数据结构 括号匹配)
卡特兰数在数据结构中的应用

卡特兰数在数据结构中的应用卡特兰数是一种在组合数学中广泛应用的数列,它在数据结构中也有着重要的应用。
卡特兰数可以用来表示许多问题的解决方案数量,特别是那些涉及到组合和排列的问题。
在本文中,我们将介绍卡特兰数在数据结构中的一些常见应用。
一、括号匹配问题在许多编程语言中,括号匹配是一种常见的问题。
给定一个字符串,判断其中的括号是否匹配。
例如,对于字符串"(())",括号是匹配的;而对于字符串"(()",括号是不匹配的。
使用卡特兰数可以解决这个问题。
假设有n对括号,我们可以将问题转化为在一个n*n的网格中,从左下角走到右上角的路径数量。
其中,每一步可以向上一格或向右一格,并且不能超过对角线。
通过计算卡特兰数C(n),我们可以得到括号匹配的解决方案数量。
例如,对于2对括号,即n=2,卡特兰数C(2)=2,表示存在两种括号匹配的方式,即"(())"和"()()"。
二、二叉搜索树的种类数量在二叉搜索树(Binary Search Tree)中,左子树的节点值都小于根节点的值,右子树的节点值都大于根节点的值。
给定n个节点,求不同的二叉搜索树的种类数量。
使用卡特兰数可以解决这个问题。
假设有n个节点,我们可以选择其中一个节点作为根节点,然后将剩余的节点分成左子树和右子树。
左子树可以有0到n-1个节点,右子树则有n-1到0个节点,因此可以使用递归的方式计算左子树和右子树的种类数量。
通过计算卡特兰数C(n),我们可以得到二叉搜索树的种类数量。
例如,对于3个节点,即n=3,卡特兰数C(3)=5,表示存在5种不同的二叉搜索树。
三、凸多边形的三角剖分数量在计算几何中,凸多边形是指所有内角都小于180度的多边形。
给定一个凸多边形,求其可以进行的三角剖分数量。
使用卡特兰数可以解决这个问题。
假设有n个顶点,我们可以选择其中一个顶点作为剖分的起点,然后将剩余的顶点分成两个子多边形,分别递归计算其三角剖分数量。
数据结构 括号排序

2
pos = 1
1
pos = 0
( [
0
A×[ (B-C) + (D-E) ] / (F + G) × - -
2
pos = 1
1
pos = 0
( [
0
A×[ (B-C) + (D-E) ] / (F + G) × - -
2 1
pos = 0
0
pos = 1
[
A×[ (B-C) + (D-E) ] / (F + G) × - -
借助于数组顺序处理表达式 中的每个括号,遇到左括号依 次存入数组,遇到右括号,则 与数组最上部的左括号匹配, 如果发现括号匹配错误,则终 止检测过程。如果匹配成功, 则将顶部的左括号移走。继续 往下…,一直到最后一个括号
2 1 0
pos = 1
A×[ (B-C) + (D-E) ] / (F + G) × - -
2 1 0 pos = 1 pos = 0
2 1 0
[
A×[ (B-C) + (D-E) ] / (F + G) × - -
2
pos = 1
1
pos = 0
( [
0
A×[ (B-C) + (D-E) ] / (F + G) × - -
2
pos = 1
1
pos = 0
( [
0
A×[ (B-C) + (D-E) ] / (F + G) × - -
2 1
pos = 0
0
(
pos = 1
A×[ (B-C) + (D-E) ] / (F + G) × - -
数据结构实验报告实验总结

数据结构实验报告实验总结本次数据结构实验主要涉及线性表、栈和队列的基本操作以及链表的应用。
通过实验,我对这些数据结构的特点、操作和应用有了更深入的了解。
下面对每一部分实验进行总结。
实验一:线性表的基本操作线性表是一种常见的数据结构,本实验要求实现线性表的基本操作,包括插入、删除、查找、遍历等。
在实验过程中,我对线性表的结构和实现方式有了更清晰的认识,掌握了用数组和链表两种方式实现线性表的方法。
实验二:栈的应用栈是一种后进先出(LIFO)的数据结构,本实验要求利用栈实现简单的括号匹配和后缀表达式计算。
通过实验,我了解到栈可以方便地实现对于括号的匹配和后缀表达式的计算,有效地解决了对应的问题。
实验三:队列的应用队列是一种先进先出(FIFO)的数据结构,本实验要求利用队列实现银行排队和迷宫求解。
通过实验,我对队列的应用有了更加深入的了解,了解到队列可以解决需要按顺序处理的问题,如排队和迷宫求解等。
实验四:链表的应用链表是一种常用的数据结构,本实验要求利用链表实现学生信息管理系统。
通过实验,我对链表的应用有了更深入的了解,了解到链表可以方便地实现对于数据的插入、删除和修改等操作,并且可以动态地调整链表的长度,适应不同的需求。
通过本次实验,我掌握了线性表、栈、队列和链表的基本操作,并了解了它们的特点和应用方式。
同时,通过实际编程的过程,我对于数据结构的实现方式和效果有了更直观的认识,也锻炼了自己的编程能力和解决问题的能力。
在实验过程中,我遇到了一些问题,如程序逻辑错误和内存泄漏等,但通过调试和修改,最终成功解决了这些问题,对自己的能力也有了更多的信心。
通过本次实验,我深刻体会到了理论与实践的结合的重要性,也对于数据结构这门课程有了更加深入的理解。
总之,本次数据结构实验给予了我很多有益的启发和收获,对于数据结构的概念、特点和应用有了更深入的理解。
在以后的学习中,我会继续加强对数据结构的学习和研究,不断提高自己的编程能力和解决问题的能力。
数据结构——四则运算

数据结构——四则运算要进⾏⼀个表达式的计算,⼀个关键的就是括号匹配问题,现在使⽤栈进⾏实现计算表达式的值,可以作为实现⼀个简单四则运算计算器核⼼部分。
根据栈的特性(先进后出),所以决定通过把输⼊的表达式转换为后缀表达式,通过后缀表达式进⾏计算。
实现⽅法:1.⾸先定义两个栈,⼀个⽤于存放操作符,⼀个⽤于存放操作数。
1 #include<stdio.h>2 #include<string>3 #include<conio.h>4#define MAXSIZE 1005 typedef float datatype;67 typedef struct8 {9 datatype a[MAXSIZE];10int top;11 }sequence_stack;1213 typedef struct14 {15char b[MAXSIZE];16int top;17 }SeqStack;2.需要两个数组,⼀个⽤于存放输⼊的中缀表达式,⼀个⽤于存放将中缀表达式转换后的后缀表达式。
将中缀表达式转换为后缀表达式的主要代码:1int operation(char op)//判断是否为操作符2 {3switch(op)4 {5case'+':6case'-':7case'*':8case'/':return1;9default:return0;10 }11 }12int priority(char op)//判断操作符的优先级13 {14switch(op)15 {16case'#':return -1;17case'(':return0;18case'+':19case'-':return1;20case'*':21case'/':return2;22default: return -1;23 }24 }25//将中缀表达式转换为后缀表达式26void postfix(char e[],char f[],SeqStack *s,sequence_stack *s1)27 {28int i=0,j=0;29int t;30 push_SeqStack(s,'#');31while(e[i]!='#')32 {33if((e[i]>='0'&&e[i]<='9')||e[i]=='.')34 f[j++]=e[i];35else if(e[i]=='(')36 {37 push_SeqStack(s,e[i]);38 }39else if(e[i]==')')40 {41 t=s->top-1;42while(s->b[t]!='(')43 {44 f[j++]=s->b[--s->top];45 t=s->top-1;46 }47 s->top--;48 }49else if(operation(e[i]))50 {51 f[j++]=' ';52while(priority(s->b[s->top-1])>=priority(e[i]))53 f[j++]=s->b[--s->top];54 push_SeqStack(s,e[i]);55 }56 i++;57 }58while (s->top)f[j++]=s->b[--s->top];59 {}60 evalpost(f,s1);61 }3.把存放后缀表达式的数组传递给计算后表达式的函数;计算后缀表达式的值主要代码:1float readnumber(char f[],int *i)//将数字字符串转变为数2 {3float x=0.0;4int k=0;5while(f[*i]>='0'&&f[*i]<='9')6 {7 x=x*10+(f[*i]-'0');8 (*i)++;9 }10if(f[*i]=='.')11 {12 (*i)++;13while(f[*i]>='0'&&f[*i]<='9')14 {15 x=x*10+(f[*i]-'0');16 (*i)++;17 k++;18 }19 }20while(k!=0)21 {22 x=x/10.0;23 k=k-1;24 }25return (x);26 }27void evalpost(char f[],sequence_stack *s)28 {29int i=0;30float x1,x2;31while(f[i]!='#')32 {33if(f[i]>='0'&&f[i]<='9')34 {35 push_sequence_stack(s,readnumber(f,&i));36 }37else if(f[i]==' ')38 i++;39else if(f[i]=='+')40 {41 x2=s->a[--s->top];42 x1=s->a[--s->top];43 push_sequence_stack(s,x1+x2);44 i++;45 }46else if(f[i]=='-')47 {48 x2=s->a[--s->top];49 x1=s->a[--s->top];50 push_sequence_stack(s,x1-x2);51 i++;52 }53else if(f[i]=='*')54 {55 x2=s->a[--s->top];56 x1=s->a[--s->top];57 push_sequence_stack(s,x1*x2);58 i++;59 }60else if(f[i]=='/')61 {62 x2=s->a[--s->top];63 x1=s->a[--s->top];64 push_sequence_stack(s,x1/x2);65 i++;66 }67 }68 }最后,只要调⽤计算后的结果将存放在操作数栈的第⼀个位置,并将结果传递给需要显⽰的地⽅(可以放到⾃⼰的程序中显⽰结果的地⽅),显⽰出结果就没问题了。
数据结构括号匹配算法

括号匹配算法主要用于检查一个字符串中的括号是否匹配。
这个算法利用栈的后进先出(LIFO)性质,对输入的字符串进行检查。
以下是括号匹配算法的基本步骤:
1. 初始化一个空栈。
2. 遍历输入的字符串,对于每个字符:
* 如果字符是左括号('('、'{'、'['),将其压入栈中。
* 如果字符是右括号(')'、'}'、']'),检查栈顶的元素是否与之匹配。
如果匹配,则将栈顶元素弹出;否则,表示括号不匹配,返回错误。
3. 检查栈是否为空。
如果栈为空,表示所有括号都已匹配,返回成功;否则,表示还有未匹配的括号,返回错误。
在实现这个算法时,需要使用一个栈来存储左括号。
在遍历字符串的过程中,每遇到一个左括号,就将其压入栈中。
每遇到一个右括号,就检查栈顶的元素是否与之匹配。
如果匹配,则将栈顶元素弹出;否则,表示括号不匹配。
以上是括号匹配算法的基本思想。
具体的实现方式可能会因编程语
言和数据结构的不同而有所差异。
数据结构-栈基本运算的实现及其应用

数据结构-栈基本运算的实现及其应用下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!数据结构栈基本运算的实现及其应用在计算机科学和编程中,数据结构是非常重要的概念。
课件:括号匹配实例

A×[ (B-C) + (D-E) ] / (F + G)
2 1 0
pos = -1
2
1
pos = 0 [ 0
A×[ (B-C) + (D-E) ] / (F + G)
2
pos = 1 (
p1os = 0
[
0
A×[ (B-C) + (D-E) ] / (F + G)
2
pos = 1
1
(
pos = 0 0
[
A×[ (B-C) + (D-E) ] / (F + G)
2
pos = 1 (
p1os = 0
[
A×[ (B-C) + (D-E) ] / (F + G)
2
pos = 1
1
(
pos = 0 0
[
A×[ (B-C) + (D-E) ] / (F + G)
2
1
pos = 0
0
[
pos = -1
表达式中的括号匹配问题
假定表达式中只包含两种括号[ ]、(), 例如表达式:A×[ (B-C) + (D-E) ] / (F + G)
A×[ (B-C) + (D-E) ] / (F + G)
2 1 0
pos = 1
解题思路:
借助于数组顺序处理表达式 中的每个括号,遇到左括号依 次存入数组,遇到右括号,则 与数组最上部的左括号匹配, 如果发现括号匹配错误,则终 止检测过程。如果匹配成功, 则将顶部的左括号移走。继续 往下…,一直到最后一个括号
数据结构(c语言版)第三版习题解答

数据结构(c语言版)第三版习题解答数据结构(C语言版)第三版习题解答1. 栈(Stack)1.1 栈的基本操作栈是一种具有特定限制的线性表,它只允许在表的一端进行插入和删除操作。
栈的基本操作有:(1)初始化栈(2)判断栈是否为空(3)将元素入栈(4)将栈顶元素出栈(5)获取栈顶元素但不出栈1.2 栈的实现栈可以使用数组或链表来实现。
以数组为例,声明一个栈结构如下:```c#define MAX_SIZE 100typedef struct {int data[MAX_SIZE]; // 存储栈中的元素int top; // 栈顶指针} Stack;```1.3 栈的应用栈在计算机科学中有广泛的应用,例如计算表达式的值、实现函数调用等。
下面是一些常见的栈应用:(1)括号匹配:使用栈可以检查一个表达式中的括号是否匹配。
(2)中缀表达式转后缀表达式:栈可以帮助我们将中缀表达式转换为后缀表达式,便于计算。
(3)计算后缀表达式:使用栈可以方便地计算后缀表达式的值。
2. 队列(Queue)2.1 队列的基本操作队列是一种按照先进先出(FIFO)原则的线性表,常用的操作有:(1)初始化队列(2)判断队列是否为空(3)将元素入队(4)将队头元素出队(5)获取队头元素但不出队2.2 队列的实现队列的实现一般有循环数组和链表两种方式。
以循环数组为例,声明一个队列结构如下:```c#define MAX_SIZE 100typedef struct {int data[MAX_SIZE]; // 存储队列中的元素int front; // 队头指针int rear; // 队尾指针} Queue;```2.3 队列的应用队列在计算机科学中也有广泛的应用,例如多线程任务调度、缓存管理等。
下面是一些常见的队列应用:(1)广度优先搜索:使用队列可以方便地实现广度优先搜索算法,用于解决图和树的遍历问题。
(2)生产者-消费者模型:队列可以用于实现生产者和消费者之间的数据传输,提高系统的并发性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
}
情况③
void Push(SqStack *S,SElemType e)
{ /* 插入元素e为新的栈顶元素 */ if((*S).top-(*S).base>=(*S).stacksize)
A×
{
(*S).base=(SElemType*)realloc((*S).base,((*S). stacksize+STACK_INCREMENT)*sizeof(SEle mType));
(2)要求当输入一个表达式,可判断并输出括 号是否匹配。
②算法思想描述
• 在算术表达式中,右括号和左括号匹配的 次序正好符合后到的括号要最先被匹配的 “后进先出”堆栈操作特点,因此可以借 助一个堆栈来进行判断。
• 运用C语言编写程序。 • 括号匹配的四种情况:
1. 左右括号配对次序不正确 2. 右括号多于左括号(缺少左括号) 3. 左括号多于右括号(缺少右括号) 4. 左右括号匹配正确
(可包含()、[]和{})\n"); gets(ch); p=ch; /* p指向字符串的首字符 */ while(*p) /* 没到串尾 */ switch(*p) {case '(': case '[': case '{':Push(&s,*p++); /* 左括号入栈,且p++ */ break; case ')': case ']': case '}':if(!StackEmpty(s)) /* 栈不空 */
A ×所以(B算-C45术) ÷表栈内(左达D没的右+式有左括E与括号)之号匹}配配对
*((*S).top)++=e;
3
}
缺少2 左括号
Status Pop(SqStack *S,SElemType *e)
1
{
if((*S).top==(*S).base)
0
return ERROR;
*e=*--(*S).top;
A ×[(B-C) ÷(D+E) 5缺少右左右括括号号匹配
4 3 2
Status Pop(SqStack *S,SElemType *e)
1
{
if((*S).top==(*S).base)
0
return ERROR;
*e=*--(*S).top;
return OK;
}
程序运行结束时栈内为空 情况④
stacksize+STACK_INCREMENT)*sizeof(SEle
mType)); if(!(*S).base)
虽然程序运行完栈内为空
exit(OVERFLOW); /* 存储分配失败 */
5 左右左括右号括不号匹配
(*S).top=(*S).base+(*S).stacksize; (*S).stacksize+=STACK_INCREMENT;
void Push(SqStack *S,SElemType e)
{ /* 插入元素e为新的栈顶元素 */ if((*S).top-(*S).base>=(*S).stacksize) {
A× ( B-C ) ÷ ( D+E )}
而栈外有未能匹配的括号
(*S).base=(SElemType*)realloc((*S).base,((*S).
stacksize+STACK_INCREMENT)*sizeof(SEle
mType)); if(!(*S).base) exit(OVERFLOW); /* 存储分配失败 */ (*S).top=(*S).base+(*S).stacksize; (*S).stacksize+=STACK_INCREMENT; }
{check();}
④制作动态效果
情况①
void Push(SqStack *S,SElemType e) { /* 插入元素e为新的栈顶元素 */
A× [ ( B-C ) ÷ ( D+E ) ]
ቤተ መጻሕፍቲ ባይዱ
if((*S).top-(*S).base>=(*S).stacksize) {
栈顶元素与右括号匹配
(*S).base=(SElemType*)realloc((*S).base,((*S).
if(!(*S).base)
exit(OVERFLOW); /* 存储分配失败 */
(*S).top=(*S).base+(*S).stacksize;
(*S).stacksize+=STACK_INCREMENT;
}
*((*S).top)++=e;
}
因为栈内非空,
[ (所B-以C算) ÷术(表D达+E式)
STACK_INCREMENT)*sizeof(SElemType)); if(!(*S).base) exit(OVERFLOW); /* 存储分配失败 */ (*S).top=(*S).base+(*S).stacksize; (*S).stacksize+=STACK_INCREMENT; } *((*S).top)++=e; }
exit(ERROR);} default: p++; /* 其它字符不处理,指针向后 移 */} if(StackEmpty(s)) /* 字符串结束时栈空 */ printf("恭喜您,括号匹配正确!\n"); else printf("对不起,您缺少右括号!\n"); }
void main()
• 字符串循环扫描结束时,若堆栈非空(即堆栈尚 有某种类型的左括号),则说明左括号多于右括 号;
• 否则,括号配对正确。
(2)程序的实现
• 进栈
void Push(SqStack *S,SElemType e) { /* 插入元素e为新的栈顶元素 */ if((*S).top-(*S).base>=(*S).stacksize) /* 栈满,追加存储空间 */ {(*S).base=(SElemType*)realloc((*S).base,((*S).stacksize +
且程序运行完栈内为空 stacksize+STACK_INCREMENT)*sizeof(SEle
mType));
if(!(*S).base) exit(OVERFLOW); /* 存储分配失败 */
5
左右括号匹配
(*S).top=(*S).base+(*S).stacksize; (*S).stacksize+=STACK_INCREMENT; }
③算法及程序的实现
(1)算法
• 顺序扫描算数表达式(表现为一个字符串),当 遇到三种类型的左括号时候让该括号进栈;
• 当扫描到某一种类型的右括号时,比较当前栈顶 元素是否与之匹配,若匹配,退栈继续判断;
• 若当前栈顶元素与当前扫描的括号不匹配,则左 右括号配对次序不正确;
• 若字符串当前为某种类型的右括号而堆栈已经空, 则右括号多于左括号;
• 出栈
Status Pop(SqStack *S,SElemType *e) { /* 若栈不空,则删除S的栈顶元素,用e返回其值,
并返回OK;否则返回ERROR */ if((*S).top==(*S).base) return ERROR; *e=*--(*S).top; return OK; }
括号匹配问题
制作人:
制作过程
①学习与括号匹配问题相关的知识内容 ②将程序的算法思想学会并能描述出来 ③算法及程序的实现 ④制作动态效果 ⑤程序的运行 ⑥总结
①括号匹配问题的设计内容
(1)括号匹配问题,假设一个算术表达式中包 含圆括号、方括号和花括号三种类型的括 号,编写一个函数,用来判别表达式中括 号是否正确配对。
运行语句
void StackTraverse(SqStack S,void(*visit)(SElemType))
{while(S.top>S.base) visit(*S.base++); printf("\n");} void check() {SqStack s; SElemType ch[80],*p,e; InitStack(&s); /* 初始化栈成功 */ printf(“请输入一个算术表达式
所以4算术表达式 3
*((*S).top)++=e; }
A ×[(B2-C) ÷(D+E)] 1
Status Pop(SqStack *S,SElemType *e) { if((*S).top==(*S).base)
括号0 匹配成功
return ERROR;
*e=*--(*S).top;
return OK;
return OK;
}
⑤程序的运行
• 运行程序
⑥项目总结
通过本次项目实践学到了 • 掌握了用高级语言实现算法的基本步骤和
方法 • 对于应用顺序栈的知识解决和分析问题的
能力有了新的理解 • 提高了理论和实际相结合的能力
谢谢!
但算4 术表达式
}
3
*((*S).top)++=e; }
Status Pop(SqStack *S,SElemType *e)
A ×[(B2-C) ÷(D+E)} 1
{ if((*S).top==(*S).base)
括号匹0配次序不正确
return ERROR;
*e=*--(*S).top;
return OK;