第九章 单位根与协整
9第九章 多维时间序列分析

DF检验假设了所检验的模型的随机扰动 项不存在自相关。对有自相关的模型, 需用ADF检验。 ADF检验:将DF检验的右边扩展为包含Yt 的滞后变量,其余同于DF检验。
构造统计量 查表、判断。
单位根检验: 单位根检验:ADF检验的方程式 检验的方程式
∆Yt= β0+β1t+δYt-1+αΣ ∆Yt-i + µt 其中i从1到m。 这一模型称为扩充的迪基-富勒检验。 因为ADF检验统计量和DF统计量有同样 的渐进分布,所以可以使用同样的临界 值。
模型形式
自回归条件异方差性模型 (Autoregressive Conditional Heteroscedasticity Model, ARCH) 简单形式
σt2 =α0 +α1εt2 1 −
即,εt的方差依赖于前一期误差的平方, 或者说,εt存在着以εt-1的变化信息为条件的 异方差。记成ARCH(1)
随机游走的比喻
一个醉汉的游走。醉汉离开酒吧后在时 刻t移动一个随机的距离ut,如果他无限 地继续游走下去,他将最终漂移到离酒 吧越来越远的地方。 股票的价格也是这样,今天的股价等于 昨天的股价加上一个随机冲击。
随机游走的表达式 Yt=ρYt-1+ µt (1) 等价于: Yt -Yt-1 =ρYt-1 -Yt-1 + µt 等价于: Yt -Yt-1 =(ρ-1)Yt-1 + µt 等价于: ∆Yt=δ Yt-1+ µt (2) “有单位根”=“ρ=1”=“δ=0”
1 Yt= 1 +(a11Yt−1 +⋯ 1mY −1) +⋯ (a11Yt−p +⋯ 1p Y −p ) +u1t c a1 mt + p1 a m mt 1 1
第9章 时间序列计量经济学模型的理论与方法-李子奈计量经济学课件

第九章时间序列计量经济学模型的理论与方法第一节 时间序列的平稳性及其检验第二节 随机时间序列模型的识别和估计第三节 协整分析与误差修正模型1§9.1 时间序列的平稳性及其检验一、问题的引出:非平稳变量与经典回归模型二、时间序列数据的平稳性三、平稳性的图示判断四、平稳性的单位根检验五、单整、趋势平稳与差分平稳随机过程2一、问题的引出:非平稳变量与经典回归模型3⒊ 数据非平稳,往往导致出现“虚假回归”问题表现在:两个本来没有任何因果关系的变量,却有很高的相关性(有较高的R2):例如:如果有两列时间序列数据表现出一致的变化趋势(非平稳的),即使它们没有任何有意义的关系,但进行回归也可表现出较高的可决系数。
在现实经济生活中:情况往往是实际的时间序列数据是非平稳的,而且主要的经济变量如消费、收入、价格往往表现为一致的上升或下降。
这样,仍然通过经典的因果关系模型进行分析,一般不会得到有意义的结果。
7时间序列分析模型方法就是在这样的情况下,以通过揭示时间序列自身的变化规律为主线而发展起来的全新的计量经济学方法论。
时间序列分析已组成现代计量经济学的重要内容,并广泛应用于经济分析与预测当中。
8二、时间序列数据的平稳性9时间序列分析中首先遇到的问题是关于时间序列数据的平稳性问题。
假定某个时间序列是由某一随机过程(stochastic process)生成的,即假定时间序列{X t}(t=1, 2,t=1, 2, ……)的每一个数值都是从一个概率分布中随机得到,如果满足下列条件:1)均值E(X t)=µ是与时间t 无关的常数;2)方差Var(X t)=σ2是与时间t 无关的常数;3)协方差Cov(X t,X t+k)=γk是只与时期间隔k有关,与时间t 无关的常数;则称该随机时间序列是平稳的(stationary),而该随机过程是一平稳随机过程(stationary stochastic process)。
面板数据分析简要步骤与注意事项(面板单位根—面板协整—回归分析)(2)

面板数据分析简要步骤与注意事项(面板单位根—面板协整—回归分析)步骤一:分析数据的平稳性(单位根检验)按照正规程序,面板数据模型在回归前需检验数据的平稳性。
李子奈曾指出,一些非平稳的经济时间序列往往表现出共同的变化趋势,而这些序列间本身不一定有直接的关联,此时,对这些数据进行回归,尽管有较高的R平方,但其结果是没有任何实际意义的。
这种情况称为称为虚假回归或伪回归(spurious regression)。
他认为平稳的真正含义是:一个时间序列剔除了不变的均值(可视为截距)和时间趋势以后,剩余的序列为零均值,同方差,即白噪声。
因此单位根检验时有三种检验模式:既有趋势又有截距、只有截距、以上都无。
因此为了避免伪回归,确保估计结果的有效性,我们必须对各面板序列的平稳性进行检验。
而检验数据平稳性最常用的办法就是单位根检验。
首先,我们可以先对面板序列绘制时序图,以粗略观测时序图中由各个观测值描出代表变量的折线是否含有趋势项和(或)截距项,从而为进一步的单位根检验的检验模式做准备。
单位根检验方法的文献综述:在非平稳的面板数据渐进过程中,LevinandLin(1993) 很早就发现这些估计量的极限分布是高斯分布,这些结果也被应用在有异方差的面板数据中,并建立了对面板单位根进行检验的早期版本。
后来经过Levin et al. (2002)的改进,提出了检验面板单位根的LLC 法。
Levin et al. (2002) 指出,该方法允许不同截距和时间趋势,异方差和高阶序列相关,适合于中等维度(时间序列介于25~250 之间,截面数介于10~250 之间) 的面板单位根检验。
Im et al. (1997) 还提出了检验面板单位根的IPS 法,但Breitung(2000) 发现IPS 法对限定性趋势的设定极为敏感,并提出了面板单位根检验的Breitung 法。
Maddala and Wu(1999)又提出了ADF-Fisher和PP-Fisher面板单位根检验方法。
单位根、协整检验实验报告

012131594063学生学号实验课成绩学生实验报告书实验课程名称应用时间序列开课学院理学院指导教师姓名桂预风学生姓名王世方学生专业班级金融sy13012015-- 2016学年第 2 学期实验一:实验项目名称 多元时间序列单位根检验和协整检验 实验成绩实 验 者王世方专业班级金融sy1301实验日期2016 年 5 月6日实验目的:(1)由于之前运用过的时序图检验法在判断序列平稳性上具有很强的主观性,而虚假回归问题的存在要求我们必须进行平稳性检验,因此实验者需要掌握运用最广泛的平稳性检验统计方法——单位根检验。
(2)把理论知识付诸于实践,通过实际操作Eviews 软件,能够熟练利用DF 、ADF 、PP 方法进行平稳性检验,并针对非平稳的各种形成机制进一步判断非平稳序列属于哪一种机制,从而根据不同的结果选择不同的序列分析方法,最终达到分析解决实际问题的效果。
实验原理:通过检验特征根实是在单位元内还是单位圆上(外)来检验序列的平稳性,这种检验即为单位根检验。
DF 检验为单边检验,当显著水平取为α时,记αг为DF 检验的分位点,当τ≤ατ时,拒绝原假设序列非平稳,认为序列显著平稳;当τ≥ατ时,保留原假设,认为序列非平稳。
DF 检验下非平稳序列的三种类型如下:(1)漂移项自回归过程(DS 序列),即随机游走模型,该序列均值非平稳,方差非齐,但一阶差分平稳:t x =1-t x +t ε。
(2)带漂移项自回归过程,这是一个有趋势且波动性不断增强的非平稳序列,一阶差分后是平稳的:t x =0Ф+1-t x +t ε。
(3)带趋势回归过程(TS 序列),又称趋势平稳序列:t x =0Ф+βt +t ε。
对于TS 序列最好是通过拟合线性模型提取序列中的相关关系,实现残差序列平稳:t ε=t x -(0^Ф+t ^β);如果对TS 序列采用差分方法提取相关信息,可以使趋势平稳,但增加了残差序列的方差:t ▽x =β+t ε-1-t ε。
5.3 Panel Data 单位根和协整检验

– 按照Choi (2001)的总结,上述单位根检验存在四个缺 陷(或前提假设);一是都需要截面单元数是无限的 ,否则检验的渐近正态性不存在;二是假定所有截面 单元有同样的非随机成份;三是假设所有的截面单元 拥有同样的时间序列跨度;四是备择假设都是所有截 面单元没有单位根,一些截面单元有单位根而另一些 没有的情形将不能被处理。
– Choi and Chue ( 2007)运用子抽样技术来处理面板数 据的截面相关,研究了非平稳、截面相关和截面协整 面板数据的子抽样假设检验。 – Pesaran (2007) 提出了一个简单的面板单位根检验。 将DF/ADF回归扩展到了水平滞后的截面平均和截面单 元序列一阶差分的情形(简称,CADF,Cross Sectionally Augmented ADF),然后基于截面单元 CADF统计量的简单平均或者对联合拒绝概率的合适变 换,便形成了Pesaran的标准面板单位根检验。
)
2
Under H0 : δ = 0 , tδ N ( 0,1) for model 1. but diverges to ∞ for model 2 and 3. A proper standardized test is given by
tδ =
*
* % tδ NTSNσu 2STD δ mT%
Where W1 ( r ) = W ( r ) is standard wiener process,
W2 ( r ) = W ( r ) ∫0W ( r ) dr is demeaned wiener process,
1
W3 ( r ) =W ( r ) 4 ∫0W ( r ) 1.5∫0 rW ( r ) dr + 6r ∫0W ( r ) dr 2∫0 rW ( r ) dr
浅析单位根与协整的原理与检验

浅析单位根与协整的原理与检验作者:何川来源:《消费导刊·理论版》2008年第13期[摘要]单位根的随机性趋势与协整关系对实证分析中时间序列的影响是不容小觑的。
检验的目的在于更好的分辨数据特性、甄选模型,以达到或能预测或能证实因果关系或否定以上两者的结果。
本文将以二者的计量统计检验为对象,按“是什么、“为什么”和“怎么办”的思路分析检验的由来、如何通过检验对实证模型进行修正以解决不平稳带来的估计不一致问题。
[关键词]单位根协整检验 DF ECM一、什么是单位根与协整开篇即给出数理的定义稍显突兀,因此引入对此问题的一个经典比喻来形象化说明问题。
“醉汉和他的狗”行进的路径被视为两个序列(Michael P. Murray,2006),其中醉汉走路的每一步都视为随机游动(random walk),狗也是同样,两个序列都存在随机性趋势。
从酒吧门口算起,上次见到他们的位置也许是预测现在位置的最佳猜测,因为根本无法估计东倒西歪的行进规律。
但特别的是,狗是属于醉汉的,这里的主从关系使两个变量之间存在了某种联系。
所以一旦知道其中之一的位置,另一个应该也在不远处。
醉汉和狗各自的行径就是随机性趋势即单位根存在的一种体现,而两者之间存在关系因而会对距离进行调整就是一种协整关系的模拟。
确切的来说,单位根即特征方程解出的模为1的特征根。
滞后算子可以直接进行运算,而由此可以推导出方程的自回归多项式。
通过求解令多项式为零的特征方程,对其在复数范围内进行彻底的因式分解,得到所称的特征根。
在二元条件下,假设x1t和x2t是一阶单整的I(1)(即水平值方程存在单位根,进行一阶差分后平稳)。
如果对于某些系数β2,x1t β2x2t是零阶单整的I(0)(即平稳的),那么就说x1t和x2t是协整的。
β2被称为协整系数,向量β’=(1,β2)即协整向量。
扩展到多元也是同样道理,不过维度会扩展为多维,且n个变量只可能存在(n-1)个协整关系。
面板数据分析简要步骤与注意事项面板单位根—面板协整—回归分析
面板数据分析简要步骤与注意事项面板单位根—面板协整—回归分析 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#面板数据分析简要步骤与注意事项(面板单位根—面板协整—回归分析)步骤一:分析数据的平稳性(单位根检验)按照正规程序,面板数据模型在回归前需检验数据的平稳性。
李子奈曾指出,一些非平稳的经济时间序列往往表现出共同的变化趋势,而这些序列间本身不一定有直接的关联,此时,对这些数据进行回归,尽管有较高的R平方,但其结果是没有任何实际意义的。
这种情况称为称为虚假回归或伪回归(spurious regression)。
他认为平稳的真正含义是:一个时间序列剔除了不变的均值(可视为截距)和时间趋势以后,剩余的序列为零均值,同方差,即白噪声。
因此单位根检验时有三种检验模式:既有趋势又有截距、只有截距、以上都无。
因此为了避免伪回归,确保估计结果的有效性,我们必须对各面板序列的平稳性进行检验。
而检验数据平稳性最常用的办法就是单位根检验。
首先,我们可以先对面板序列绘制时序图,以粗略观测时序图中由各个观测值描出代表变量的折线是否含有趋势项和(或)截距项,从而为进一步的单位根检验的检验模式做准备。
单位根检验方法的文献综述:在非平稳的面板数据渐进过程中,LevinandLin(1993) 很早就发现这些估计量的极限分布是高斯分布,这些结果也被应用在有异方差的面板数据中,并建立了对面板单位根进行检验的早期版本。
后来经过Levin et al. (2002)的改进,提出了检验面板单位根的LLC 法。
Levin et al. (2002) 指出,该方法允许不同截距和时间趋势,异方差和高阶序列相关,适合于中等维度(时间序列介于25~250 之间,截面数介于10~250 之间) 的面板单位根检验。
Im et al. (1997) 还提出了检验面板单位根的IPS 法,但Breitung(2000) 发现IPS 法对限定性趋势的设定极为敏感,并提出了面板单位根检验的Breitung 法。
单位根与协整检验
一、单位根检验的回顾1、在实际应用中,何种情况下需要对单位根进行检验?答:理论上,你在实际应用过程中,如果你遇到的样本是时间序列形式的,都要进行单位根检验。
原因是,如果你的时间序列数据是单位根的话,类似于你的数据的变化是很不规则的,好像一个“醉汉”。
从计量角度看,它影响了我们假设检验当中的“仪器”的准确性。
2、单位根检验的数学形式,或说你应当用数学方式会表述单位根检验的原假设。
3、学会在eviews上对一个时间序列变量进行单位根检验。
(1)如果一个变量具有单位根的特征,那么表示这个变量经过一次差分,就会变成平稳的。
(2)在eviews中,单位根检验的对象是series object。
也就是,你要先打开一个series object,然后,在打开的窗口中点击view来观察这个序列是否具有单位根的特征。
(3)要特别注意的是,eviews上如果你不能拒绝你所检验的变量对象是一个单位根,那么此时并不一定表明你所检验的变量一定是I(1),也可能是I(2)或I(3)等更高阶的单整。
要注意的是,只要你检验的变量是非平稳的,都会接受原假设。
(4)在eveiws单位根检验要遵循如下的步骤:第一,先对变量(比如Y)进行水平数据的单位根检验(level);第二,如果水平数据拒绝原假设(即不存在单位根),那么检验停止,说明水平数据是一个平稳的时间序列变量;第三,如果水平数据的检验接受原假设,仅能说明你检验的变量是非平稳的,此时需要继续对这个变量的一阶差分进行单位根检验(1S difference)。
如果此时拒绝原假设,那么,检验停止,表明这个变量要经过两次差分才会平稳,否则,继续对二阶差分进行单位根检验(1S difference)。
总之,检验的目的是判断,到底你所检验的变量经过几次差分后才会平稳?所以,检验一定要到差分平稳后为止。
(5)对你而言,由于有不同的单位根检验方法,所以一个不错的选择是,你同时用不同的方法对你所关注的变量做单位根检验,并开出所有结果。
计量经济学课后题答案
计量经济学课后题答案第⼗三章⾯板数据模型⼀简单题1、简述⾯板数据模型的优点和局限性它能综合利⽤样本信息,同时反映应变量在截⾯和时序两个⽅向上的变化规律及特征。
由于⾯板数据模型在经济定量分析中,起着只⽤截⾯或只⽤时序数据模型不可替代的独特优点,⽽具有很⾼的应⽤价值。
总之:1.增加了样本容量;2. 可多层⾯分析经济问题局限性:模型设定错误与数据⼿机不慎引起较⼤的偏差;研究截⾯或者平⾏数据时,由于样本⾮随机性造成观测值的偏差,从⽽导致模型选择上的偏差。
2、你是如何理解⾯板数据的?在经济领域中,同时具有截⾯与时序特征的数据很多。
如统计年鉴中提供的各地区或各国的若⼲系列的年度(季度或⽉度)经济总量数据;在企业投资分析中,要⽤到多个企业若⼲指标的⽉度或季度时间序列数据;在城镇居民消费分析中,要⽤到不同省市反映居民消费和收⼊的年度时序数据。
我们将上述的企业、或地区等统称为个体,从⾏的⽅向看,是由若⼲个体在某个时期构成的截⾯观察值(截⾯样本),从列的⽅向看,是各时间序列。
这种具有三维(截⾯、时期、变量)信息的数据结构称为⾯板。
这是“⾯板”数据的由来,⾯板数据也称为时序截⾯数据或混合数据(Pooled Data)。
3、简述建⽴⾯板数据模型的过程。
(1)建⽴⾯板数据对象,即建⽴⼯作⽂件;(2)⾯板时序变量平稳性检验;(3)协整检验;(4)模型识别;(5)建⽴模型;(6)结论。
⼆填空题1、GDP界⾯变量是⼀维变量,⾯板变量为三维变量。
2、⾯板数据模型是⽆斜率系数⾮齐性、⽽截距齐性的模型。
3、⾯板数据模型识别包括效应模型识别和具体模型识别。
4、建⽴⾯板数据模型之前,要对⾯板变量进⾏平稳性检验和协整检验。
第⼗⼆章向量⾃回归(VAR)模型和向量误差修正(VEC)模型⼀简答题1、VAR模型的特点VAR模型不以经济理论为指导,它根据样本数据统计特征建模。
VAR模型对参数不施加零约束(如t检验),故称其为⽆约束VAR模型。
VAR模型的解释变量中不含t期变量,所有与线性联利⽅程组模型有关的问题均不存在。
面板数据分析面板数据分析的理论进展单位根检验与协整检验.pptx
• Strauss(2000)使用三种方法(Abuaf和 Jorion(1990),LL方法,IPS方法),对从1929年到 1995年美国48州带趋势人均收入的数据进行单位根检 验,结论是拒绝有单位根的存在,并说明收敛的速率取 决于截距差异的假设、一阶自相关系数、滞后期和对 1973年石油危机造成趋势中断的适应性。
第28页/共33页
目前,已有一些专家正在探讨这些问题:
• Maddala和Wu(1999)自助法允许截面相关 • Pedroni(1997b)在他的PPP研究中,提出用基
于GLS修正来考虑在Panel个体之间存在的反馈 情况 • Hall等人(1999)提供了另一个同Pesaran和 Smith(1995)分析相反的例子,他们集中在 Panel协整的回归结构上 • Larsson、Lyhagen和 Lothgren(1998)按
第20页/共33页
Pedroni 协积检验:以 Engle-Granger 协积检验方法为基础构造检验统计量,标 准化以后渐近服从标准正态分布。(1999, 2004)
Kao 协积检验:以 Engle-Granger 协积检验方法为基础构造检验统计量,标准化 以后渐近服从标准正态分布。(1999)
Fisher 个体联合协积检验(combined individual test):由 Johansen 迹统计量推广 而成的检验方法。用个体的协积检验值构造一个服从 2 分布的累加统计量 检验面板数据的协积性。(Maddala and Wu 1999)
第21页/共33页
Pedroni协整检验:
• 以协整方程的回归残差为基础通过构造7个统计 量来检验面板变量间的协整关系。原假设:面板
检验。随后,Quah(1990)、Levin和Lin(1992)、 Im、Pesaran和Shin(1995)、Flôres等(Flôres et al.,1995)、O' Connell(1998)、Taylor和 Sarno(1998)、Maddala和吴(1999)、Groen (2000)、Chang(2000)和崔仁(In Choi, 2001)、白聚山和Ng(Jushan Bai ane Serena Ng, 2001)、Moon和Perron(2002)、Smith(2004) 和白仲林(2005)也相继提出了各种面板单位根检验 方法。通过蒙特卡罗模拟试验发现,与单变量时间序列 单位根检验相比较,各种面板数据单位根检验都不同程 度地提高了单位根检验的检验功效。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
扰动项对未来的影响随时间而衰减;而I 1 序列
则对过去的行为具有无限长的记忆,即任何过去 的冲击都将永久性地改变未来的整个序列。
定义:如果时间序列y t 的d阶差分为平稳的 ARMA p,q过程,则称yt为ARIMA p,d,q过程 最常见的为ARIMA p,1,q,即经过一次差分就得 到平稳的ARMA p,q。
走(random walk with drift):
yt=0+yt-1+ t,0 0,其中,0为每个时期的平
均漂移,因为E yt =0+E yt-1 。显然,随机游走
是AR
1的特例。对于AR
1,y
t=0+1y
t-1+
,
t
如果1=1,则为随机游走。对于随机游走,只要对
其进行一阶差分,就可以得到平稳序列,故也称为
回顾AR
1的情形,“y
t=0+1y
t-1+
”其实是
t
一阶随机差分方程,其稳定性与对应的确定性差
分方程“y
t=
0+1y
”是一样的。因此,只要考
t-1
虑一阶差分方程“y
t=0+1y
”是否有稳定解即
t-1
可,而这个非齐次(含常数项0)差分方程的解
取决于对应的齐次(不含常数项)差分方程
“yt=1yt-1”的通解yt=y0(1t 解的形式为指数函数) 因此,其稳定条件为 1 <1。
第九章 单位根与协整
一、非平稳序列
如果一个时间序列不是平稳序列,则称为非平稳 序列(non-stationary time series)。在以下几种 情况下,都有可能出现平稳序列:
1 确定性趋势:如果一个时间序列有一个确定性
趋势(deterministic trend),则为非平稳序列。比
如,yt=0+1t+t。显然,E yt =0+1t随时间
行列式。该平稳条件的等价条件是,伴随矩阵
(companion matrix)
1 2
p
F=
I
n
0
0
0
In 0
的所有特征值(可以是复数)都落在复平面的
单位圆之内。
四、单位根所带来的问题
对于AR 1,一般从理论上认为,不太可能出现
1 >1的情形,否则任何对经济的扰动都将被无限
放大。因此,经济学家通常只担心存在单位根的
结论与此相反。 如果某个根正好落在单位圆上,则称为单位根 (unit root),比如随机游走的情形。如果特征方程 的某个根落在单位圆之内,则为爆炸式(explosive) 增长的非平稳过程。
例:对于AR 1,其特征方程为1-1z=0,故
z=1 1。因此,z = z >1 1 <1。显然,有关
AR p稳定性的结论是对AR 1情形的推广。
三、VAR的平稳性
一维的AR p的平稳性条件可以推广到多维 VAR p的情形。考虑以下VARp模型:yt=0+1y
+
t-1
+p yt-p+ t
其中, t 为向量白噪声过程。
可以证明,如果对于复数z,
特征方程 In-1z- -pzp =0 的所有根都落在复平面的单位圆之外(即 z >1)
则此VAR p为平稳过程。上述特征方程之 表示
根)。与此对应,齐次差分方程也有p个形如1 zt
的解,而其通解则是这p个解的线性组合。
给定初始条件 y0,y1, ,yp-1 ,则可求出此齐次差
分方程的唯一特解。显然,如果要求 y t 收敛于一
个稳定值,则特征方程所有解的模 z 都必须大于1, 故所有解必须都落在复平面上的单位圆之外。
如果将特征方程定义为 zp-1zp-1- -p=0,则
3随机趋势:另一种导致非平稳的趋势为随机趋势
(stochastic trend)。比如,随机游走模型(random
walk): yt=yt-1+t,其中,t为白噪声。由于 yt= t,故来自 t 的任何扰动对yt 都具有永久性 的冲击,其影响力不随时间而衰减,故称 t 为这
个模型的随机趋势。
在上式中,如果包含常数项,则为待漂移的随机游
二、ARMA的平稳性
在什么情况下,ARMA p,q 才平稳呢?显然,
MA q是平稳的,因为它是有限个白噪声的线性
组合。因此,ARMA p,q的平稳性取决于其AR p
的部分。从第三章已经知道,对于AR 1,
y
t=
0+1y
t-1+
,如果
t
1
<1,则为平稳过程。
更一般地,考虑AR p的平稳性,即
yt=0+1yt-1+ +p yt-p+t
差分平稳(difference stationary)序列
定义:称平稳的时间序列为零阶单整(Integrated
of order zero),记为I 0。如果时间序列的一阶
差分为平稳过程,则称为一阶单整(Integrated of
order one),记为I 1,也称为单位根过程(unit
root process)。 更一般地,如果时间序列的d阶差分为平稳过程,
情形,即 1 =1。如果时间序列存在单位根,则
为非平稳序列,可能带来以下问题:
1自回归系数的估计值向左偏向于0。假设对于 AR 1,yt=0+1yt-1+t,其真实值为1=1。
然而,1的OLS估计量ˆ1却不服从渐近正态分布,
甚至不是对称分布(即使是在大样本中),而是
向左偏向于0。这是因为,由于y t 不是平稳序列
对于AR p,考虑其对应的确定性齐次差分方程:
yt=1
y
+
t-1
+ p y t-p。假设其解的形式仍为
指数函数,即yt=z-t=1 zt ,其中z待定。将此解
代入差分方程可得:
z-t-1z-t-1- -pz-t-p=0
将上式两边同乘以zt可得特征方程:
z 1-1z- -pzp=0
这个多项式方程在复数域中一定有p个根(包括重
则称为d阶单整(Integrated of order d),记为I d 对于I 0序列,由于它是平稳的,故长期而言有回
到其期望值的趋势。这种性质被称为均值回复 (mean-reverting)。
非平稳的I 1 序列则会“到处乱跑”(wander widely),没有上述性质。另外,I 0 序列对于
而改变,故不是平稳序列。对于这种非平稳序列, 只要把时间趋势去掉,就变成平稳序列,故称为 趋势平稳(trend stationary)序列。
2结构变动(structural break):如果一个时间序
列存在结构变动,则为非平稳序列。对此,可用邹 检验(chow test)进行检验(参见模型设定的内容)