六年级下册数学毕业总复习知识点

合集下载

小学六年级数学下册知识点归纳

小学六年级数学下册知识点归纳

小学六年级数学下册知识点归纳一、分数的进一步认识1. 分数的意义和性质- 分数的定义- 真分数与假分数- 带分数与假分数的互化- 分数的大小比较2. 分数的四则运算- 分数的加法和减法- 分数的乘法和除法- 分数的通分与约分- 混合运算法则3. 分数的应用题- 比例问题- 单位换算- 分数在实际问题中的应用二、小数的进一步认识1. 小数的意义和性质- 小数的定义- 小数与整数的关系- 小数的大小比较2. 小数的四则运算- 小数的加法和减法- 小数的乘法和除法- 小数的近似和有效数字3. 小数的应用题- 涉及货币的计算- 长度、重量和体积的计算 - 小数在实际问题中的应用三、几何图形的认识1. 平面图形- 点、线、面的基本性质 - 角的概念和分类- 三角形的性质和分类- 四边形的性质和分类2. 空间图形- 立体图形的基本概念- 长方体和正方体的性质 - 圆柱和圆锥的初步认识3. 图形的变换- 平移和旋转的概念- 轴对称和中心对称- 图形的放大和缩小四、数据的收集和处理1. 数据的收集- 调查和记录数据的方法 - 数据的整理和分类2. 数据的表示- 表格的制作和解读- 条形图、折线图和饼图的绘制和阅读3. 数据的分析- 计算平均数、中位数和众数- 极值和方差的初步理解五、初步的代数知识1. 代数表达式- 字母表示数的意义- 单项式和多项式的概念- 代数式的基本运算2. 简单的方程- 方程的概念和解法- 一元一次方程的解法- 方程在实际问题中的应用六、综合应用题1. 综合运用所学知识解决实际问题- 应用题的分析和解题步骤- 时间、速度和距离问题- 货币、比例和利率问题2. 数学思维的培养- 逻辑推理和证明- 数学问题的探索和创新以上是小学六年级数学下册的主要知识点归纳。

在学习过程中,学生应注重理解和掌握每个知识点的概念、性质和运算规则,同时通过大量的练习来提高解题能力和应用能力。

教师和家长应鼓励学生积极参与数学活动,培养其数学兴趣和思维能力,为以后的数学学习打下坚实的基础。

(完整版)六年级数学期末总复习数与代数知识点归纳及经典练习题

(完整版)六年级数学期末总复习数与代数知识点归纳及经典练习题

The shortest way to do many things is to only one thin 数与代数知识点一整数1、整数的定义:像-3,-2,-1,0,1,2……这样的数称为整数。

在整数中大于零的数称为正整数,小于零的数称为负整数。

正整数、零与负整数统称为整数。

2、整数的范围:除自然数外,整数还包括负整数。

但在小学阶段里,整数通常指的是自然数。

知识点二自然数1、自然数的定义:我们在数物体的时候,用来表示物体个数的0,1,2,3,……叫作自然数。

2、自然数的基本单位:任何非“0”的自然数都是由若干个“1”组成,所以“1”是自然数的基本单位。

3、“0”的含义:一个物体也没有,用“0”表示,但并不是说“0”只表示没有物体。

知识点三比较整数大小的方法知识点四整数的改写把大数改写成用“万”或“亿”作单位的数:一个比较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。

改写有两种情况:一种是把较大的多位数直接改写成用“万”或“亿”作单位的数,不满万、亿的尾数直接改写成小数;另一种是根据需要省略万位或亿位的尾数,把原来的多位数按照“四舍五入”法写成它的近似数。

知识点五倍数和因数1、倍数和因数的定义:自然数a(a≠0)乘自然数b(b≠0),所得的积c就是a和b的倍数,a和b就是c的因数。

2、倍数的特征:一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数。

因数的特征:一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。

知识点六最大公因数、最小公倍数和互质数1、最大公因数的定义:几个数公有的因数,叫作这几个数的公因数;其中最大的一个,叫作这几个数的最大公因数。

2、最小公倍数的定义:几个数公有的倍数,叫作这几个数的公倍数,其中最小的一个,叫作这几个数的最小公倍数。

3、互质数:公因数只有1的两个数,叫作互质数。

知识点七 2、3、5倍数的特征2的倍数的特征:个位上是0、2、4、6、8 的数是2的倍数。

六年级下册数学全部知识点总结

六年级下册数学全部知识点总结

六年级下册数学全部知识点总结
1.分数运算:
-分数加减法:同分母、异分母分数的加减法则及其混合运算。

-分数乘法:分数与整数、分数与分数的乘法法则,理解倒数概念,掌握分数乘法的简便算法。

-分数除法:分数除以整数、分数除以分数的运算规则,以及分数除法转化为乘法运算的方法。

2.比和比例:
-比的意义和性质,比的基本性质,求比值和化简比。

-比例的意义,比例的基本性质,解比例方程,正比例和反比例的概念及应用。

3.百分数:
-百分数的意义,百分数与小数、分数之间的互化。

-百分数的应用,如折扣、税率、利率等问题的解决。

4.圆:
-圆的基本概念,直径、半径、周长、面积的计算公式。

-圆心角、弧、扇形、圆锥和圆柱的相关计算。

-圆周率π的认识和应用。

5.统计与概率:
-复式统计表和复式条形统计图的理解和绘制。

-可能性的大小比较,简单事件发生的可能性计算。

6.平面图形与立体图形:
-平行四边形、梯形的性质和面积计算。

-三角形、平行四边形、梯形的高线定义和画法。

-长方体、正方体、圆柱、圆锥的体积和表面积计算。

7.代数初步:
-用字母表示数,列含未知数的等式(方程)解决问题。

-解简易方程,包括一步方程和两步方程。

8.解决问题策略:
-应用所学知识解决生活中实际问题,如行程问题、工程问题、浓度问题等。

六下数学《毕业总复习--小数、分数、百分数和比》课件(04)

六下数学《毕业总复习--小数、分数、百分数和比》课件(04)

区别

算式
前项
比的性质
关系
分数、百分数和小数的关系
0.4 3.75
例、一袋米3天吃了 5 千克重?
2
,还剩
15 4
千克,这袋米原来有多少
40%
分数有两种含义,带单位可以表示具体的量,不 带单位表示两个量的倍数关系(或几分之几)。 百分数只有后面一种,表示一个数是另一个数的 百分之几。
小 结


用4厘米的长度为单位,3厘米的长 为4厘米的…… 3÷4=…… 3︰4=……
0.75=……
75%=……
发 现:
分数与除法、分数与比、分数和百分数都有联系
分数、除法和比的关系
发 现:
分数与除法、分数与比、分数和百分数都有联系
分数、除法和比的关系
名称 名称 分数 除法 比 联 分子 被除数 分数线 除号 比号 分母 除数 后项 系 分数值 商 比值 分数性质 商不变性质
总复习-----
数 的 认 识
小数、分数、百分数和比
北师大版六年级数学下册
测量黑板有多长?
测量黑板有多长?

2 5

那么黑板长是
2 2 5
(条)
测量黑板有多长?


如果平均分成10份,()里可以填多少呢?
4 10
也可以写成小数( 0.4 )
发现:小数是由分数变来的
把下列分数改成小数:
5 =0.5 10
5个 十分之一
1 =0.01 100
1个 百分之一
7 13 =0.13 1000 =0.007 100
13个 百分之一 7个 千分之一
小数是十分之几、百分之几、千分之几……的 分数的另一种书写形式,所以说小数是特殊的 分数。

最新六年级数学毕业考复习知识点(最新整理)

最新六年级数学毕业考复习知识点(最新整理)

六年级数学毕业考复习知识点(最新整理)整数【正数、0、负数】1.一个物体也没有,用0表示。

0和1、2、3……都是自然数。

自然数是整数。

2.最小的一位数是1,最小的自然数是0。

3.零上4摄氏度记作+4℃;零下4摄氏度记作-4℃。

“+4”读作正四。

“-4”读作负四。

+4也可以写成4。

4.像+4、19、+8844这样的数都是正数。

像-4、-11、-7、-155这样的数都是负数。

5.0既不是正数,也不是负数。

正数都大于0,负数都小于0。

6.通常情况下,比海平面高用正数表示,比海平面低用负数表示。

7.通常情况下,盈利用正数表示,亏损用负数表示。

8.通常情况下,上车人数用正数表示,下车人数用负数表示。

9.通常情况下,收入用正数表示,支出用负数表示。

10.通常情况下,上升用正数表示,下降用负数表示。

小数【有限小数、无限小数】1.分母是10、100、1000……的分数都可以用小数表示。

一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……2.整数和小数都是按照十进制计数法写出的数,个、十、百……以及十分之一、百分之一……都是计数单位。

每相邻两个计数单位间的进率都是10。

3.每个计数单位所占的位置,叫做数位。

数位是按照一定的顺序排列的。

4.小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。

5.根据小数的性质,通常可以去掉小数末尾的“0”,把小数化简。

6.比较小数大小的一般方法:先比较整数部分的数,再依次比较小数部分十分位上的数,百分位上的数,千分位上的数,从左往右,如果哪个数位上的数大,这个小数就大。

7.把一个数改写成用“万”或“亿”作单位的数,在万位或亿位右边点上小数点,再在数的后面添写“万”字或“亿”字。

8.求小数近似数的一般方法:1先要弄清保留几位小数;2根据需要确定看哪一位上的数;3用“四舍五入”的方法求得结果。

9.整数和小数的数位顺序表:(见课本73页)分数【真分数、假分数】1.把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。

六年级下册数学总复习

六年级下册数学总复习

六年级下册数学总复习比例表示两个相等的式子叫做比例。

在比例里,两个外项的积等于两个内项。

这叫做《比例的基本性质》根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例中的另一个未知项。

求比例中的未知项,叫做解比例如:某:320=1:1010某=320某1某=320÷10某=32一、负数:1、在熟悉的生活情境中初步认识负数,能正确的读、写正数和负数,知道0既不是正数也不是负数。

3、能借助数轴初步学会比较正数、0和负数之间的大小。

二、圆柱和圆锥1、认识圆柱和圆锥,掌握它们的基本特征。

认识圆柱的底面、侧面和高。

认识圆锥的底面和高。

2、探索并掌握圆柱的侧面积、表面积的计算方法,以及圆柱、圆锥体积的计算公式,会运用公式计算体积,解决有关的简单实际问题。

三、比例1、理解比例的意义和基本性质,会解比例。

2、理解正比例和反比例的意义,能找出生活中成正比例和成反比例量的实例,能运用比例知识解决简单的实际问题。

3、认识正比例关系的图像,能根据给出的有正比例关系的数据在有坐标系的方格纸上画出图像,会根据其中一个量在图像中找出或估计出另一个量的值。

4、了解比例尺,会求平面图的比例尺以及根据比例尺求图上距离或实际距离。

5、认识放大与缩小现象,能利用方格纸等形式按一定的比例将简单图形放大或缩小,体会图形的相似。

6、渗透函数思想,使学生受到辩证唯物主义观点的启蒙教育四、统计1、会综合应用学过的统计知识,能从统计图中准确提取统计信息,能够正确解释统计结果。

2、能根据统计图提供的信息,做出正确的判断或简单预测。

五、数学广角1、经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。

2、通过“抽屉原理”的灵活应用感受数学的魅力。

六、整理和复习1、比较系统地掌握有关整数、小数、分数和百分数、负数、比和比例、方程的基础知识。

能比较熟练地进行整数、小数、分数的四则运算,能进行整数、小数加、减、乘、除的估算,会使用学过的简便算法,合理、灵活地进行计算;会解学过的方程;养成检查和验算的习惯。

六年级数学毕业考复习知识点(最新整理)

六年级数学毕业考复习知识点(最新整理)

(一)数的认识整数【正数、0、负数】1.一个物体也没有,用0表示。

0和1、2、3……都是自然数。

自然数是整数。

2.最小的一位数是1,最小的自然数是0。

3.零上4摄氏度记作+4℃;零下4摄氏度记作-4℃。

“+4”读作正四。

“-4”读作负四。

+4也可以写成4。

4.像+4、19、+8844这样的数都是正数。

像-4、-11、-7、-155这样的数都是负数。

5.0既不是正数,也不是负数。

正数都大于0,负数都小于0。

6.通常情况下,比海平面高用正数表示,比海平面低用负数表示。

7.通常情况下,盈利用正数表示,亏损用负数表示。

8.通常情况下,上车人数用正数表示,下车人数用负数表示。

9.通常情况下,收入用正数表示,支出用负数表示。

10.通常情况下,上升用正数表示,下降用负数表示。

小数【有限小数、无限小数】1.分母是10、100、1000……的分数都可以用小数表示。

一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……2.整数和小数都是按照十进制计数法写出的数,个、十、百……以及十分之一、百分之一……都是计数单位。

每相邻两个计数单位间的进率都是10。

3.每个计数单位所占的位置,叫做数位。

数位是按照一定的顺序排列的。

4.小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。

5.根据小数的性质,通常可以去掉小数末尾的“0”,把小数化简。

6.比较小数大小的一般方法:先比较整数部分的数,再依次比较小数部分十分位上的数,百分位上的数,千分位上的数,从左往右,如果哪个数位上的数大,这个小数就大。

7.把一个数改写成用“万”或“亿”作单位的数,在万位或亿位右边点上小数点,再在数的后面添写“万”字或“亿”字。

8.求小数近似数的一般方法:1先要弄清保留几位小数;2根据需要确定看哪一位上的数;3用“四舍五入”的方法求得结果。

9.整数和小数的数位顺序表:(见课本73页)分数【真分数、假分数】1.把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。

新课标人教版小学六年级下册数学毕业总复习知识点概括归纳

新课标人教版小学六年级下册数学毕业总复习知识点概括归纳

【常用的数量关系】1、每份数×份数=总数;总数÷每份数=份数;总数÷份数=每份数2、1倍数×倍数=几倍数;几倍数÷1倍数=倍数;几倍数÷倍数=1倍数3、速度×时间=路程;路程÷速度=时间;路程÷时间=速度4、单价×数量=总价;总价÷单价=数量;总价÷数量=单价5、工作效率×工作时间=工作总量;工作总量÷工作效率=工作时间;工作总量÷工作时间=工作效率;6、加数+加数=和;和-一个加数=另一个加数7、被减数-减数=差;被减数-差=减数;差+减数=被减数8、因数×因数=积;积÷一个因数=另一个因数9、被除数÷除数=商;被除数÷商=除数;商×除数=被除数【小学数学图形计算公式】1、正方形(C:周长, S:面积, a:边长)周长=边长×4; C=4a面积=边长×边长; S=a×a2、正方体(V:体积, a:棱长)表面积=棱长×棱长×6; S表=a×a×6体积=棱长×棱长×棱长; V= a×a×a3、长方形(C:周长, S:面积, a:边长, b:宽)周长=(长+宽)×2; C=2(a+b)面积=长×宽; S=a×b4、长方体(V:体积, S:面积, a:长, b:宽, h:高)(1)表面积=(长×宽+长×高+宽×高)×2; S=2(ab+ah+bh)(2)体积=长×宽×高; V=abh5、三角形(S:面积, a:底, h:高)面积=底×高÷2 ; S=ah÷2三角形的高=面积×2÷底三角形的底=面积×2÷高6、平行四边形(S:面积, a:底, h:高)面积=底×高; S=ah7、梯形(S:面积, a:上底, b:下底, h:高)面积=(上底+下底)×高÷2; S=(a+b)×h÷28、圆形(S:面积, C:周长,π:圆周率, d:直径, r:半径)(1)周长=π×直径π=2×π×半径; C=πd=2πr(2)面积=π×半径×半径; S= πr29、圆柱体(V:体积, S:底面积, C:底面周长, h:高, r:底面半径)(1)侧面积=底面周长×高=Ch=πdh=2πrh(2)表面积=侧面积+底面积×2(3)体积=底面积×高10、圆锥体(V:体积, S:底面积, h:高, r:底面半径)体积=底面积×高÷311、总数÷总份数=平均数12、和差问题的公式:已知两数的和及它们的差,求这两个数各是多少的应用题,叫做和差应用题,简称和差问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新人教版小学数学总复习知识点汇总第一部分数和数的运算(一)整数1、自然数、负数和整数(1)、自然数:我们在数物体的时候,用来表示物体个数的0, 1 , 2 , 3……叫做自然数。

一个物体也没有,用0表示。

0是最小的自然数。

1是自然数的基本单位,任何一个自然数都是由若干个1组成。

0是最小的自然数,没有最大的自然数。

(2)、负数:负数和正数是表示相反意义的量正整数(仁2、3、4、……•自然数⑶整数- 零(0既不是正数,也不是负数)•I负整数(-1、-2、-3、-4……)2、计数单位 :一(个)、十、百、千、万、十万、百万、千万、亿都是计数单位。

每相邻两个计数单位之间的进率都是10。

这样的计数法叫做十进制计数法。

3、数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。

4、数的整除:整数a除以整数b(b工0 ),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。

(1)如果数a能被数b (b丰0 )整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。

倍数和约数是相互依存的。

女口:因为35能被7整除,所以35是7的倍数,7是35的约数。

(2)一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。

例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。

(3)一个数的倍数的个数是无限的,其中最小的倍数是它本身。

女口:3的倍数有:3、6、9、12……其中最小的倍数是3,没有最大的倍数。

(4)个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。

(5)个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。

(6)一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。

(7)一个数各位数上的和能被9整除,这个数就能被9整除。

(8)能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。

(9)能被2整除的数叫做偶数。

最小的偶数是0.不能被2整除的数叫做奇数。

最小的奇数是1(10)一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。

最小的质数是2 100 以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。

(11)一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。

最小的合数是4例如4、6、8、9、12都是合数。

(12)1不是质数也不是合数,自然数除了1夕卜,不是质数就是合数。

如果把自然数按其约数的个数的不同分类,可分为质数、合数和1。

(15)每个合数都可以写成几个质数相乘的形式。

其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3X 5, 3和5叫做15的质因数。

(16)把一个合数用质因数相乘的形式表示出来,叫做分解质因数。

例如:把28=2X 2 X7(17)几个数公有的因数,叫做这几个数的公因数。

其中最大的一个叫做这几个数的最大公约数。

例如:12的因数有1、2、3、4、6、12; 18 的因数有1、2、3、6、9、18。

其中,1、2、3、6是12和1 8的公因数,6是它们的最大公因数。

(18)公约数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:①1和任何自然数互质。

②相邻的两个自然数互质。

③两个不同的质数互质。

④当合数不是质数的倍数时,这个合数和这个质数互质。

⑤两个合数的公约数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。

⑥如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数。

⑦如果两个数是互质数,它们的最大公约数就是1。

(19)几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如:2的倍数有2、4、6 、8、10、12、 14、16、183的倍数有3、6、9、12、15、18……其中6、12、18……是2、3的公倍数,6是它们的最小公倍数。

① 如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。

② 如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。

③ 几个数的公因数的个数是有限的,而几个数的公倍数的个数是无限的。

二)小数1 、小数的意义(1) 把整数1平均分成10份、100份、1000份…… 得到的十分之几、百分之几、千分之几…… 可以用小 数表示。

(2) —位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几…… 3)一个小数由整数部分、小数部分和小数点组成。

数中的圆点叫做小数点,小数点左边的数叫做整数部 分,小数点右边的数叫做小数部分。

2、小数的分类(1 )纯小数:整数部分是零的小数,叫做纯小数。

例如: 0.25 、 0.368 都是纯小数。

(2) 带小数:整数部分不是零的小数,叫做带小数。

例如: 3.25 、 5.26 都是带小数。

(3) 有限小数: 小数部分的数位是有限的小数,叫做有限小数。

例如: 41.7 、 25.3 、 0.23 都是有限小数。

(4) 无限小数:小数部分的数位是无限的小数,叫做无限小数。

例如: 4.33 …… 3.1415926 ……(5) 无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。

例如:n(6) 循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。

例如: 3.555 …… 0.0333 …… 12.109109 ……7) 一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。

例如: 3.99 ……的循环节是“ 9 ” , 0.5454 ……的循环节是“ 54 8) 纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。

例如: 3.111 …… 0.5656 ……9)混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数。

例如: 3.1222 …… 0.03333 …… (10)写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。

如果循环节只有 一个数字,就只在它的上面点一个点。

例如: 3.777 …… 简写作: 3. ; 0.5302302 …… 简写作: 0.50。

(三)分数1 、分数的意义(1) 把单位“ 1”平均分成若干份,表示这样的一份或者几份的数叫做分数。

(2) 在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份; 分数线下面的数叫做分子,表示有这样的多少份。

(3) 把单位“ 1”平均分成若干份,表示其中的一份的数,叫做分数单位。

2、分数的分类真分数:分子比分母小的分数叫做真分数。

真分数小于 1。

假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。

假分数大于或等于 1 。

带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。

3 、约分和通分把一个分数化成同它相等但是分子、分母都比较小的分数 ,叫做约分。

分子分母是互质数的分数,叫做最简分数。

把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。

(四)百分数 :表示一个数是另一个数的百分之几的数 叫做百分数 , 也叫做百分率 或百分比。

百分数通常用 "%"来表示。

百分号是表示百分数的符号。

二 、方法(一)数的读法和写法1 、整数的读法:从高位到低位,一级一级地读。

读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。

每一级末尾的 0都不读出来,其它数位连续有几个 0都只读一个零。

2、整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。

(二) 数的改写一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。

有时还可以根据需 要,省略这个数某一位后面的数,写成近似数。

1、 准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。

改写后的4)在小数里,每相邻两个计数单位之间的进率都是 分的最低单位“一”之间的进率也是 10。

10。

小数部分的最高分数单位“十分之一”和整数部数是原数的准确数。

例如把1254300000改写成以万做单位的数是125430万;改写成以亿做单位的数12.543 亿。

2、近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。

例如:1302490015省略亿后面的尾数是13亿。

3、大小比较(1 )比较整数大小:(2)比较小数的大小:(3 )比较分数的大小:分母相同的分数,分子大的分数比较大;分子相同的数,分母小的分数大。

分数的分母和分子都不相同的,先通分,再比较两个数的大小。

(三)数的互化1、小数化成分数:原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。

2、分数化成小数:用分母去除分子。

能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。

3、一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5以外的质因数,这个分数就不能化成有限小数。

4、小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。

5、百分数化成小数:把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。

6、分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。

7、百分数化成小数:先把百分数改写成分数,能约分的要约成最简分数。

(四)数的整除1、把一个合数分解质因数,通常用短除法。

先用能整除这个合数的质数去除,一直除到商是质数为止,再把除数和商写成连乘的形式。

2、求几个数的最大公因数3、求几个数的最小公倍数4、成为互质关系的两个数:1和任何自然数互质;相邻的两个自然数互质;当合数不是质数的倍数时,这个合数和这个质数互质;两个合数的公约数只有1时,这两个合数互质。

(五)约分和通分(依据分数的基本性质)(1)约分的方法:用分子和分母的公约数(1除外)去除分子、分母;通常要除到得出最简分数为止。

(2)通分的方法:先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。

三、性质和规律(一)商不变的规律商不变的规律:在除法里,被除数和除数同时扩大或者同时缩小相同的倍,商不变。

(二)小数的性质小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。

(三)小数点位置的移动引起小数大小的变化1、小数点向右移动一位,原来的数就扩大10倍;小数点向右移动两位,原来的数就扩大100倍;小数点向右移动三位,原来的数就扩大1000倍……2、小数点向左移动一位,原来的数就缩小10倍;小数点向左移动两位,原来的数就缩小100倍;小数点向左移动三位,原来的数就缩小1000倍……3、小数点向左移或者向右移位数不够时,要用“ 0"补足位。

相关文档
最新文档