=48千米/小时原V=240/6=40千米/小时所以需要加快:48-40=8千米/小时4、甲、乙两车都从A地出发经过B地驶往C地,A,B两地的距离等于B,C两地的距离.乙车的速度是甲车速度的80%.已知乙车比甲车早出发11分钟,但在B地停留了7分钟,甲车则不停地驶往C地.最后乙车比甲车迟4分钟到C地.那么乙车出发后几分钟时,甲车就超过乙车。
【解析】 11-7=4分钟甲乙车的速度比=1:0.8=5:4 甲乙行的时间比=4:5=16:20 所以是在乙车出发后的16+11=27分钟追上甲车5、铁路旁的一条平行小路上,有一行人与一骑车人同时向南行进。
四年级数学行程问题

行程问题一、基本简单行程及变速问题1、强强跑100米用10秒,旗鱼每小时能游120千米,请问:谁的速度更快?2、墨墨练习慢跑,12分钟跑了3000千,按照这个速度慢跑25000米需要多少分钟?如果他每天都以这个速度跑10分钟,连续跑一个月,他一共跑了多少千米?3、A、B两城相距240千米,一辆汽车原计划用6小时从A城到B城,那么汽车每小时应该行驶多少千米?实际上汽车行驶了一半路程后发生故障,在途中停留了1小时,如果要按照原定的时间到达B城,汽车在后一半行程上每小时应该行驶多少千米?4、甲乙两架飞机同时从机场起飞,向同一方向飞行,甲每小时飞行300千米,乙每小时飞行340千米,4小时后它们相距多少千米?这时甲提高速度打算用2小时追上乙,那么甲每小时应该飞行多少千米?5、萱萱一家开车去外地旅游,原计划每小时行驶45千米,实际上由于高速公路堵车,汽车每小时只行驶30千米,这样就晚到两小时,问:萱萱一家在路上实际花了几个小时?6、甲从A地出发去B地办事情,下午1点出发,晚上7点准时到达,如果他想下午两点出发,晚上7点准时到达,每小时就必须多行2千米,求AB两地之间的距离。
7、小欣家离学校1000米,平时他步行25分钟后准时到校。
有一天他晚出发10分钟,为避免迟到,小欣先乘公共汽车,然后步行,结果仍然准时到校,已知公共汽车的速度是小欣步行速度的6倍,问:小欣这天上学步行了多少米?8、甲乙两人分别从AB两地同时出发,6小时后相遇在中点,如果甲延迟1小时出发,乙每小时少走4千米,两人仍在中点相遇,问:甲乙两地相距多少千米?二、基本相遇问题:1、A、B两地相距4800米,甲乙两人分别从A、B两地同时出发,相向而行,如果甲每分钟走60米,乙每分钟走100米,请问:(1)甲从A走到B需要多长时间?(2)两人从出发地到相遇需要多长时间?2、在第4题中,如果甲乙两人的速度大小不变,但甲出发时改变方向,即两人同时同向出发,问:乙出发后多久可以追上甲?3、甲乙两地相距350千米,A车在早上8点从甲地出发,以每小时40千米的速度开往乙地。
小学六年级数学行程问题

行程问题一、基本知识点1、常见题型:一般行程问题,相遇问题,追及问题,流水问题,火车过桥问题。
2、行程问题特点:已知速度、时间、和路程中的两个量,求第三个量。
3、基本数量关系:速度x 时间=路程路程速度和x 时间(相遇时间)=路程和(相遇路程)路程和(相遇路程)速度差x 时间(追及时间)=路程差(追击路程)路程差(追击路程)二、学法提示二、学法提示1.火车过桥:火车过桥路程=桥长+车长车长过桥时间=路程÷车速路程÷车速过桥过程可以通过动手演示来帮助理解。
2.水流问题:水流问题: 顺水速度=静水速度+水流速度水流速度逆水速度=静水速度-水流速度水流速度顺水速度-逆水速度=2x 水流速度水流速度3.3.追及问题:追击路程÷速度差追及问题:追击路程÷速度差=追及时间追及时间追击距离÷追及时间=速度差速度差4.相遇问题:相遇问题: 相遇路程÷相遇时间=速度和速度和相遇路程÷速度和=相遇时间相遇时间三、解决行程问题的关键三、解决行程问题的关键画线段图,画线段图,标出已知和未知。
标出已知和未知。
标出已知和未知。
能够从线段图中分析出数量关系,能够从线段图中分析出数量关系,能够从线段图中分析出数量关系,找到解决问找到解决问题的突破口。
题的突破口。
四、练习题四、练习题(一)火车过桥(一)火车过桥1.一列火车长150米,每秒行20米,全车要通过一座长450米的大桥,需要多长时间?长时间?2.一列客车通过860米的大桥要45秒,用同样的速度穿过620米的隧道要35秒,求客车行驶的速度和车身的长度。
求客车行驶的速度和车身的长度。
3.一列车长140米的火车,以每秒10米的速度通过一座大桥,共用30秒,求大桥的长度。
桥的长度。
4.一人在铁路便道上行走,一列客车从身后开来,在她身旁通过的时间为7秒,已知客车长105米。
每小时行72千米,这个人每秒行多少米?千米,这个人每秒行多少米?5.在有上下行的轨道上,两列火车相对开出,甲车长235米,每秒行25米,乙车长215米,每秒行20米,求两车从车头相遇到车尾离开要多长时间。
小学数学总复习行程问题

⼩学数学总复习⾏程问题⾏程问题经典题型(⼀)1、甲、⼄两地相距6千⽶,某⼈从甲地步⾏去⼄地,前⼀半时间平均每分钟⾏80⽶,后⼀半时间平均每分钟⾏70⽶。
问他⾛后⼀半路程⽤了多少分钟?分析:解法1、全程的平均速度是每分钟(80+70)/2=75⽶,⾛完全程的时间是6000/75=80分钟,⾛前⼀半路程速度⼀定是80⽶,时间是3000/80=37.5分钟,后⼀半路程时间是80-37.5=42.5分钟解法2:设⾛⼀半路程时间是x分钟,则80*x+70*x=6*1000,解⽅程得:x=40分钟因为80*40=3200⽶,⼤于⼀半路程3000⽶,所以⾛前⼀半路程速度都是80⽶,时间是3000/80=37.5分钟,后⼀半路程时间是40+(40-37.5)=42.5分钟答:他⾛后⼀半路程⽤了42.5分钟。
2、⼩明从家到学校有两条⼀样长的路,⼀条是平路,另⼀条是⼀半上坡路、⼀半下坡路。
⼩明上学⾛两条路所⽤的时间⼀样多。
已知下坡的速度是平路的1.5倍,那么上坡的速度是平路的多少倍?分析:解法1:设路程为180,则上坡和下坡均是90。
设⾛平路的速度是2,则下坡速度是3。
⾛下坡⽤时间90/3=30,⾛平路⼀共⽤时间180/2=90,所以⾛上坡时间是90-30=60 ⾛与上坡同样距离的平路时⽤时间90/2=45 因为速度与时间成反⽐,所以上坡速度是下坡速度的45/60=0.75倍。
解法2:因为距离和时间都相同,所以平均速度也相同,⼜因为上坡和下坡路各⼀半也相同,设距离是1份,时间是1份,则下坡时间=0.5/1.5=1/3,上坡时间=1-1/3=2/3,上坡速度=(1/2)/(2/3)=3/4=0.75解法3:因为距离和时间都相同,所以:1/2*路程/上坡速度+1/2*路程/1.5=路程/1,得:上坡速度=0.75答:上坡的速度是平路的0.75倍。
3、⼀只⼩船从甲地到⼄地往返⼀次共⽤2⼩时,回来时顺⽔,⽐去时的速度每⼩时多⾏驶8千⽶,因此第⼆⼩时⽐第⼀⼩时多⾏驶6千⽶。
小学数学奥数题-----行程问题-有答案

顺流 B
逆流
8
A
10
图36——1
分析:因为水流速度是每小时3千米,所以顺流比 逆流每小时快6千米。如果怒六时也行8小时, 则只能到A地。那么A、B的距离就是顺流比逆 流8小时多行的航程,即6×8=48千米。而这 段航程又正好是逆流2小时所行的。由此得出 逆流时的速度。列算式为:
(3+3)×8÷(10—8)×10=240(千米)
1
3
1
乙
甲 图35——4
分析:如图所示,汽车到达甲班学生下车的地方 又返回到与乙班学生相遇的地点,汽车所行路 程应为乙班不行的7倍,即比乙班学生多走6倍, 因此汽车单程比乙班步行多(6÷2)=3 (倍)。
汽车返回与乙班相遇时,乙班步行的路程与甲班 学生步行到机场的路程相等。由此得出汽车送 甲班学生下车地点到几长的距离为学校到机场 的距离的1/5。列算式为 24÷(1+3+1)=4.8(千米)
小张50分钟走的路程:6÷60×50=5(千米)
小张2小时10分后共行的路程:10+5÷(50÷10)=11 (千米)
两人行2小时10分后相距的路程:24—(8+11)=5(千米)
两人共同行5千米所需时间:5÷(4+6)=0.5(小时)
相遇时间:2小时10分+0.5小时=2小时40分
行程问题(三)
(20+x)×6=(20—x)×6×1.5
x=4
答:水流速度为每小时4千米。
例题2:有一船行驶于120千米长的河中,逆行 需10小时,顺行要6小时,求船速和水速。
分析:这题条件中有行驶的路程和行驶的时间,这样可 分别算出船在逆流时的行驶速度和顺流时的行驶速度, 再根据和差问题就可以算出船速和水速。列式为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学数学行程问题基本公式一、相遇问题两个运动物体作相向运动或在环形跑道上作背向运动,随着时间的发展,必然面对面地相遇,这类问题叫做相遇问题。
它特点是两个运动物体共同走完整个路程。
小学数学教材中的行程问题,一般是指相遇问题。
相遇问题根据数量关系可分成三种类型:求路程,求相遇时间,求速度。
它们的基本关系式如下:总路程=(甲速+乙速)×相遇时间相遇时间=总路程÷(甲速+乙速)另一个速度=甲乙速度和-已知的一个速度二、追及问题追及问题的地点可以相同(如环形跑道上的追及问题),也可以不同,但方向一般是相同的。
由于速度不同,就发生快的追及慢的问题。
根据速度差、距离差和追及时间三者之间的关系,常用下面的公式:距离差=速度差×追及时间追及时间=距离差÷速度差速度差=距离差÷追及时间速度差=快速-慢速解题的关键是在互相关联、互相对应的距离差、速度差、追及时间三者之中,找出两者,然后运用公式求出第三者来达到解题目的。
三、相离问题两个运动物体由于背向运动而相离,就是相离问题。
解答相离问题的关键是求出两个运动物体共同趋势的距离(速度和)。
基本公式有:两地距离=速度和×相离时间相离时间=两地距离÷速度和速度和=两地距离÷相离时间四、流水问题顺流而下与逆流而上问题通常称为流水问题,流水问题属于行程问题,仍然利用速度、时间、路程三者之间的关系进行解答。
船在静水中行驶,单位时间内所走的距离叫做划行速度或叫做划力;顺水行船的速度叫顺流速度;逆水行船的速度叫做逆流速度;船放中流,不靠动力顺水而行,单位时间内走的距离叫做水流速度。
各种速度的关系如下:(1)划行速度+水流速度=顺流速度(2)划行速度-水流速度=逆流速度(3)(顺流速度+ 逆流速度)÷2=划行速度(4)(顺流速度-逆流速度)÷2=水流速度流水问题的数量关系仍然是速度、时间与距离之间的关系。
即:速度×时间=距离;距离÷速度=时间;距离÷时间=速度。
但是,河水是流动的,这就有顺流、逆流的区别。
在计算时,要把各种速度之间的关系弄清楚是非常必要的。
基础题型反映时间、速度、距离三者之间关系的应用题一般称为行程问题。
行程问题的内容相当广泛,目前小学数学教材中行程问题仅涉及相向运动中的相遇问题。
相遇问题是研究两个运动的物体,从两个不同的地方,沿同一条路线同时(或者不同时)出发,作相向运动。
因此,它有三种基本形式:第一是已知甲、乙的速度和相遇的时间,求距离;总路程=(甲速+乙速)×相遇时间第二是已知甲、乙的速度和距离,求相遇的时间;相遇时间=总路程÷(甲速+乙速)第三是已知距离,相遇时间和甲(或者乙)速度,求乙(或者甲)速度。
甲乙的速度和=总路程÷相遇时间另一个速度=甲乙速度和-已知的一个速度例1一辆客车与一辆货车同时从甲、乙两个城市相对开出,客车每小时行46千米,货车每小时行48千米。
3.5小时两车相遇。
甲、乙两个城市的路程是多少千米?[解]46×3.5+48×3.5=161+168=329(千米)。
或(46+48)×3.5=94×3.5=329(千米)。
答:甲、乙两个城市的路程有329千米。
[常见错误]46×3.5+48=161+48=209(千米)。
答:甲、乙两个城市的路程有209千米。
[分析]这是一道相遇问题的基本题,错解中由于审题不严密,误认为只有客车行了3.5小时,货车行了48千米,两车就相遇了,因而产生了错误。
如果首先理解甲、乙两城的路程就是客车与货车所行路程的和,然后分别求各自的速度与行驶的时间,就不会出现错误了。
例2两地间的路程有255千米,两辆汽车同时从两地相对开出,甲车每小时行45千米,乙车每小时行40千米。
甲、乙两车相遇时,各行了多少千米?[解]255÷(45+40)=255÷85=3(小时)。
45×3=135(千米)。
40×3=120(千米)。
答:相遇时甲车行了135千米,乙车行了120千米。
[常见错误](1)255÷(45+40)=255÷85=3(小时)。
45×3=135(千米)。
答:相遇时各行了135千米。
(2)255÷(45+40)=255÷85=3(小时)。
40×3=120(千米)。
45×3=135(千米)。
答:相遇时甲车行了120千米,乙车行了135千米。
[分析]解题不完整,答非所问,这是应用题解答经常出现的一种错误,特别是对于粗心大意的学生来说,更是如此。
防止粗心大意的办法是要养成检验的良好习惯。
例3 两地相距3300米,甲、乙二人同时从两地相对而行,甲每分钟行82米,乙每分钟行83米,已经行了15分钟,还要行多少分钟两人可以相遇?[解][3300-(82+83)×15]÷(82+83)=[3300-165×15]÷165=[3300-2475]÷165=825÷165=5(分钟)。
答:还要5分钟两人可以相遇。
[常见错误](1)(82+83)×15÷(82+83)=165×15÷165=2475÷165=15(分钟)。
答:还要15分钟两人可以相遇。
(2)[3300-(82+85)×15]÷82=[3300-165×15]÷82=[3300-2475]÷82=825÷82≈10.1(分钟)。
答:还要行10.1分钟两人可以相遇。
[分析]这是一道较复杂的相遇问题,错解(1)没有求出还剩下的路程,错解(2)将剩下的路程由甲一人行走,所以两种解法都错了。
防止错误的主要办法是需认真审题,理解题中已经行了多少米,还剩下多少米,剩下的路程由甲、乙两人相对行走,还要多少分钟等等。
这样,用剩下的路程除以甲、乙两人的速度和,就得出还要多少分钟两人相遇。
例4 甲、乙两港的航程有480千米,上午10点一艘货船从甲港开往乙港,下午2点一艘客船从乙港开往甲港。
客船开出12小时与货船相遇。
已知货船每小时行15千米,客船每小时行多少千米?[解](480-15×4)÷12-15=(480-60)÷12-15=420÷12-15=35-15=20(千米)。
答:客船每小时行20千米。
[常见错误](1)480÷12-15=40-15=25(千米)。
答:客船每小时行25千米。
(2)(480-15×4)÷12=(480-60)÷12=420÷12=35(千米)。
练习题1.一列客车和一列货车同时从两个车站相对开出,货车每小时行35千米,客车每小时行45千米,2.5小时相遇,两车站相距多少千米?2.两个县城相距52.5千米,甲、乙二人分别从两城同时相对而行,甲每小时行5千米,乙每小时比甲快0.5千米,几小时后相遇?3.甲、乙二人分别从相距110千米的两地相对而行。
5小时后相遇,甲每小时行12千米,问乙每小时行多少千米?4.甲、乙两站相距486千米,两列火车同时从两站相对开出,5小时相遇。
第一列火车比第二列火车每小时快1.7千米,两列火车每小时的速度各是多少?5.两列火车同时从相距650千米的两地相向而行,甲列火车每小时行50千米,乙列火车每小时行52千米,4小时后还差多少千米才能相遇?6.大陈庄和小王庄相距90千米。
小刚和小牛分别由两庄同时反向出发。
2小时24分后两人相距46.6千米,如果小刚每小时行9.9千米,小牛每小时行多少千米?7.学校距活动站670米,小明从学校前往活动站每分钟行80米,2分钟后,小丽从活动站往学校走,每分钟行90米,小明出发多少分钟后和小丽相遇?相遇时二人各行了多少米?8.甲、乙两队合挖一条水渠,甲队从东往西挖,每天挖65米,乙队从西往东挖,每天比甲多挖2.5米。
两队合挖8天后还差52米,这条水渠全长多少米?9.张、李两位叔叔计划共同生产一种零件300个,二人一起生产了5小时后还差40个没完成。
已知张叔叔每小时生产24个,李叔叔每小时生产多少个?10.甲、乙两队合修一条长2400米的路,甲队每小时修126米,乙队每小时比甲队多修48米,求完工时两队各修路多少米?11.东西两村相距64千米。
甲、乙二人同时骑车从东西两地相对出发,2.5小时相遇。
甲每小时行12.5千米,乙每小时比甲快多少千米?12.一列客车和一列货车分别从甲、乙两地相向而行。
客车每小时行50千米,货车每小时比客车慢8千米,客车先行1小时后,货车从乙地出发,经过3小时后两车相遇。
甲、乙两地相距多少千米?13.东西两城相距254千米,甲、乙两辆汽车相对开出,甲车每小时行27千米,先行2小时后,乙车开始出发,速度为每小时23千米。
乙车出发几小时后两车相遇?14.甲、乙两个工程队开凿一条隧道。
甲队每天开凿1.5千米,乙队比甲队的2倍少0.5千米.半个月完成了任务,这条隧道有多长?15.两艘客轮同时从两港相对行驶,甲轮每小时行40千米,乙轮每小时行36千米,早上8时开出,晚上11时相遇,两港口相距几千米?16.甲、乙两个工程队同时从公路的一点向两头铺沥青,甲队每天比乙队多铺20米。
已知4天后两队相距880米,两队每天各铺多少米?17.小明和小华相距50步远,同时反向出发,小明每分钟走80步,小华每分钟走85步。
当两人相距1700步时,出发了多少分钟?18.两辆摩托车分别从相距440千米的两地同时相向而行,因雪后路滑,5小时后才相遇。
甲车比原计划每小时少行15千米,乙车比原计划每小时少行7千米。
已知原计划甲车每小时的速度是乙车的1.2倍,求两车原计划每小时各行多少千米?。