上海市2021届高考数学考点全归纳
上海市2021年高考数学压轴卷(含解析)

上海市2021年高考数学压轴卷(含解析)一、填空题(本大题满分54分)本大题共有12题,1-6题每题4分,7-12题每题5分.考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分或5分,否则一律得零分.1.若集合{}|A x y x R==∈,{}|1,B x x x R =≤∈,则AB =________.2.函数()lg 2cos 21y x =-的定义域是______. 3.已知i 为虚数单位,复数z 满足11zi z-=+,则z ________. 4.设数列{}n a 的前n 项和为n S ,且对任意正整数n ,都有01011012nna n S -=-,则1a =___ 5.从总体中抽取6个样本:4,5,6,10,7,4,则总体方差的点估计值为________.6.已知双曲线与椭圆221166x y +=有相同的焦点,且双曲线的渐进线方程为12y x =±,则此双曲线方程为_________7.已知函数()223f x x ax =-++在区间(),4-∞上是增函数,则实数a 的取值范围是______.8.计算:13(2)lim 32n nn nn +→∞--=+_________.9.某微信群中四人同时抢3个红包(金额不同),假设每人抢到的几率相同且每人最多抢一个,则其中甲、乙都抢到红包的概率为 _____.10.向量集合(){},,,S a a x y x y R ==∈,对于任意,S αβ∈,以及任意()0,1λ∈,都有()1S λαλβ+-∈,则称S 为“C 类集”,现有四个命题:①若S 为“C 类集”,则集合{},M a a S R μμ=∈∈也是“C 类集”; ②若S ,T 都是“C 类集”,则集合{},M a b a S b T =+∈∈也是“C 类集”; ③若12,A A 都是“C 类集”,则12A A ⋃也是“C 类集”;④若12,A A 都是“C 类集”,且交集非空,则12A A ⋂也是“C 类集”.其中正确的命题有________(填所有正确命题的序号)11.已知a 、b 、2c 是平面内三个单位向量,若a b ⊥,则4232a c a b c +++-的最小值是________12.已知数列{}n a 的通项公式为52nn a -=,数列{}n b 的通项公式为n b n k =+ ,设,(),()n n n n n n n b a b c a a b ≤⎧=⎨>⎩,若在数列{}n c 中,5n c c ≤对任意*n N ∈恒成立,则实数k 的取值范围是_____;二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案.考生必须在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 13.在直三棱柱111ABC A B C -中,己知AB BC ⊥,2AB BC ==,1CC =直线1AC 与11A B 所成的角为( ) A .30︒B .45︒C .60︒D .90︒14.已知函数()3sin 2,6f x x π⎛⎫=+⎪⎝⎭130,6x π⎡⎤∈⎢⎥⎣⎦,若函数()()2F x f x =-的所有零点依次记为1,x 2,x ,⋅⋅⋅n x ,且12n x x x <<⋅⋅⋅<,则12122n n x x x x -++⋅⋅⋅++=( ) A .2πB .113π C .4π D .223π 15.若实数x ,y 满足22201y x x y y ≤⎧⎪+-≤⎨⎪≥-⎩,则2z x y =-的最大值是( )A .9B .12C .3D .616.对于全集U 的子集A 定义函数()()()1A U x A f x x A ⎧∈⎪=⎨∈⎪⎩为A 的特征函数,设,A B 为全集U 的子集,下列结论中错误的是( ) A .若,A B ⊆则()()A B f x f x ≤ B .()()1R A A f x f x =- C .()()()A BA B f x f x f x =⋅ D .()()()ABA B f x f x f x =+三、解答题(本大题满分76分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.正四棱锥P ABCD -的底面正方形边长是3,O 是在底面上的射影,6PO =,Q 是AC 上的一点,过Q 且与PA 、BD 都平行的截面为五边形EFGHL .(1)在图中作出截面EFGHL ,并写出作图过程; (2)求该截面面积的最大值.18.在ABC 中,内角,,A B C 所对的边长分别是,,a b c . (1)若2,3c C π==,且ABC 的面积3S =,求,a b 的值;(2)若()()sin sin sin 2A B B A A ++-=,试判断ABC 的形状.19.如图所示,某街道居委会拟在EF 地段的居民楼正南方向的空白地段AE 上建一个活动中心,其中30AE =米.活动中心东西走向,与居民楼平行. 从东向西看活动中心的截面图的下部分是长方形ABCD ,上部分是以DC 为直径的半圆. 为了保证居民楼住户的采光要求,活动中心在与半圆相切的太阳光线照射下落在居民楼上的影长GE 不超过2.5米,其中该太阳光线与水平线的夹角θ满足3tan 4θ=.(1)若设计18AB =米,6AD =米,问能否保证上述采光要求?(2)在保证上述采光要求的前提下,如何设计AB 与AD 的长度,可使得活动中心的截面面积最大?(注:计算中π取3)20.已知椭圆C :22221(0)x y a b a b +=>>经过定点21,2E ⎛ ⎝⎭,其左右集点分别为1F ,2F 且1222EF EF +=2F 且与坐标轴不垂直的直线l 与椭圈交于P ,Q 两点.(1)求椭圆C 的方程:(2)若O 为坐标原点,在线段2OF 上是否存在点(,0)M m ,使得以MP ,MQ 为邻边的平行四边形是菱形?若存在,求出m 的取值范围;若不存在,请说明理由.21.已知数列{}n a 的前n 项和为n S ,且满足()13a a a =≠,13n n n a S +=+,设3nn n b S =-,*n ∈N .(Ⅰ)求证:数列{}n b 是等比数列;(Ⅱ)若1n n a a +≥,*n ∈N ,求实数a 的最小值;(Ⅲ)当4a =时,给出一个新数列{}n e ,其中3,1,2n n n e b n =⎧=⎨≥⎩,设这个新数列的前n 项和为n C ,若n C 可以写成p t (t ,*p ∈N 且1t >,1p >)的形式,则称n C 为“指数型和”.问{}n C 中的项是否存在“指数型和”,若存在,求出所有“指数型和”;若不存在,请说明理由.参考答案及解析1.【答案】{}1【解析】 由A中y =10x -,解得:1x ,即{|1}A x x ,由B 中不等式变形得:11x -,即{|11}B x x =-, 则{1}A B ⋂=, 故答案为:{1}.2.【答案】553,,,36666ππππ⎡⎫⎛⎫⎛⎤---⎪ ⎪⎢⎥⎣⎭⎝⎭⎝⎦ 【解析】因为()lg 2cos 21y x =-,所以2902cos 210x x ⎧-≥⎨->⎩,所以331cos 22x x -≤≤⎧⎪⎨>⎪⎩,所以33,66x k x k k Z ππππ-≤≤⎧⎪⎨-<<+∈⎪⎩, 解得536x π-≤<-或66x ππ-<<或536x π<≤. 故答案为:553,,,36666ππππ⎡⎫⎛⎫⎛⎤---⎪ ⎪⎢⎥⎣⎭⎝⎭⎝⎦ 3.【答案】1【解析】因为11zi z -=+,所以21(1)1(1)1(1)(1)i i z z i z i i i i ---=+⇒===-++-,则||1z ==.故答案为:1. 4.【答案】1-【解析】由011101011(2)1021212n n n n n na a a S n n S nn S -=-=++=---,令1n =,得11(2)10a a ++=,解得11a =-。
高考数学考点归纳之 解析几何计算处理技巧

高考数学考点归纳之 解析几何计算处理技巧中学解析几何是将几何图形置于直角坐标系中,用方程的观点来研究曲线,体现了用代数的方法解决几何问题的优越性,但有时运算量过大,或需繁杂的讨论,这些都会影响解题的速度,甚至会中止解题的过程,达到“望题兴叹”的地步.特别是高考过程中,在规定的时间内,保质保量完成解题的任务,计算能力是一个重要的方面.为此,从以下几个方面探索减轻运算量的方法和技巧,合理简化解题过程,优化思维过程.考点一 回归定义,以逸待劳回归定义的实质是重新审视概念,并用相应的概念解决问题,是一种朴素而又重要的策略和思想方法.圆锥曲线的定义既是有关圆锥曲线问题的出发点,又是新知识、新思维的生长点.对于相关的圆锥曲线中的数学问题,若能根据已知条件,巧妙灵活应用定义,往往能达到化难为易、化繁为简、事半功倍的效果.[典例] 如图,F 1,F 2是椭圆C 1:x 24+y 2=1与双曲线C 2的公共焦点,A ,B 分别是C 1,C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是( )A.2B.3C.32D.62[解题观摩] 由已知,得F 1(-3,0),F 2(3,0), 设双曲线C 2的实半轴长为a , 由椭圆及双曲线的定义和已知, 可得⎩⎪⎨⎪⎧|AF 1|+|AF 2|=4,|AF 2|-|AF 1|=2a ,|AF 1|2+|AF 2|2=12,解得a 2=2,故a = 2.所以双曲线C 2的离心率e =32=62. [答案] D [关键点拨]本题巧妙运用椭圆和双曲线的定义建立|AF 1|,|AF 2|的等量关系,从而快速求出双曲线实半轴长a 的值,进而求出双曲线的离心率,大大降低了运算量.[对点训练]1.如图,设抛物线y 2=4x 的焦点为F ,不经过焦点的直线上有三个不同的点A ,B ,C ,其中点A ,B 在抛物线上,点C 在y 轴上,则△BCF 与△ACF 的面积之比是( )A.|BF |-1|AF |-1 B.|BF |2-1|AF |2-1 C.|BF |+1|AF |+1D.|BF |2+1|AF |2+1 解析:选A 由题意可得S △BCF S △ACF =|BC ||AC |=x Bx A=|BF |-p2|AF |-p 2=|BF |-1|AF |-1.2.抛物线y 2=4mx (m >0)的焦点为F ,点P 为该抛物线上的动点,若点A (-m,0),则|PF ||P A |的最小值为________.解析:设点P 的坐标为(x P ,y P ),由抛物线的定义,知|PF |=x P +m ,又|P A |2=(x P +m )2+y 2P =(x P +m )2+4mx P,则⎝⎛⎭⎫|PF ||P A |2=(x P +m )2(x P +m )2+4mx P =11+4mx P (x P +m )2≥11+4mx P (2x P ·m )2=12(当且仅当x P =m 时取等号),所以|PF ||P A |≥22,所以|PF ||P A |的最小值为22.答案:22考点二 设而不求,金蝉脱壳设而不求是解析几何解题的基本手段,是比较特殊的一种思想方法,其实质是整体结构意义上的变式和整体思想的应用.设而不求的灵魂是通过科学的手段使运算量最大限度地减少,通过设出相应的参数,利用题设条件加以巧妙转化,以参数为过渡,设而不求.[典例] 已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的标准方程为( )A.x 245+y 236=1 B.x 236+y 227=1 C.x 227+y 218=1 D.x 218+y 29=1 [解题观摩] 设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=2,y 1+y 2=-2,⎩⎨⎧x 21a 2+y 21b2=1,x 22a 2+y22b 2=1,①②①-②得(x 1+x 2)(x 1-x 2)a 2+(y 1+y 2)(y 1-y 2)b 2=0,所以k AB =y 1-y 2x 1-x 2=-b 2(x 1+x 2)a 2(y 1+y 2)=b 2a 2.又k AB =0+13-1=12,所以b 2a 2=12.又9=c 2=a 2-b 2, 解得b 2=9,a 2=18,所以椭圆E 的方程为x 218+y 29=1.[答案] D [关键点拨](1)本题设出A ,B 两点的坐标,却不求出A ,B 两点的坐标,巧妙地表达出直线AB 的斜率,通过将直线AB 的斜率“算两次”建立几何量之间的关系,从而快速解决问题.(2)在运用圆锥曲线问题中的设而不求方法技巧时,需要做到:①凡是不必直接计算就能更简洁地解决问题的,都尽可能实施“设而不求”;①“设而不求”不可避免地要设参、消参,而设参的原则是宜少不宜多.[对点训练]1.已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点,A ,B 分别为C 的左、右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E ,若直线BM 经过OE 的中点,则C 的离心率为( )A.13B.12C.23D.34解析:选A 设OE 的中点为G ,由题意设直线l 的方程为y =k (x +a ), 分别令x =-c 与x =0得|FM |=k (a -c ),|OE |=ka , 由△OBG ∽△FBM ,得|OG ||FM |=|OB ||FB |,即12ka k (a -c )=a a +c, 整理得c a =13,所以椭圆C 的离心率e =13.2.过点M (1,1)作斜率为-12的直线与椭圆C :x 2a 2+y 2b 2=1(a >b >0)相交于A ,B 两点,若M 是线段AB 的中点,则椭圆C 的离心率等于________.解析:设A (x 1,y 1),B (x 2,y 2),则⎩⎨⎧x 21a 2+y 21b 2=1,x 22a 2+y22b 2=1,∴(x 1-x 2)(x 1+x 2)a 2+(y 1-y 2)(y 1+y 2)b 2=0,∴y 1-y 2x 1-x 2=-b 2a 2·x 1+x 2y 1+y 2.∵y 1-y 2x 1-x 2=-12,x 1+x 2=2,y 1+y 2=2,∴-b 2a 2=-12,∴a 2=2b 2.又∵b 2=a 2-c 2,∴a 2=2(a 2-c 2),∴a 2=2c 2,∴c a =22.即椭圆C 的离心率e =22. 答案:22考点三 巧设参数,变换主元换元引参是一种重要的数学方法,特别是解析几何中的最值问题、不等式问题等,利用换元引参使一些关系能够相互联系起来,激活了解题的方法,往往能化难为易,达到事半功倍.常见的参数可以选择点的坐标、直线的斜率、直线的倾斜角等.在换元过程中,还要注意代换的等价性,防止扩大或缩小原来变量的取值范围或改变原题条件.[典例] 设椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A ,B ,点P 在椭圆上且异于A ,B 两点,O 为坐标原点.若|AP |=|OA |,证明直线OP 的斜率k 满足|k |> 3.[解题观摩] 法一:依题意,直线OP 的方程为y =kx ,设点P 的坐标为(x 0,y 0). 由条件得⎩⎪⎨⎪⎧y 0=kx 0,x 20a 2+y 20b 2=1, 消去y 0并整理,得x 20=a 2b 2k 2a 2+b2.①由|AP |=|OA |,A (-a,0)及y 0=kx 0,得(x 0+a )2+k 2x 20=a 2,整理得(1+k 2)x 20+2ax 0=0. 而x 0≠0,于是x 0=-2a 1+k 2,代入①,整理得(1+k 2)2=4k 2⎝⎛⎭⎫a b 2+4. 又a >b >0,故(1+k 2)2>4k 2+4, 即k 2+1>4,因此k 2>3,所以|k |> 3. 法二:依题意,直线OP 的方程为y =kx , 可设点P 的坐标为(x 0,kx 0).由点P 在椭圆上,得x 20a 2+k 2x 20b2=1.因为a >b >0,kx 0≠0,所以x 20a 2+k 2x 20a 2<1,即(1+k 2)x 20<a 2.②由|AP |=|OA |及A (-a,0),得(x 0+a )2+k 2x 20=a 2,整理得(1+k 2)x 20+2ax 0=0,于是x 0=-2a 1+k 2, 代入②,得(1+k 2)·4a 2(1+k 2)2<a 2,解得k 2>3,所以|k |> 3.法三:设P (a cos θ,b sin θ)(0≤θ<2π), 则线段OP 的中点Q 的坐标为⎝⎛⎭⎫a 2cos θ,b2sin θ. |AP |=|OA |⇔A Q ⊥OP ⇔k A Q ×k =-1. 又A (-a,0),所以k A Q =b sin θ2a +a cos θ,即b sin θ-ak A Q cos θ=2ak A Q . 从而可得|2ak A Q |≤ b 2+a 2k 2A Q <a1+k 2A Q ,解得|k A Q |<33,故|k |=1|k A Q |> 3. [关键点拨]求解本题利用椭圆的参数方程,可快速建立各点之间的联系,降低运算量. [对点训练]设直线l 与抛物线y 2=4x 相交于A ,B 两点,与圆C :(x -5)2+y 2=r 2(r >0)相切于点M ,且M 为线段AB 的中点,若这样的直线l 恰有4条,求r 的取值范围.解:当斜率不存在时,有两条,当斜率存在时,不妨设直线l 的方程为x =ty +m ,A (x 1,y 1),B (x 2,y 2),代入抛物线y 2=4x 并整理得y 2-4ty -4m =0, 则有Δ=16t 2+16m >0,y 1+y 2=4t ,y 1y 2=-4m , 那么x 1+x 2=(ty 1+m )+(ty 2+m )=4t 2+2m , 可得线段AB 的中点M (2t 2+m,2t ), 而由题意可得直线AB 与直线MC 垂直, 即k MC ·k AB =-1,可得2t -02t 2+m -5·1t =-1,整理得m =3-2t 2(当t ≠0时),把m =3-2t 2代入Δ=16t 2+16m >0, 可得3-t 2>0,即0<t 2<3, 又由于圆心到直线的距离等于半径, 即d =|5-m |1+t 2=2+2t 21+t 2=21+t 2=r ,而由0<t 2<3可得2<r <4. 故r 的取值范围为(2,4).考点四 数形结合,偷梁换柱著名数学家华罗庚说过:“数与形本是两相倚,焉能分作两边飞.数缺形时少直观,形少数时难入微.”在圆锥曲线的一些问题中,许多对应的长度、数式等都具有一定的几何意义,挖掘题目中隐含的几何意义,采用数形结合的思想方法,可解决一些相应问题.[典例] 已知F 是双曲线C :x 2-y 28=1的右焦点,P 是C 的左支上一点,A (0,66).当△APF 周长最小时,该三角形的面积为________.[解题观摩] 设双曲线的左焦点为F 1,根据双曲线的定义可知|PF |=2a +|PF 1|, 则△APF 的周长为|P A |+|PF |+|AF |=|P A |+2a +|PF 1|+|AF |=|P A |+|PF 1|+|AF |+2a , 由于|AF |+2a 是定值,要使△APF 的周长最小, 则|P A |+|PF 1|最小,即P ,A ,F 1共线, 由于A (0,66),F 1(-3,0),则直线AF 1的方程为x -3+y 66=1,即x =y26-3,代入双曲线方程整理可得 y 2+66y -96=0,解得y =26或y =-86(舍去),所以点P 的纵坐标为26, 所以=12×6×66-12×6×26=12 6. [答案] 126 [关键点拨]要求①APF 的周长的最小值,其实就是转化为求解三角形三边长之和,根据已知条件与双曲线定义加以转化为已知边的长度问题与已知量的等价条件来分析,根据直线与双曲线的位置关系,通过数形结合确定点P 的位置,通过求解点P 的坐标进而利用三角形的面积公式来处理.[对点训练]1.椭圆x 25+y 24=1的左焦点为F ,直线x =m 与椭圆相交于点M ,N ,当△FMN 的周长最大时,△FMN 的面积是( )A.55B.655C.855D.455解析:选C 如图所示,设椭圆的右焦点为F ′,连接MF ′,NF ′.因为|MF |+|NF |+|MF ′|+|NF ′|≥|MF |+|NF |+|MN |,所以当直线x =m 过椭圆的右焦点时,△FMN 的周长最大.此时|MN |=2b 2a =855,又c =a 2-b 2=5-4=1,所以此时△FMN 的面积S =12×2×855=855.故选C.2.设P 为双曲线x 2-y 215=1右支上一点,M ,N 分别是圆C 1:(x +4)2+y 2=4和圆C 2:(x -4)2+y 2=1上的点,设|PM |-|PN |的最大值和最小值分别为m ,n ,则|m -n |=( )A .4 B.5 C .6D .7解析:选C 由题意得,圆C 1:(x +4)2+y 2=4的圆心为(-4,0),半径为r 1=2;圆C 2:(x -4)2+y 2=1的圆心为(4,0),半径为r 2=1.设双曲线x 2-y 215=1的左、右焦点分别为F 1(-4,0),F 2(4,0).如图所示,连接PF 1,PF 2,F 1M ,F 2N ,则|PF 1|-|PF 2|=2.又|PM |max =|PF 1|+r 1,|PN |min =|PF 2|-r 2,所以|PM |-|PN |的最大值m =|PF 1|-|PF 2|+r 1+r 2=5.又|PM |min =|PF 1|-r 1,|PN |max =|PF 2|+r 2,所以|PM |-|PN |的最小值n =|PF 1|-|PF 2|-r 1-r 2=-1,所以|m -n |=6.故选C.考点五 妙借向量,无中生有平面向量是衔接代数与几何的纽带,沟通“数”与“形”,融数、形于一体,是数形结合的典范,具有几何形式与代数形式的双重身份,是数学知识的一个交汇点和联系多项知识的媒介.妙借向量,可以有效提升圆锥曲线的解题方向与运算效率,达到良好效果.[典例] 如图,在平面直角坐标系xOy 中,F 是椭圆x 2a 2+y 2b 2=1(a >b>0)的右焦点,直线y =b2与椭圆交于B ,C 两点,且∠BFC =90°,则该椭圆的离心率是________.[解题观摩] 把y =b 2代入椭圆x 2a 2+y 2b 2=1,可得x =±32a ,则B ⎝⎛⎭⎫-32a ,b 2,C ⎝⎛⎭⎫32a ,b 2, 而F (c,0), 则FB =⎝⎛⎭⎫-32a -c ,b 2,FC =⎝⎛⎭⎫32a -c ,b 2,又∠BFC =90°, 故有FB ·FC =⎝⎛⎭⎫-32a -c ,b 2·⎝⎛⎭⎫32a -c ,b 2=c 2-34a 2+14b 2=c 2-34a 2+14(a 2-c 2)=34c 2-12a 2=0,则有3c 2=2a 2,所以该椭圆的离心率e =c a =63.[答案]63[关键点拨]本题通过相关向量坐标的确定,结合∠BFC =90°,巧妙借助平面向量的坐标运算来转化圆锥曲线中的相关问题,从形入手转化为相应数的形式,简化运算.[对点训练] 设直线l 是圆O :x 2+y 2=2上动点P (x 0,y 0)(x 0y 0≠0)处的切线,l 与双曲线x 2-y 22=1交于不同的两点A ,B ,则∠AOB 为( )A .90° B.60° C .45°D .30°解析:选A ∵点P (x 0,y 0)(x 0y 0≠0)在圆O :x 2+y 2=2上,∴x 20+y 20=2,圆在点P (x 0,y 0)处的切线方程为x 0x +y 0y =2.由⎩⎪⎨⎪⎧x 2-y 22=1,x 0x +y 0y =2及x 20+y 20=2得(3x 20-4)x 2-4x 0x +8-2x 20=0.∵切线l 与双曲线交于不同的两点A ,B ,且0<x 20<2,∴3x 20-4≠0,且Δ=16x 20-4(3x 20-4)·(8-2x 20)>0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4x 03x 20-4,x 1x 2=8-2x 203x 20-4.∵OA ·OB =x 1x 2+y 1y 2=x 1x 2+1y 20(2-x 0x 1)(2-x 0x 2)=x 1x 2+12-x 20[4-2x 0(x 1+x 2)+x 20x 1x 2]=8-2x 203x 20-4+12-x 20⎣⎢⎡⎦⎥⎤4-8x 203x 20-4+x 20(8-2x 20)3x 20-4=0,∴∠AOB =90°. 考点六 巧用“根与系数的关系”某些涉及线段长度关系的问题可以通过解方程、求坐标,用距离公式计算长度的方法来解;但也可以利用一元二次方程,使相关的点的同名坐标为方程的根,由根与系数的关系求出两根间的关系或有关线段长度间的关系.后者往往计算量小,解题过程简捷.[典例] 已知椭圆x 24+y 2=1的左顶点为A ,过A 作两条互相垂直的弦AM ,AN 交椭圆于M ,N 两点.(1)当直线AM 的斜率为1时,求点M 的坐标;(2)当直线AM 的斜率变化时,直线MN 是否过x 轴上的一定点?若过定点,请给出证明,并求出该定点;若不过定点,请说明理由.[解题观摩] (1)直线AM 的斜率为1时,直线AM 的方程为y =x +2,代入椭圆方程并化简得5x 2+16x +12=0.解得x 1=-2,x 2=-65,所以M ⎝⎛⎭⎫-65,45. (2)设直线AM 的斜率为k ,直线AM 的方程为y =k (x +2), 联立方程⎩⎪⎨⎪⎧y =k (x +2),x 24+y 2=1,化简得(1+4k 2)x 2+16k 2x +16k 2-4=0. 则x A +x M =-16k 21+4k 2,x M =-x A -16k 21+4k 2=2-16k 21+4k 2=2-8k 21+4k 2.同理,可得x N =2k 2-8k 2+4.由(1)知若存在定点,则此点必为P ⎝⎛⎭⎫-65,0. 证明如下:因为k MP =y M x M +65=k ⎝⎛⎭⎪⎫2-8k 21+4k 2+22-8k 21+4k 2+65=5k4-4k 2, 同理可得k PN =5k4-4k 2. 所以直线MN 过x 轴上的一定点P ⎝⎛⎭⎫-65,0. [关键点拨]本例在第(2)问中可应用根与系数的关系求出x M =2-8k 21+4k 2,这体现了整体思想.这是解决解析几何问题时常用的方法,简单易懂,通过设而不求,大大降低了运算量.[对点训练]已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,且经过点P ⎝⎛⎭⎫1,32,左、右焦点分别为F 1,F 2.(1)求椭圆C 的方程;(2)过F 1的直线l 与椭圆C 相交于A ,B 两点,若△AF 2B 的内切圆半径为327,求以F 2为圆心且与直线l 相切的圆的方程.解:(1)由c a =12,得a =2c ,所以a 2=4c 2,b 2=3c 2,将点P ⎝⎛⎭⎫1,32的坐标代入椭圆方程得c 2=1, 故所求椭圆方程为x 24+y 23=1.(2)由(1)可知F 1(-1,0),设直线l 的方程为x =ty -1, 代入椭圆方程,整理得(4+3t 2)y 2-6ty -9=0, 显然判别式大于0恒成立,设A (x 1,y 1),B (x 2,y 2),△AF 2B 的内切圆半径为r 0, 则有y 1+y 2=6t 4+3t 2,y 1y 2=-94+3t 2,r 0=327,=12r 0(|AF 1|+|BF 1|+|BF 2|+|AF 2|) =12r 0·4a =12×8×327=1227, 所以12t 2+14+3t 2=1227,解得t 2=1, 因为所求圆与直线l 相切,所以半径r =2t 2+1=2, 所以所求圆的方程为(x -1)2+y 2=2.[课时跟踪检测]1.在平面直角坐标系xOy 中,设直线y =-x +2与圆x 2+y 2=r 2(r >0)交于A ,B 两点,O 为坐标原点,若圆上一点C 满足OC ―→=54OA ―→+34OB ―→,则r =( )A .210 B.10 C .25D.5解析:选B 已知OC ―→=54OA ―→+34OB ―→,两边平方化简得OA ―→·OB ―→=-35r 2,所以cos ∠AOB =-35,所以cos ∠AOB 2=55,又圆心O (0,0)到直线的距离为|2|2=2, 所以2r =55,解得r =10. 2.设O 为坐标原点,P 是以F 为焦点的抛物线y 2=2px (p >0)上任意一点,M 是线段PF 上的点,且|PM |=2|MF |,则直线OM 的斜率的最大值为( )A.33B.23C.22D .1解析:选C 如图所示,设P (x 0,y 0)(y 0>0), 则y 20=2px 0,即x 0=y 202p.设M (x ′,y ′),由PM ―→=2MF ―→,得⎩⎪⎨⎪⎧x ′-x 0=2⎝⎛⎭⎫p 2-x ′,y ′-y 0=2(0-y ′),化简可得⎩⎨⎧x ′=p +x 03,y ′=y3.∴直线OM 的斜率k =y 03p +x 03=y 0p +y 202p =2p2p 2y 0+y 0≤2p 22p 2=22(当且仅当y 0=2p 时取等号).故直线OM 的斜率的最大值为22. 3.(2019·惠州调研)设m ,n ∈R ,若直线l :mx +ny -1=0与x 轴相交于点A ,与y 轴相交于点B ,且直线l 与圆x 2+y 2=4相交所得的弦长为2,O 为坐标原点,则△AOB 面积的最小值为( )A .5 B.4 C .3D .2解析:选C 由直线与圆相交所得的弦长为2,得圆心到直线的距离d =1m 2+n 2=3,所以m 2+n 2=13≥2|mn |,当且仅当m =n 时等号成立.所以|mn |≤16,又A ⎝⎛⎭⎫1m ,0,B ⎝⎛⎭⎫0,1n ,所以△AOB 的面积S =12|mn |≥3,故△AOB 面积的最小值为3.4.(2019·兰州模拟)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点P 为双曲线右支上一点,若|PF 1|2=8a |PF 2|,则双曲线C 的离心率的取值范围为( )A .(1,3] B.[3,+∞) C .(0,3)D .(0,3]解析:选A 根据双曲线的定义及点P 在双曲线的右支上,得|PF 1|-|PF 2|=2a ,设|PF 1|=m ,|PF 2|=n ,则m -n =2a ,m 2=8an ,∴m 2-4mn +4n 2=0,∴m =2n ,则n =2a ,m =4a ,依题得|F 1F 2|≤|PF 1|+|PF 2|,∴2c ≤4a +2a ,∴e =ca ≤3,又e >1,∴1<e ≤3,即双曲线C的离心率的取值范围为(1,3].5.过抛物线y 2=2px (p >0)的焦点F ,斜率为43的直线交抛物线于A ,B 两点,若AF ―→=λFB ―→(λ>1),则λ的值为( )A .5 B.4 C.43D.52解析:选B 根据题意设A (x 1,y 1),B (x 2,y 2), 由AF ―→=λFB ―→,得⎝⎛⎭⎫p 2-x 1,-y 1=λ⎝⎛⎭⎫x 2-p 2,y 2, 故-y 1=λy 2,即λ=-y 1y 2.设直线AB 的方程为y =43⎝⎛⎭⎫x -p 2, 联立直线与抛物线方程,消去x ,得y 2-32py -p 2=0.故y 1+y 2=32p ,y 1y 2=-p 2,则(y 1+y 2)2y 1y 2=y 1y 2+y 2y 1+2=-94,即-λ-1λ+2=-94.又λ>1,解得λ=4.6.已知椭圆C :x 24+y 2=1,过椭圆上一点A (0,1)作直线l 交椭圆于另一点B ,P 为线段AB 的中点,若直线AB ,OP 的斜率存在且不为零,则k AB k OP =________.解析:法一:(特殊值法)取B ⎝⎛⎭⎫1,32,则P ⎝ ⎛⎭⎪⎫12,2+34,则k AB =3-22,k OP =2+32, 故k AB ·k OP =3-22×2+32=-14. 法二:由题意,设直线l 的方程为y =kx +1, 联立方程⎩⎪⎨⎪⎧y =kx +1,x 24+y 2=1,消去y 得,(1+4k 2)x 2+8kx =0, 得x B =-8k 1+4k 2,即B ⎝ ⎛⎭⎪⎫-8k 1+4k 2,1-4k 21+4k 2.则P ⎝⎛⎭⎪⎫-4k 1+4k 2,11+4k 2,∴k AB =k ,k OP =-14k ,∴k AB ·k OP =-14.法三:(点差法)设A (x A ,y A ),B (x B ,y B ),P (x 0,y 0),则⎩⎨⎧x 2A4+y 2A =1,x2B4+y 2B=1,两式相减得x 2A -x 2B 4+y 2A -y 2B =0, 化简得y A +y B x A +x B ·y A -y B x A -x B =-14,即y A -y B x A -x B ·y 0x 0=-14,∴k AB ·k OP =-14.答案:-147.已知AB 为圆x 2+y 2=1的一条直径,点P 为直线x -y +2=0上任意一点,则P A ―→·PB ―→的最小值为________.解析:由题意,设A (cos θ,sin θ),P (x ,x +2), 则B (-cos θ,-sin θ),∴P A ―→=(cos θ-x ,sin θ-x -2), PB ―→=(-cos θ-x ,-sin θ-x -2),∴P A ―→·PB ―→=(cos θ-x )(-cos θ-x )+(sin θ-x -2)·(-sin θ-x -2)=x 2+(x +2)2-cos 2θ-sin 2θ=2x 2+4x +3=2(x +1)2+1,当且仅当x =-1,即P (-1,1)时,P A ―→·PB ―→取最小值1. 答案:18.(2019·武汉调研)已知A ,B 分别为椭圆x 29+y 2b 2=1(0<b <3)的左、右顶点,P ,Q 是椭圆上关于x 轴对称的不同两点,设直线AP ,B Q 的斜率分别为m ,n ,若点A 到直线y =1-mn x 的距离为1,则该椭圆的离心率为________.解析:根据椭圆的标准方程x 29+y 2b2=1(0<b <3)知椭圆的中心在原点,焦点在x 轴上,A (-3,0),B (3,0),设P (x 0,y 0),Q (x 0,-y 0),则x 209+y 20b 2=1,k AP =m =y 0x 0+3,k B Q =n =-y 0x 0-3,∴mn =-y 20x 20-9=b 29,∴1-mn =9-b 23,∴直线y =1-mn x =9-b 23x ,即9-b 2x -3y=0.又点A 到直线y =1-mn x 的距离为1,∴|-39-b 2|9-b 2+9=39-b 218-b 2=1,解得b2=638,∴c 2=a 2-b 2=98,∴e =c 2a 2=18=24. 答案:249.已知椭圆C :x 24+y 2=1的右顶点为A ,上顶点为B .设P 为第三象限内一点且在椭圆C 上,直线P A 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:四边形ABNM 的面积为定值.解:由题意知,A (2,0),B (0,1),设P (x 0,y 0)(x 0<0,y 0<0),则x 20+4y 20=4,所以直线P A 的方程为y =y 0x 0-2(x -2),令x =0,得y M =-2y 0x 0-2,从而|BM |=1-y M =1+2y 0x 0-2,直线PB 的方程为y =y 0-1x 0x +1,令y =0,得x N =-x 0y 0-1,从而|AN |=2-x N =2+x 0y 0-1,所以四边形ABNM 的面积S =12|AN ||BM |=12⎝⎛⎭⎫2+x 0y 0-1⎝⎛⎭⎫1+2y 0x 0-2 =x 20+4y 20+4x 0y 0-4x 0-8y 0+42(x 0y 0-x 0-2y 0+2)=2x 0y 0-2x 0-4y 0+4x 0y 0-x 0-2y 0+2=2,从而四边形ABNM 的面积为定值.10.已知离心率为63的椭圆x 2a 2+y 2b2=1(a >b >0)的一个焦点为F ,过F 且与x 轴垂直的直线与椭圆交于A ,B 两点,|AB |=233. (1)求此椭圆的方程;(2)已知直线y =kx +2与椭圆交于C ,D 两点,若以线段CD 为直径的圆过点E (-1,0),求k 的值.解:(1)设焦距为2c ,∵e =c a =63,a 2=b 2+c 2,∴b a =33.由题意可知b 2a =33,∴b =1,a =3, ∴椭圆的方程为x 23+y 2=1.(2)将y =kx +2代入椭圆方程,得(1+3k 2)x 2+12kx +9=0, 又直线与椭圆有两个交点,所以Δ=(12k )2-36(1+3k 2)>0,解得k 2>1. 设C (x 1,y 1),D (x 2,y 2),则x 1+x 2=-12k 1+3k 2,x 1x 2=91+3k 2. 若以CD 为直径的圆过E 点, 则EC ―→·ED ―→=0,即(x 1+1)(x 2+1)+y 1y 2=0,而y 1y 2=(kx 1+2)(kx 2+2)=k 2x 1x 2+2k (x 1+x 2)+4, 所以(x 1+1)(x 2+1)+y 1y 2 =(k 2+1)x 1x 2+(2k +1)(x 1+x 2)+5 =9(k 2+1)1+3k 2-12k (2k +1)1+3k 2+5=0, 解得k =76,满足k 2>1,所以k =76.。
2021上海高考数学试卷及答案

2021年上海市高考数学试卷2021.06.07一. 填空题〔本大题共12题,总分值54分,第1~6题每题4分,第7~12题每题5分〕 1. 集合(,3)A =-∞,(2,)B =+∞,那么A B =2. z ∈C ,且满足1i 5z =-,求z = 3. 向量(1,0,2)a =,(2,1,0)b =,那么a 与b 的夹角为 4. 二项式5(21)x +,那么展开式中含2x 项的系数为5. x 、y 满足002x y x y ≥⎧⎪≥⎨⎪+≤⎩,求23z x y =-的最小值为6. 函数()f x 周期为1,且当01x <≤,2()log f x x =,那么3()2f =7. 假设,x y +∈R ,且123y x +=,那么yx的最大值为8. 数列{}n a 前n 项和为n S ,且满足2n n S a +=,那么5S =9. 过曲线24y x =的焦点F 并垂直于x 轴的直线分别与曲线24y x =交于A 、B ,A 在B 上 方,M 为抛物线上一点,(2)OM OA OB λλ=+-,那么λ=10. 某三位数密码,每位数字可在0-9这10个数字中任选一个,那么该三位数密码中,恰有 两位数字一样的概率是11. 数列{}n a 满足1n n a a +<〔*n ∈N 〕,假设(,)n n P n a (3)n ≥均在双曲线22162x y -=上, 那么1lim ||n n n P P +→∞=12. 2()||1f x a x =--〔1x >,0a >〕,()f x 与x 轴交点为A ,假设对于()f x 图像 上任意一点P ,在其图像上总存在另一点Q 〔P 、Q 异于A 〕,满足AP AQ ⊥,且||||AP AQ =,那么a =二. 选择题〔本大题共4题,每题5分,共20分〕13. 直线方程20x y c -+=的一个方向向量d 可以是〔 〕A. (2,1)-B. (2,1)C. (1,2)-D. (1,2)14. 一个直角三角形的两条直角边长分别为1和2,将该三角形分别绕其两个直角边旋转得到的两个圆锥的体积之比为〔 〕A. 1B. 2C. 4D. 815. ω∈R ,函数2()(6)sin()f x x x ω=-⋅,存在常数a ∈R ,使得()f x a +为偶函数, 那么ω的值可能为〔 〕 A. 2π B. 3π C. 4π D. 5π16. tan tan tan()αβαβ⋅=+,有以下两个结论:① 存在α在第一象限,β在第三象限;② 存在α在第二象限,β在第四象限;那么〔 〕A. ①②均正确B. ①②均错误C. ①对②错D. ①错②对三. 解答题〔本大题共5题,共14+14+14+16+18=76分〕17. 如图,在长方体1111ABCD A B C D -中,M 为1BB 上一点,2BM =,3CD =,4AD =,15AA =. 〔1〕求直线1AC 与平面ABCD 的夹角; 〔2〕求点A 到平面1A MC 的间隔 .18. 1()1f x ax x =++,a ∈R . 〔1〕当1a =时,求不等式()1(1)f x f x +<+的解集; 〔2〕假设()f x 在[1,2]x ∈时有零点,求a 的取值范围.19. 如图,A B C --为海岸线,AB 为线段,BC 为四分之一圆弧,39.2BD =km ,22BDC ︒∠=,68CBD ︒∠=,58BDA ︒∠=.〔1〕求BC 的长度;〔2〕假设40AB =km ,求D 到海岸线A B C --的最短间隔 . 〔准确到0.001km 〕20. 椭圆22184x y +=,1F 、2F 为左、右焦点,直线l 过2F 交椭圆于A 、B 两点. 〔1〕假设直线l 垂直于x 轴,求||AB ;〔2〕当190F AB ︒∠=时,A 在x 轴上方时,求A 、B 的坐标;〔3〕假设直线1AF 交y 轴于M ,直线1BF 交y 轴于N ,是否存在直线l ,使得11F ABF MNS S=,假设存在,求出直线l 的方程,假设不存在,请说明理由.21. 数列{}n a ()n ∈*N 有100项,1a a =,对任意[2,100]n ∈,存在n i a a d =+,[1,1]i n ∈-,假设k a 与前n 项中某一项相等,那么称k a 具有性质P .〔1〕假设11a =,2d =,求4a 所有可能的值;〔2〕假设{}n a 不是等差数列,求证:数列{}n a 中存在某些项具有性质P ;〔3〕假设{}n a 中恰有三项具有性质P ,这三项和为c ,请用a 、d 、c 表示12100a a a ++⋅⋅⋅+.参考答案一. 填空题 1. (2,3)2. 5i -,155i iz =+=- 3. 2arccos5,2cos 5||||5a b a b θ⋅===⋅⋅ 4. 40,2x 的系数为325240C ⋅=5. 6-,线性规划作图,后求出边界点代入求最值,当0x =,2y =时,min 6z =-6. 1-,2311()()log 1222f f ===- 7.98,法一:132y x =+≥298y x ≤=; 法二:由132y x =-,2(32)23y y y y y x =-⋅=-+〔302y <<〕,求二次最值max 9()8y x =8.3116,由1122(2)n n n n S a S a n --+=⎧⎨+=≥⎩得:112n n a a -=〔2n ≥〕,∴{}n a 为等比数列,且11a =,12q =,∴5511[1()]31211612S ⋅-==- 9. 3,依题意求得:(1,2)A ,(1,2)B -,设M 坐标为(,)M x y ,有:(,)(1,2)(2)(1,2)(22,4)x y λλλ=+-⋅-=-,带入24y x =有:164(22)λ=⋅-, 即3λ=10. 27100,法一:121103932710100C C C P ⋅⋅==〔分子含义:选一样数字⨯选位置⨯选第三个数字〕;法二:131010327110100C P P +=-=〔分子含义:三位数字都一样+三位数字都不同〕11. 22182n a n-=得:n a =(n P n ,1(n P n ++,利用两点间间隔 公式求解极限:1lim ||n n n P P +→∞=法二〔极限法〕:当n →∞时,1nn P P +与渐近线平行,1n n P P +在x 轴投影为1,渐近线斜角θ满足:tan 3θ=∴11cos6n n P P π+==12. a =二. 选择题13. 选D ,依题意:(2,1)-为直线的一个法向量,∴方向向量为(1,2) 14. 选B ,依题意:21142133V ππ=⋅⋅⋅=,22121233V ππ=⋅⋅⋅= 15. 选C ,法一:依次代入选项的值,检验()f x a +的奇偶性;法二:2()(6)sin[()]f x a x a x a ω+=+-⋅+,假设()f x a +为偶函数,那么6a =,且sin[(6)]x ω+也为偶函数〔偶函数⨯偶函数=偶函数〕,∴62k πωπ=+,当1k =时,4πω=16. 选D ,取特殊值检验法:例如:令1tan 3α=和1tan 3α=-,求tan β是否存在〔考试中, 假设有解时那么认为存在,取多组解时发现没有解,那么可认为不存在〕三. 解答题 17.〔1〕4π;〔2〕103. 18.〔1〕(2,1)x ∈--;〔2〕11[,]26a ∈--.19.〔1〕sin 2216.3102224BC R BC BD ππ︒==⋅=⋅⋅≈km ;〔2〕35.752km.20.〔1〕〔2〕(0,2)A ,82(,)33B -;〔3〕20x -=.21.〔1〕3、5、7;〔2〕略;〔3〕974656a d c ++.。
2023高考数学知识点归纳

2023高考数学知识点归纳2023高考数学知识点归纳总结高考数学可以讲究题海战术,但要注意时间调整,不能无限做题,主要是做了题要有总结、理解。
下面给大家分享一些关于2023高考数学知识点归纳总结,希望能够对大家有所帮助。
2023高考数学知识点归纳总结一般地,如果一个数列从第2项起,每一项与它的前一项的`差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做公差,用符号语言表示为an+1-an=d。
等差数列的性质:(1)若公差d>0,则为递增等差数列;若公差d<0,则为递减等差数列;若公差d=0,则为常数列;(2)有穷等差数列中,与首末两端“等距离”的两项和相等,并且等于首末两项之和;(3)m,n∈N____,则am=an+(m-n)d;(4)若s,t,p,q∈N____,且s+t=p+q,则as+at=ap+aq,其中as,at,ap,aq是数列中的项,特别地,当s+t=2p时,高一,有as+at=2ap;(5)若数列{an},{bn}均是等差数列,则数列{man+kbn}仍为等差数列,其中m,k均为常数。
(6)从第二项开始起,每一项是与它相邻两项的等差中项,也是与它等距离的前后两项的等差中项,即对等差数列定义的理解:①如果一个数列不是从第2项起,而是从第3项或某一项起,每一项与它前一项的差是同一个常数,那么此数列不是等差数列,但可以说从第2项或某项开始是等差数列.②求公差d时,因为d是这个数列的后一项与前一项的差,故有还有③公差d∈R,当d=0时,数列为常数列(也是等差数列);当d>0时,数列为递增数列;当d<0时,数列为递减数列;④ 是证明或判断一个数列是否为等差数列的依据;⑤证明一个数列是等差数列,只需证明an+1-an是一个与n无关的常数即可。
等差数列求解与证明的基本方法:(1)学会运用函数与方程思想解题;(2)抓住首项与公差是解决等差数列问题的关键;(3)等差数列的通项公式、前n项和公式涉及五个量:a1,d,n,an,Sn,知道其中任意三个就可以列方程组求出另外两个(俗称“知三求二’).高考数学常考考点向量夹角范围不清致误解题时要全面考虑问题。
2022年上海市高考数学考点大全

2022上海高考数学考点大全1.上海高考数学重难点:重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何。
难点:函数、数列、圆锥曲线。
2.上海高考数学考点:(1)集合与命题:集合的概念与运算、命题、充要条件。
(2)不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式、不等式的应用。
(3)函数:函数的定义、函数解析式与定义域、值域与最值、反函数、三大性质、函数的零点、函数图象、指数与指数函数、对数与对数函数、函数的应用。
(4)三角比与三角函数:有关概念、同角关系与诱导公式、和、差、倍、半公式、万能公式、辅助角公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用、反三角函数、最简三角方程。
(5)平面向量:有关概念与初等运算、线性运算、三点共线、坐标运算、数量积、三角形“四心”及其应用。
(6)数列:数列的有关概念、等差数列、等比数列、通项公式求法、数列求和、数列的应用、数学归纳法、数列的极限与运算、无穷等比数列。
⑺直线和圆的方程:方向向量、法向量、直线的方程、两直线的位置关系、线性规划、圆的方程、直线与圆的位置关系。
(8)圆锥曲线方程:椭圆的方程、双曲线的方程、抛物线的方程、直线与圆锥曲线的位置关系、轨迹问题、中点弦问题、圆锥曲线的应用、参数方程。
(9)立体几何与空间向量:空间直线、直线与平面、平面与平面、棱柱、棱锥、球与球面距离、几何体的三视图与直观图、几何体的表面积与体积、空间向量。
(10)排列、组合:排列、组合应用题、二项式定理及其应用。
(11)概率与统计:古典概型、系统抽样、分层抽样、互斥事件、对立事件、独立事件、平均数、中位数、众数、频率分布直方图。
(12)复数:复数的概念与运算、复数的平方根与立方根计算、实系数一元二次方程。
(13)矩阵与行列式初步:二元线性方程组、矩阵的基本运算、二阶行列式、三阶行列式、对角线法则、余子式与代数余子式。
(14)算法初步:流程图、算法语句、条件语句、循环语句。
上海市春季2021年高考数学试卷含答案解析

2021年上海市春季高考数学试卷一.填空题〔本大题共12题,每题3分,共36分〕1.复数3+4i〔i为虚数单位〕的实部是.2.假设log2〔x+1〕=3,那么x=.3.直线y=x﹣1与直线y=2的夹角为.4.函数的定义域为.5.三阶行列式中,元素5的代数余子式的值为.6.函数的反函数的图象经过点〔2,1〕,那么实数a=.7.在△ABC中,假设A=30°,B=45°,,那么AC=.8.4个人排成一排照相,不同排列方式的种数为〔结果用数值表示〕.9.无穷等比数列{a n}的首项为2,公比为,那么{a n}的各项的和为.10.假设2+i〔i为虚数单位〕是关于x的实系数一元二次方程x2+ax+5=0的一个虚根,那么a=.11.函数y=x2﹣2x+1在区间[0,m]上的最小值为0,最大值为1,那么实数m的取值范围是.12.在平面直角坐标系xOy中,点A,B是圆x2+y2﹣6x+5=0上的两个动点,且满足,那么的最小值为.二.选择题〔本大题共12题,每题3分,共36分〕13.假设sinα>0,且tanα<0,那么角α的终边位于〔〕A.第一象限 B.第二象限 C.第三象限 D.第四象限14.半径为1的球的外表积为〔〕A.πB. C.2πD.4π15.在〔1+x〕6的二项展开式中,x2项的系数为〔〕A.2 B.6 C.15 D.2016.幂函数y=x﹣2的大致图象是〔〕A.B.C.D.17.向量,,那么向量在向量方向上的投影为〔〕A.1 B.2 C.〔1,0〕D.〔0,2〕18.设直线l与平面α平行,直线m在平面α上,那么〔〕A.直线l平行于直线m B.直线l与直线m异面C.直线l与直线m没有公共点 D.直线l与直线m不垂直19.在用数学归纳法证明等式1+2+3+…+2n=2n2+n〔n∈N*〕的第〔ii〕步中,假设n=k时原等式成立,那么在n=k+1时需要证明的等式为〔〕A.1+2+3+…+2k+2〔k+1〕=2k2+k+2〔k+1〕2+〔k+1〕B.1+2+3+…+2k+2〔k+1〕=2〔k+1〕2+〔k+1〕C.1+2+3+…+2k+2k+1+2〔k+1〕=2k2+k+2〔k+1〕2+〔k+1〕D.1+2+3+…+2k+2k+1+2〔k+1〕=2〔k+1〕2+〔k+1〕20.关于双曲线与的焦距和渐近线,以下说法正确的选项是〔〕A.焦距相等,渐近线相同 B.焦距相等,渐近线不相同C.焦距不相等,渐近线相同D.焦距不相等,渐近线不相同21.设函数y=f〔x〕的定义域为R,那么“f〔0〕=0〞是“函数f〔x〕为奇函数〞的〔〕A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件22.以下关于实数a,b的不等式中,不恒成立的是〔〕A.a2+b2≥2ab B.a2+b2≥﹣2ab C.D.23.设单位向量与既不平行也不垂直,对非零向量、有结论:①假设x1y2﹣x2y1=0,那么;②假设x1x2+y1y2=0,那么.关于以上两个结论,正确的判断是〔〕A .①成立,②不成立B .①不成立,②成立C .①成立,②成立D .①不成立,②不成立 24.对于椭圆.假设点〔x 0,y 0〕满足.那么称该点在椭圆C 〔a ,b 〕内,在平面直角坐标系中,假设点A 在过点〔2,1〕的任意椭圆C 〔a ,b 〕内或椭圆C 〔a ,b 〕上,那么满足条件的点A 构成的图形为〔 〕 A .三角形及其内部 B .矩形及其内部 C .圆及其内部 D .椭圆及其内部三.解答题〔本大题共5题,共8+8+8+12+12=48分〕 25.如图,正三棱柱ABC ﹣A 1B 1C 1的体积为,底面边长为3,求异面直线BC 1与AC所成的角的大小.26.函数,求f 〔x 〕的最小正周期及最大值,并指出f 〔x 〕取得最大值时x 的值.27.如图,汽车前灯反射镜与轴截面的交线是抛物线的一局部,灯口所在的圆面与反射镜的轴垂直,灯泡位于抛物线的焦点F 处.灯口直径是24cm ,灯深10cm ,求灯泡与反射镜的顶点O 的距离.28.数列{a n }是公差为2的等差数列. 〔1〕a 1,a 3,a 4成等比数列,求a 1的值;〔2〕设a 1=﹣19,数列{a n }的前n 项和为S n .数列{b n }满足,记〔n ∈N *〕,求数列{c n }的最小项〔即对任意n ∈N *成立〕.29.对于函数f 〔x 〕,g 〔x 〕,记集合D f >g ={x|f 〔x 〕>g 〔x 〕}.〔1〕设f〔x〕=2|x|,g〔x〕=x+3,求D f;>g〔2〕设f1〔x〕=x﹣1,,h〔x〕=0,如果.求实数a的取值范围.二卷一.选择题:30.假设函数f〔x〕=sin〔x+φ〕是偶函数,那么ϕ的一个值是〔〕A.0 B.C.πD.2π31.在复平面上,满足|z﹣1|=4的复数z的所对应的轨迹是〔〕A.两个点B.一条线段 C.两条直线 D.一个圆32.函数y=f〔x〕的图象是折线ABCDE,如图,其中A〔1,2〕,B〔2,1〕,C〔3,2〕,D〔4,1〕,E〔5,2〕,假设直线y=kx+b与y=f〔x〕的图象恰有四个不同的公共点,那么k 的取值范围是〔〕A.〔﹣1,0〕∪〔0,1〕B.C.〔0,1]D.二.填空题:33.椭圆的长半轴的长为.34.圆锥的母线长为10,母线与轴的夹角为30°,那么该圆锥的侧面积为.35.小明用数列{a n}记录某地区2021年12月份31天中每天是否下过雨,方法为:当第k 天下过雨时,记a k=1,当第k天没下过雨时,记a k=﹣1〔1≤k≤31〕,他用数列{b n}记录该地区该月每天气象台预报是否有雨,方法为:当预报第k天有雨时,记b n=1,当预报第k天没有雨时,记b n=﹣1记录完毕后,小明计算出a1b1+a2b2+a3b3+…+a31b31=25,那么该月气象台预报准确的总天数为.三.解答题:36.对于数列{a n}与{b n},假设对数列{c n}的每一项c n,均有c k=a k或c k=b k,那么称数列{c n}是{a n}与{b n}的一个“并数列〞.〔1〕设数列{a n}与{b n}的前三项分别为a1=1,a2=3,a3=5,b1=1,b2=2,b3=3,假设{c n}是{a n}与{b n}一个“并数列〞求所有可能的有序数组〔c1,c2,c3〕;〔2〕数列{a n},{c n}均为等差数列,{a n}的公差为1,首项为正整数t;{c n}的前10项和为﹣30,前20项的和为﹣260,假设存在唯一的数列{b n},使得{c n}是{a n}与{b n}的一个“并数列〞,求t的值所构成的集合.2021年上海市春季高考数学试卷参考答案与试题解析一.填空题〔本大题共12题,每题3分,共36分〕1.复数3+4i〔i为虚数单位〕的实部是3.【考点】复数的根本概念.【分析】根据复数的定义判断即可.【解答】解:复数3+4i〔i为虚数单位〕的实部是3,故答案为:3.2.假设log2〔x+1〕=3,那么x=7.【考点】对数的运算性质;函数的零点.【分析】直接利用对数运算法那么化简求解即可.【解答】解:log2〔x+1〕=3,可得x+1=8,解得x=7.故答案为:7.3.直线y=x﹣1与直线y=2的夹角为.【考点】两直线的夹角与到角问题.【分析】由题意可得直线的斜率,可得倾斜角,进而可得直线的夹角.【解答】解:∵直线y=x﹣1的斜率为1,故倾斜角为,又∵直线y=2的倾斜角为0,故直线y=x﹣1与直线y=2的夹角为,故答案为:.4.函数的定义域为[2,+∞〕.【考点】函数的定义域及其求法.【分析】直接由根式内部的代数式大于等于0求解即可.【解答】解:由x﹣2≥0得,x≥2.∴原函数的定义域为[2,+∞〕.故答案为[2,+∞〕.5.三阶行列式中,元素5的代数余子式的值为8.【考点】高阶矩阵.【分析】根据余子式的定义可知,在行列式中划去第1行第3列后所余下的2阶行列式带上符号〔﹣1〕i+j,求出其表达式的值即可.【解答】解:元素5的代数余子式为:〔﹣1〕1+3||=〔4×2+1×0〕=8.∴元素5的代数余子式的值为8.故答案为:8.6.函数的反函数的图象经过点〔2,1〕,那么实数a=1.【考点】反函数.【分析】由于函数的反函数的图象经过点〔2,1〕,可得函数的图象经过点〔1,2〕,即可得出.【解答】解:∵函数的反函数的图象经过点〔2,1〕,∴函数的图象经过点〔1,2〕,∴2=+a,解得a=1.故答案为:1.7.在△ABC中,假设A=30°,B=45°,,那么AC=.【考点】余弦定理;正弦定理.【分析】利用正弦定理即可计算求解.【解答】解:∵A=30°,B=45°,,∴由正弦定理,可得:AC===2.故答案为:2.8.4个人排成一排照相,不同排列方式的种数为24〔结果用数值表示〕.【考点】计数原理的应用.【分析】根据题意,由排列数公式直接计算即可.【解答】解:4个人排成一排照相,不同排列方式的种数为A44=24种,故答案为:24.9.无穷等比数列{a n}的首项为2,公比为,那么{a n}的各项的和为3.【考点】等比数列的前n项和.【分析】{a n}的各项的和=,即可得出.【解答】解:{a n}的各项的和为:==3.故答案为:3.10.假设2+i〔i为虚数单位〕是关于x的实系数一元二次方程x2+ax+5=0的一个虚根,那么a=﹣4.【考点】复数代数形式的混合运算.【分析】2+i〔i为虚数单位〕是关于x的实系数一元二次方程x2+ax+5=0的一个虚根,那么2﹣i〔i为虚数单位〕也是关于x的实系数一元二次方程x2+ax+5=0的一个虚根,再利用根与系数的关系即可得出.【解答】解:∵2+i〔i为虚数单位〕是关于x的实系数一元二次方程x2+ax+5=0的一个虚根,∴2﹣i〔i为虚数单位〕也是关于x的实系数一元二次方程x2+ax+5=0的一个虚根,∴2+i+〔2﹣i〕=﹣a,解得a=﹣4.那么a=﹣4.故答案为:﹣4.11.函数y=x2﹣2x+1在区间[0,m]上的最小值为0,最大值为1,那么实数m的取值范围是[1,2].【考点】二次函数在闭区间上的最值.【分析】根据二次函数的性质得出,求解即可.【解答】解:∵f〔x〕=x2﹣2x+1=〔x﹣1〕2,∴对称轴x=1,∴f〔1〕=0,f〔2〕=1,f〔0〕=1,∵f〔x〕=x2﹣2x+2在区间[0,m]上的最大值为1,最小值为0,∴,∴1≤m≤2,故答案为:1≤m≤2.12.在平面直角坐标系xOy中,点A,B是圆x2+y2﹣6x+5=0上的两个动点,且满足,那么的最小值为4.【考点】直线与圆的位置关系;向量的三角形法那么.【分析】此题可利用AB中点M去研究,先通过坐标关系,将转化为,用根据AB=2,得到M点的轨迹,由图形的几何特征,求出模的最小值,得到此题答案.【解答】解:设A〔x1,y1〕,B〔x2,y2〕,AB中点M〔x′,y′〕.∵x′=,y′=,∴=〔x1+x2,y1+y2〕=2,∵圆C:x2+y2﹣6x+5=0,∴〔x﹣3〕2+y2=4,圆心C〔3,0〕,半径CA=2.∵点A,B在圆C上,AB=2,∴CA2﹣CM2=〔AB〕2,即CM=1.点M在以C为圆心,半径r=1的圆上.∴OM≥OC﹣r=3﹣1=2.∴||≥2,∴≥4,∴的最小值为4.故答案为:4.二.选择题〔本大题共12题,每题3分,共36分〕13.假设sinα>0,且tanα<0,那么角α的终边位于〔〕A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】象限角、轴线角.【分析】由sinα>0,那么角α的终边位于一二象限,由tanα<0,那么角α的终边位于二四象限,两者结合即可解决问题.【解答】解:∵sinα>0,那么角α的终边位于一二象限,∵由tanα<0,∴角α的终边位于二四象限,∴角α的终边位于第二象限.应选择B.14.半径为1的球的外表积为〔〕A.πB. C.2πD.4π【考点】球的体积和外表积.【分析】利用球的外表积公式S=4πR2解答即可求得答案.【解答】解:半径为1的球的外表积为4π×12=4π,应选:D.15.在〔1+x〕6的二项展开式中,x2项的系数为〔〕A.2 B.6 C.15 D.20【考点】二项式系数的性质.【分析】根据二项展开式的通项公式求出展开式的特定项即可.【解答】解:〔1+x〕6的二项展开式中,通项公式为:T r+1=•16﹣r•x r,令r=2,得展开式中x2的系数为:=15.应选:C.16.幂函数y=x﹣2的大致图象是〔〕A.B.C.D.【考点】函数的图象.【分析】利用负指数幂的定义转换函数,根据函数定义域,利用排除法得出选项.【解答】解:幂函数y=x﹣2=,定义域为〔﹣∞,0〕∪〔0,+∞〕,可排除A,B;值域为〔0,+∞〕可排除D,应选:C.17.向量,,那么向量在向量方向上的投影为〔〕A.1 B.2 C.〔1,0〕D.〔0,2〕【考点】平面向量数量积的运算.【分析】求出,代入向量的投影公式计算.【解答】解:=1,=1,||=,∴向量在向量方向上的投影=1.应选:A.18.设直线l与平面α平行,直线m在平面α上,那么〔〕A.直线l平行于直线m B.直线l与直线m异面C.直线l与直线m没有公共点 D.直线l与直线m不垂直【考点】空间中直线与直线之间的位置关系.【分析】由中直线l与平面α平行,直线m在平面α上,可得直线l与直线m异面或平行,进而得到答案.【解答】解:∵直线l与平面α平行,直线m在平面α上,∴直线l与直线m异面或平行,即直线l与直线m没有公共点,应选:C.19.在用数学归纳法证明等式1+2+3+…+2n=2n2+n〔n∈N*〕的第〔ii〕步中,假设n=k时原等式成立,那么在n=k+1时需要证明的等式为〔〕A.1+2+3+…+2k+2〔k+1〕=2k2+k+2〔k+1〕2+〔k+1〕B.1+2+3+…+2k+2〔k+1〕=2〔k+1〕2+〔k+1〕C.1+2+3+…+2k+2k+1+2〔k+1〕=2k2+k+2〔k+1〕2+〔k+1〕D.1+2+3+…+2k+2k+1+2〔k+1〕=2〔k+1〕2+〔k+1〕【考点】数学归纳法.【分析】由数学归纳法可知n=k时,1+2+3+…+2k=2k2+k,到n=k+1时,左端为1+2+3+…+2k+2k+1+2〔k+1〕,从而可得答案.【解答】解:∵用数学归纳法证明等式1+2+3+…+2n=2n2+n时,当n=1左边所得的项是1+2;假设n=k时,命题成立,1+2+3+…+2k=2k2+k,那么当n=k+1时,左端为1+2+3+…+2k+2k+1+2〔k+1〕,∴从“k→k+1〞需增添的项是2k+1+2〔k+1〕,∴1+2+3+…+2k+2k+1+2〔k+1〕=2〔k+1〕2+〔k+1〕.应选:D.20.关于双曲线与的焦距和渐近线,以下说法正确的选项是〔〕A.焦距相等,渐近线相同 B.焦距相等,渐近线不相同C.焦距不相等,渐近线相同D.焦距不相等,渐近线不相同【考点】双曲线的简单性质.【分析】分别求得双曲线的焦点的位置,求得焦点坐标和渐近线方程,即可判断它们焦距相等,但渐近线不同.【解答】解:双曲线的焦点在x轴上,可得焦点为〔±,0〕,即为〔±2,0〕,渐近线方程为y=±x;的焦点在y轴上,可得焦点为〔0,±2〕,渐近线方程为y=±2x.可得两双曲线具有相等的焦距,但渐近线不同.应选:B.21.设函数y=f〔x〕的定义域为R,那么“f〔0〕=0〞是“函数f〔x〕为奇函数〞的〔〕A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】函数y=f〔x〕的定义域为R,假设函数f〔x〕为奇函数,那么f〔0〕=0,反之不成立,例如f〔x〕=x2.即可判断出结论.【解答】解:函数y=f〔x〕的定义域为R,假设函数f〔x〕为奇函数,那么f〔0〕=0,反之不成立,例如f〔x〕=x2.∴“f〔0〕=0〞是“函数f〔x〕为奇函数〞的必要不充分条件.应选:B.22.以下关于实数a,b的不等式中,不恒成立的是〔〕A.a2+b2≥2ab B.a2+b2≥﹣2ab C.D.【考点】不等式的根本性质.【分析】根据级别不等式的性质分别判断即可.【解答】解:对于A:a2+b2﹣2ab=〔a﹣b〕2≥0,故A恒成立;对于B:a2+b2+2ab=〔a+b〕2≥0,故B恒成立;对于C:﹣ab=≥0,故C恒成立;D不恒成立;应选:D.23.设单位向量与既不平行也不垂直,对非零向量、有结论:①假设x1y2﹣x2y1=0,那么;②假设x1x2+y1y2=0,那么.关于以上两个结论,正确的判断是〔〕A.①成立,②不成立B.①不成立,②成立C.①成立,②成立D.①不成立,②不成立【考点】向量的线性运算性质及几何意义.【分析】①假设存在实数λ使得=,那么=λ,由于向量与既不平行也不垂直,可得x1=λx2,y1=λy2,即可判断出结论.②假设x1x2+y1y2=0,那么=〔〕•=x1x2+y1y2+〔x2y1+x1y2〕=〔x2y1+x1y2〕,无法得到=0,因此不一定正确.【解答】解:①假设存在实数λ使得=,那么=λ,∵向量与既不平行也不垂直,∴x1=λx2,y1=λy2,满足x1y2﹣x2y1=0,因此.②假设x1x2+y1y2=0,那么=〔〕•=x 1x 2+y 1y 2+〔x 2y 1+x 1y 2〕=〔x 2y 1+x 1y 2〕,无法得到=0,因此不一定正确.应选:A .24.对于椭圆.假设点〔x 0,y 0〕满足.那么称该点在椭圆C 〔a ,b 〕内,在平面直角坐标系中,假设点A 在过点〔2,1〕的任意椭圆C 〔a ,b 〕内或椭圆C 〔a ,b 〕上,那么满足条件的点A 构成的图形为〔 〕 A .三角形及其内部 B .矩形及其内部 C .圆及其内部 D .椭圆及其内部 【考点】椭圆的简单性质.【分析】点A 〔x 0,y 0〕在过点P 〔2,1〕的任意椭圆C 〔a ,b 〕内或椭圆C 〔a ,b 〕上,可得=1,+≤1.由椭圆的对称性可知:点B 〔﹣2,1〕,点C 〔﹣2,﹣1〕,点D 〔2,﹣1〕,都在任意椭圆上,即可得出.【解答】解:设点A 〔x 0,y 0〕在过点P 〔2,1〕的任意椭圆C 〔a ,b 〕内或椭圆C 〔a ,b 〕上, 那么=1,+≤1.∴+≤=1,由椭圆的对称性可知:点B 〔﹣2,1〕,点C 〔﹣2,﹣1〕,点D 〔2,﹣1〕,都在任意椭圆上,可知:满足条件的点A 构成的图形为矩形PBCD 及其内部. 应选:B .三.解答题〔本大题共5题,共8+8+8+12+12=48分〕 25.如图,正三棱柱ABC ﹣A 1B 1C 1的体积为,底面边长为3,求异面直线BC 1与AC所成的角的大小.【考点】异面直线及其所成的角.【分析】由正三棱柱ABC﹣A1B1C1的体积求出高,由A1C1与AC平行,得∠BC1A1是异面直线BC1与AC所成的角,由此利用余弦定理能求出异面直线BC1与AC所成的角的大小.【解答】解:∵正三棱柱ABC﹣A1B1C1的体积为,底面边长为3,∴,解得h=4,∵A1C1与AC平行,∴∠BC1A1是异面直线BC1与AC所成的角,在△A1BC1中,A1C1=3,BC1=BA1=5,∴cos∠BC1A1==.∴∠BC1A1=arccos.∴异面直线BC1与AC所成的角的大小为arccos.26.函数,求f〔x〕的最小正周期及最大值,并指出f〔x〕取得最大值时x的值.【考点】两角和与差的正弦函数;正弦函数的图象.【分析】由条件利用两角和的正弦公式化简f〔x〕的解析式,再利用正弦函数的周期性和最大值,得出结论.【解答】解:∵,∴函数的周期为T=2π,函数的最大值为2,且函数取得最大值时,x+=2kπ+,即x=2kπ+,k∈Z.27.如图,汽车前灯反射镜与轴截面的交线是抛物线的一局部,灯口所在的圆面与反射镜的轴垂直,灯泡位于抛物线的焦点F处.灯口直径是24cm,灯深10cm,求灯泡与反射镜的顶点O的距离.【考点】抛物线的简单性质.【分析】先设出抛物线的标准方程y2=2px〔p>0〕,点〔10,12〕代入抛物线方程求得p,进而求得,即灯泡与反光镜的顶点的距离.【解答】解:建立平面直角坐标系,以O为坐标原点,水平方向为x轴,竖直方向为y轴,如下图:那么:设抛物线方程为y2=2px〔p>0〕,点〔10,12〕在抛物线y2=2px上,∴144=2p×10.∴=3.6.∴灯泡与反射镜的顶点O的距离3.6cm.28.数列{a n}是公差为2的等差数列.〔1〕a1,a3,a4成等比数列,求a1的值;〔2〕设a1=﹣19,数列{a n}的前n项和为S n.数列{b n}满足,记〔n∈N*〕,求数列{c n}的最小项〔即对任意n∈N*成立〕.【考点】等差数列的前n项和;等比数列的通项公式.【分析】〔1〕利用等差数列通项公式和等比数列性质能求出首项a1的值.=2n﹣19+2n,由此能求出〔2〕由利用累加法能求出b n=2﹣〔〕n﹣1.从而能求出c n﹣c n﹣1数列{c n}的最小项.【解答】解:〔1〕∵数列{a n}是公差为2的等差数列.a1,a3,a4成等比数列,∴.解得d=2,a1=﹣8〕〔2〕b n=b1+〔b2﹣b1〕+〔b3﹣b2〕+…+〔b n﹣b n﹣1=1+==2﹣〔〕n﹣1.,,=2n﹣19+2n由题意n≥9,上式大于零,即c9<c10<…<c n,进一步,2n+2n是关于n的增函数,∵2×4+24=24>19,2×3+23=14<19,∴c1>c2>c3>c4<c5<…<c9<c10<…<c n,∴.={x|f〔x〕>g〔x〕}.29.对于函数f〔x〕,g〔x〕,记集合D f>g〔1〕设f〔x〕=2|x|,g〔x〕=x+3,求D f;>g〔2〕设f1〔x〕=x﹣1,,h〔x〕=0,如果.求实数a的取值范围.【考点】其他不等式的解法;集合的表示法.【分析】〔1〕直接根据新定义解不等式即可,〔2〕方法一:由题意可得那么在R上恒成立,分类讨论,即可求出a 的取值范围,方法二:够造函数,求出函数的最值,即可求出a的取值范围.={x|x<﹣1或x>3};【解答】解:〔1〕由2|x|>x+3,得D f>g〔2〕方法一:,,由,那么在R上恒成立,令,a>﹣t2﹣t,,∴a≥0时成立.以下只讨论a<0的情况对于,=t>0,t2+t+a>0,解得t<或t>,〔a<0〕又t>0,所以,∴=综上所述:方法二〔2〕,,由a≥0.显然恒成立,即x∈Ra<0时,,在x≤1上恒成立令,,所以,综上所述:.二卷一.选择题:30.假设函数f〔x〕=sin〔x+φ〕是偶函数,那么ϕ的一个值是〔〕A.0 B.C.πD.2π【考点】正弦函数的图象.【分析】由函数的奇偶性可得φ的取值范围,结合选项验证可得.【解答】解:∵函数f〔x〕=sin〔x+φ〕是偶函数,∴f〔﹣x〕=f〔x〕,即sin〔﹣x+φ〕=sin〔x+φ〕,∴〔﹣x+φ〕=x+φ+2kπ或﹣x+φ+x+φ=π+2kπ,k∈Z,当〔﹣x+φ〕=x+φ+2kπ时,可得x=﹣kπ,不满足函数定义;当﹣x+φ+x+φ=π+2kπ时,φ=kπ+,k∈Z,结合选项可得B为正确答案.应选:B.31.在复平面上,满足|z﹣1|=4的复数z的所对应的轨迹是〔〕A.两个点B.一条线段 C.两条直线 D.一个圆【考点】复数的代数表示法及其几何意义.【分析】设z=x+yi,得到|x+yi﹣1|==4,从而求出其运动轨迹.【解答】解:设z=x+yi,那么|x+yi﹣1|==4,∴〔x﹣1〕2+y2=16,∴运动轨迹是圆,应选:D.32.函数y=f〔x〕的图象是折线ABCDE,如图,其中A〔1,2〕,B〔2,1〕,C〔3,2〕,D〔4,1〕,E〔5,2〕,假设直线y=kx+b与y=f〔x〕的图象恰有四个不同的公共点,那么k 的取值范围是〔〕A.〔﹣1,0〕∪〔0,1〕B.C.〔0,1]D.【考点】函数的图象.【分析】根据图象使用特殊值验证,使用排除法得出答案.【解答】解;当k=0,1<b<2时,显然直线y=b与f〔x〕图象交于四点,故k可以取0,排除A,C;作直线BE,那么k BE=,直线BE与f〔x〕图象交于三点,平行移动直线BD可发现直线与f〔x〕图象最多交于三点,即直线y=与f〔x〕图象最多交于三点,∴k≠.排除D.应选B.二.填空题:33.椭圆的长半轴的长为5.【考点】椭圆的简单性质.【分析】利用椭圆性质求解.【解答】解:椭圆中,a=5,∴椭圆的长半轴长a=5.故答案为:5.34.圆锥的母线长为10,母线与轴的夹角为30°,那么该圆锥的侧面积为50π.【考点】旋转体〔圆柱、圆锥、圆台〕.【分析】根据勾股定理得出圆锥的底面半径,代入侧面积公式计算.【解答】解:∵圆锥的母线长为10,母线与轴的夹角为30°,∴圆锥的底面半径为5,∴圆锥的侧面积为π×5×10=50π.故答案为:50π.35.小明用数列{a n}记录某地区2021年12月份31天中每天是否下过雨,方法为:当第k 天下过雨时,记a k=1,当第k天没下过雨时,记a k=﹣1〔1≤k≤31〕,他用数列{b n}记录该地区该月每天气象台预报是否有雨,方法为:当预报第k天有雨时,记b n=1,当预报第k天没有雨时,记b n=﹣1记录完毕后,小明计算出a1b1+a2b2+a3b3+…+a31b31=25,那么该月气象台预报准确的总天数为28.【考点】数列的应用.【分析】由题意,气象台预报准确时a k b k=1,不准确时a k b k=﹣1,根据a1b1+a2b2+a3b3+…+a31b31=25=28﹣3,即可得出结论.【解答】解:由题意,气象台预报准确时a k b k=1,不准确时a k b k=﹣1,∵a1b1+a2b2+a3b3+…+a31b31=25=28﹣3,∴该月气象台预报准确的总天数为28.故答案为:28.三.解答题:36.对于数列{a n}与{b n},假设对数列{c n}的每一项c n,均有c k=a k或c k=b k,那么称数列{c n}是{a n}与{b n}的一个“并数列〞.〔1〕设数列{a n}与{b n}的前三项分别为a1=1,a2=3,a3=5,b1=1,b2=2,b3=3,假设{c n}是{a n}与{b n}一个“并数列〞求所有可能的有序数组〔c1,c2,c3〕;〔2〕数列{a n},{c n}均为等差数列,{a n}的公差为1,首项为正整数t;{c n}的前10项和为﹣30,前20项的和为﹣260,假设存在唯一的数列{b n},使得{c n}是{a n}与{b n}的一个“并数列〞,求t的值所构成的集合.【考点】数列的求和;数列的应用.【分析】〔1〕利用“并数列〞的定义即可得出.〔2〕利用等差数列的通项公式及其前n项和公式可得a n,公差d,c n,通过分类讨论即可得出.【解答】解:〔1〕〔1,2,3〕,〔1,2,5〕,〔1,3,3〕,〔1,3,5〕;〔2〕a n=t+n﹣1,设{c n}的前10项和为T n,T10=﹣30,T20=﹣260,得d=﹣2,c1=6,所以c n=8﹣2n;c k=a k 或c k=b k.,∴k=1,t=6;或k=2,t=3,所以k≥3.k∈N*时,c k=b k,∵数列{b n}唯一,所以只要b1,b2唯一确定即可.显然,t=6,或t=3时,b1,b2不唯一,.2021年7月25日。
2024年上海市高考数学试卷及解析

2024年上海市高考数学试卷一、填空题(本大题共12题,满分54分,第1-6题每题4分,第7-12题每题5分). 1.设全集{}1,2,3,4,5U =,集合{2,4}A =,则A =____________.2.已知0(),(3)1,0x f x f x >==⎪⎩_____________. 3.已知2,230x R x x ∈--<的解集为____________4.已知3(),f x x a x R =+∈,若()f x 是奇函数,则a =_____________.5.已知,(2,5),(6,),//k R a b k a b ∈==,则k 的值为_____________.6.在(1)n x +的二项展开式中,若各项系数和为32,则2x 项的系数为______.7.已知抛物线24y x =上有一点P 到准线的距离为9,那么P 到x 轴的距离为_______.8.某校举办科学竞技比赛,有A B C 、、三种题库,A 题库有5000道题,B 题库有4000道题,C 题库有3000道题.小申已完成所有题,他A 题库的正确率是0.92,B 题库的正确率是0.86,C 题库的正确率是0.72,他从所有题中随机选一题,正确率是________.9.已知虚数z ,其实部为1,Im 0,z ≠且2()z m m R z+=∈,则实数m 为________. 10.设集合A 中的元素皆为无重复数字的三位正整数,且元素中任意两数之积皆为偶数,则集合中元素个数的最大值是____________.11.海面上有两个灯塔O T 、和两艘货船A B 、,其中货船A 在O 正东方向,B 在O 的正北方向,观测知O 到A B 、距离相等,16.5o BTO ∠=,37ATO ︒∠=,则BOT ∠=__________.(精确到0.1度)12.无穷等比数列{}n a 首项10,1a q >>,记集合121{|,[,][,]}n n n I x y x y a a a a +=-∈,若对任意正整数,n n I 都是闭区间,则q 的取值范围是__________.二、选择题(本大题共4题,满分18分,13-14题每题4分,第15-16题每题5分). 13.人们通过统计沿海地区的气候温度和海水表层温度的数据,研究发现两者息息相关,且相关系数为正数,对此描述正确的是(,,,,) A.气候温度高,海水表层温度就高 B.气候温度高,海水表层温度就低C.随着气候温度由低到高,海水表层温度呈上升趋势D.随着气候温度由低到高,海水表层温度呈下降趋势 14.下列函数()f x 的最小正周期是2π的是(,,,,) A.()sin cos f x x x =+B.()sin cos f x x x =C.22()sin cos f x x x =+D.22()sin cos f x x x =-15.定义一个集合Ω,集合中的元素是空间内的点集,任取123,,P P P ∈Ω,存在不全为0的实数123,,λλλ,使得1231230.OP OP OP λλλ++=已知(1,0,0)∈Ω,则(0,0,1)∉Ω的充分条件是(,,,,)A.(0,0,0)∈ΩB.(-1,0,0)∈ΩC.(0,1,0∈Ω)D.(0,0,-1)∈Ω16.定义集合000{|(,),()()}M x x x f x f x =∀∈-∞<,若[1,1]M =-的所有()f x 中,下列成立的是(,,,,) A.存在()y f x =是偶函数B.存在()y f x =在2x =处取最大值C.存在()y f x =是严格增函数D.存在()y f x =在1x =-处取到极小值三、解答题(本大题共5题,第17-19题每题14分,第20,21题每题18分,共78分) 17.如图:正四棱锥,P ABCD O -为底面ABCD 的中心.(1)若5,AP AD ==求POA ∆绕PO 旋转一周形成几何体的体积. (2)若,AP AD E =为棱PD 的中点,求直线BD 与平面AEC 所成角的大小.18.若()log (0,1).a f x x a a =>≠(1)()y f x =过(4,2),求(22)()f x f x -<的解集;(2)存在x 使得(1)f x +,()f ax ,(2)f x +成等差数列,求a 的取值范围.19.为了解某地初中学生体育锻炼时长与学业成绩的关系,从该地区29000名学生中抽取580人,得到日均体育锻炼时长与学业成绩的数据如下表所示:(1)该地区29000名学生中体育锻炼时长大于1小时人数约为多少?(2)估计该地区初中学生日均体育锻炼的时长(精确到0.1)(3)是否有95%的把握认为学业成绩优秀与日均体育锻炼时长不小于1小时且小于2小时有关?附22():,()()()()n ad bca b c d a c b dχ-=++++其中n a b c d=+++2,( 3.841)0.05Pχ≥≈20.双曲线22122:1,(0),,yx b A AbΓ-=>为左右顶点,过点(2,0)M-的直线l交双曲线Γ于,P Q两点.(1)若2e =时,求b 的值(2)若点P 在第一象限,2b MA P =∆为等腰三角形时,求点P 的坐标. (3)过点Q 作OQ 延长线交Γ于点R ,若121A R A R ⋅=,求b 取值范围.21.已知D 是R 的非空子集,()y f x =是定义在R 的函数.对于点(,)M a b ,,令22()()(())s x x a f x b =-+-,若对于00(,())P x f x ,满足()s x 在0x x =处取得最小值,则称P 是M 的f 最近点.(1)对于1(),(0,)f x D x ==+∞,求证:对于点(0,0)M ,存在点M 的f 最近点;(2)对于(),x f x e D R ==,(1,0)M ,若()y f x =上一点P 满足MP 垂直于()y f x =在点P 处的切线,则P 是否是M 的f 最近点?(3),D R =()y f x =是可导的,()y g x =在定义域R 上函数值恒正,已知,t R ∈12(1,()()),(1,()())M t f t g t M t f t g t --++,.若对任意的t R ∈,都存在点P ,满足P 是1M 的f 最近点,也是2M 的f 最近点,试求()y f x =的单调性.2024年上海市高考数学试卷解析一、填空题.1.【答案】{1,3,5}A =2.3.【答案】(-1,3)【解析】223(1)(3)0(1,3)x x x x x --=+-<⇒∈- 4.【答案】0a =【解析】(0)00f a =⇒= 5.【答案】15【解析】//25615a b k k ⇒=⨯⇒= 6.【答案】10【解析】2325n n =⇒=3510C ∴=7.【答案】【解析】198P P x x +=⇒=244832P P P y x y ==⨯=⇒=±所以P 到x 轴的距离为8.【答案】0.85 【解析】5430.920.860.830.85121212⨯+⨯+⨯=9.【答案】2 【解析】设z a bi =+222(1)111(1)(1)bi z bi bi z bi bi bi -+=++=++++-222222211111bi b bi b i b b b -⎛⎫⎛⎫=++=++- ⎪ ⎪+++⎝⎭⎝⎭所以22011bb b b-=⇒=±+ 所以2m = 10.【答案】329【解析】A 中的奇数至多1个A 中的偶数,对于三个数码若个位为0,则有9872⨯=个若个位为2,4,6,8,则有488256⨯⨯=,故A 中最多有329个元素. 11.【答案】7.8o【解析】设BOT α∠=,则90AOT α︒∠=-,53A α︒∠=+OT OT OA OB =sin sin sin(53)sin(16.5)sin sin sin 37sin16.5A B ATO BTO αα︒︒︒︒++∴=⇒=∠∠ sin cos53cos sin 53sin cos16.5cos sin16.5cos53sin16.5o o o oo oαααα++⇒= sin cos tan53sin cot16.5cos o o a a a a ⇒+=+ 7.8o a ⇒≈12.【答案】[2,)+∞【解析】由题意,不妨设x y >,若,x y 均在[]12,a a ,则有x y -[]210,a a ∈-,者,x y 均在[]1,n n a a +,,则有x y -[]10,n n a a +∈-若,x y 分别在两个区间则211[,]n n x y a a a a +-∈--,又因为1q >,总有ln 是闭区间,则21n n n a a a a +-≤-恒成立即可,化简得1(2)0n q q q --+≥,所以有2q ≥恒成立 二、选择题. 13.【答案】C【解析】随着气候温度由低到高,海水表层温度呈上升趋势,相关系数为正数 所以选C 14.【答案】A【解析】A.()cos sin ,24f x x x x T ππ⎛⎫=+=+= ⎪⎝⎭,正确B.(f )sin x =cos x 1sin 2x =2,x T π=错误C.2()sin x f x =2cos x +1=,错误;D.22()sin cos cos 2,,f x x x T π=-=-=错误; 所以选A 15.【答案】C【解析】若(0,1,0)-∈Ω,假设(0,0,1)∈Ω取()()()1231,0,0,0, 1,0,0,0,1,P P P -则1122330OP OP OP λλλ++=1230λλλ∴===矛盾!(∴0,0,1)∉Ω所以选C. 16.【答案】B【解析】1M -∈1x ∴<-时,()(1)f x f <- 1x ∴=-不是极小值点,排除D假设()f x 严格递增,则M R =,矛盾!排除C 任取12,x x ,使得1211x x -≤<≤2x M ∈12()()f x f x ∴<() f x ∴在[]1,1-严格递增,排除A所以选B. 三、解答题17.【答案】(1)12;π(2)4π 【解析】(1)因为P ABCD -是正四棱锥,所以底面ABCD 是正方形,且OP ⊥底面ABCD ,因为AD =,所以3AO OD OB OC ====因为5AP =,所以4PO ==所以POA ∆绕OP 旋转一周形成的几何体是以3为底面半径,4为高的圆锥所以211341233V Sh ππ==⨯⨯=.(2)如图建立空间直角坐标系因为AP AD =,,由题知P ABCD -是正四棱锥,所以该四梭锥各核长相等,设AB =则AO OD OB OC a ====,PO a ==则可得(0,0,0),(0,0,),(0,,0),(,0,0),(0,,0),(,0,0),,0,22aa O P a A a B a C a D a E ⎛⎫-- ⎪⎝⎭故(2,0,0),(0,2,0),,,22aa BD a AC a AE a ⎛⎫=-== ⎪⎝⎭设111(,,)n x y z =为平面AEC 的法向量,则1111200022a y n AC a ax a y z n AE ⋅=⎧⎧⋅=⎪⎪⇒⎨⎨⋅+⋅+⋅=⋅=⎪⎪⎩⎩,,令11x =,,则110,1y z ==-,,所以(1,01)n =-则cos ,22n BD n BD n BDa ⋅-===-⋅ 设直线BD 与面AEC 所成角为θ,因为sin 2cos ,,0,22n BD πθθ⎡⎤==∈⎢⎥⎣⎦,所以.4πθ=18.【答案】(1)(1,2);(2)1a >(1)由()y f x =过(4,2)可得log 42a =,得:242a a =⇒=±, 0a >, 2a ∴=因为2()log f x x =在()0,+∞上是严格增函数()()2202212f x f x x x x -<⇒<-<⇒<<,所以解集为()1,2(2)因为(1)f x +,()f ax ,(2)f x +成等差数列,所以(1)(2)2()f x f x f ax +++=即log (1)log (2)2log ()a a a x x ax +++=有解,化简可得2log (1)(2)log ()a a x x ax ++=得2(1)(2)()x x ax ++=且1020000,1x x x ax a a +>⎧⎪+>⎪⇒>⎨>⎪⎪>≠⎩,则22(1)(2)x x a x ++=在(0,)+∞上有解,又222(1)(2)231311248x x x x x x ++⎛⎫=++=+- ⎪⎝⎭,,故在(0,)+∞上22(1)(2)31,20148x x x ++⎛⎫>+-= ⎪⎝⎭ 即211a a >⇒<-或1,0a a >>,所以 1.a >19.【答案】(1)12500人;(2)0.9h;(3)学业成绩与锻炼时长不小于1小时且小于2两小时有关【解析】(1)580人中体育银炼时长不小于1小时人数占比423113740272558058P +++++==该地区29000名初中学生中体育锻炼时长不小于1小时的人数约为 29000×251250058=人(2)该地区初中学生锻炼平均时长约为:10.50.511 1.5 1.52513444147421373405802222[()()()()+++⨯++⨯++⨯++⨯++2 2.5271270.91229()]+⨯+=≈ (3)①提出原假设0:H 成绩优秀与日均体育锻炼时长不小于1小时且小于2小时无关.②确定显著性水平20.05,( 3.841)0.05P αχ=≥≈③()()()()()225804530817750 3.976 3.84145501773084517750308χ⨯⨯-⨯=≈>+⨯+⨯+⨯+④否定原假设,即学业成绩优秀与日均体育锻炼时长不小于1小时且小于2小时有关.20.【答案】(1)b =(2,P ;(3)10(0,3)3,3b ⎛⎤∈ ⎥⎝⎦【解析】(1)因为22222,2, 4.1,4c c e a c a a=∴∴=∴===因为222a b c +=,所以23b =,所以b =负含). (2)因为2MA P ∆为等腰三角形①若2MA 为底,则点P 在直线12x =-时,与P 在第一象限矛盾,故合去②若2A P 为底,则2MP MA =,与2MP MA >矛盾,故舍去. ③若MP 为底,则22,MA PA =设00(,),P x y 000,0.x y >>3=,即2200(1)9x y -+=,又因为220182y x -= 得22008(1)(1)93x x -+-⨯=,得200116320x x --=,得002,x y ==,即(2,P(3)由1(1,0)A -,设1122(,),(,)P x y Q x y ,则22(,)R x y --,设直线1:2()l x my m b=->联立212222222222212222142()1(1)430,311b m x my m y y b b m b m y b my b y b x y y b b m ⎧⎧=->+=⎪⎪-⎪⎪⎪⎪∴--+=⎨⎨⎪⎪⎪⎪-=⋅=⎪⎪-⎩∴⎩ 122211(1,),(1,)A R x y A P x y =-+-=-,又由121A R A P ⋅=,得2112(1)(1)1x x y y -+--= 即2112(1)(1)1x x y y --+=-,即2112(3)(3)1my my y y --+=-化简后可得到21212(1)3()100m y y m y y +-++=再由韦达定理得2222223(1)1210(1)0b m m b b m +-+-=,化简:2223100b m b +-=所以221010033,b m ⎛⎤=∈ ⎥+⎝⎦222210103311b b b b ≠+=+ 得23,b ≠,10(0,3)3,3b ⎛⎤∴∈ ⎥⎝⎦21.【解析】(l)证明:222211()(0)(0)2s x x x w w =-+-=+≥=,当且仅当221x w =即1x =时取到最小值,所以 对于点(0,0)M 存在点(1,1)P 使得P 是M 在()f x 的最近点(2)设(P 00,xx e ),显然01x ≠00002200000()(),()11011x x x x x MPMP e e f x e f x e k f x k e x x x '''=⇒==∴⋅==-∴+-=-- 设22()1()210x x h x e x h x e '=+-⇒=+>,,则显然()h x 在R 严格增,且0(0)00h x =⇒=(0,1)P ∴()S x =22(1)()2x x e S x '-+⇒=(1)x -222x e +=2(1)x e x +- ()2S x '=(21)00x e x x +->⇒> 2()2(1)00x S x e x x '=⋅+-<⇒<()S x ∴在(,0]-∞递减,[0,)+∞递增0x ∴=是()S x 的最小值点P ∴是M 关于f 的最近点(3)设21()(1)(S x x t =-++()f x -2()()),f t g t +2()(S x =21)(x t --+(f )(x f -)(t g -2))t设(,())t t P x f x由题知,t x 是12(),()S x S x 的最小值点,故()()()()()()()()()2221111t t t S t S x g t x t f x f t g t ≥⇒+≥-++-+()()()()()()2222211()()()t t t S t S x g t x t f x f t g t ≥⇒+≥-++--两式相加得()()22222(1(()))21(()())()t t g t x t f x f t g t ⎦+-++-⎡⎤⎣≥ ()()()()220t t x t f x f t ∴-+-≤⇒t x t =()()1()212()()()()S x x t f x f t g t f x ''=-++-+2()2(1)2(S x x t '=--+()f x -()())f t g t -()f x 't x 是12(),()S x S x 的最小值点12,(),()S x S x 的定义域为R t x ∴是12(),()S x S x 的极小值点121()()01()()0()0()S x S x g t f t f t g t ''''∴==∴+=∴=-< ()f x ∴在R 上严格递减.。
上海市2021年高考[数学]考试真题与答案解析
![上海市2021年高考[数学]考试真题与答案解析](https://img.taocdn.com/s3/m/b983052853ea551810a6f524ccbff121dd36c592.png)
ADA 1D 1C 1CB 1By z x上海市2021年高考:数学考试真题与答案解析一. 填空题本大题共有12题,16 题每题4分,712 题每题5分. 考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分或5分,否则一律得零分。
1.已知集合{1A =,2,3,}4,{3B =,4,}5,则A B = .2.若排列数6654m P =⨯⨯,则m = .3.不等式11x x->的解集为 .4.已知球的体积为36π,则该球主视图的面积为 .5.已知复数z 满足30z z+=,则||z = .6.设双曲线2221(0)9x y b b -=>的焦点为1F 、2F ,P 为该双曲线上的一点,若1||5PF =,则2||PF =.7.如图所示,以长方体1111ABCD A B C D -的顶点D 为坐标原点,过D 的三条棱所在的直线为坐标轴,建立空间直角坐标系,若1DB 的坐标为(4,3,2),则1AC的坐标为 .8.定义在(0,)+∞的函数()y f x =的反函数为1()y f x -=,若函数310()()x x g x f x x ⎧-≤=⎨>⎩为奇函数,则方程1()2f x -=的解为.9.给出四个函数:①y x =-;②1y x=-;③3y x =;④12y x =,从其中任选2个,则事件A :“所选2个函数的图像有且仅有一个公共点”的概率是 .P 4P 2P 3P 110.已知数列{}n a 和{}n b ,其中2()n a n n N *=∈,{}n b 的项是互不相等的正整数,若对于任意n N *∈,数列{}n b 中的第n a 项等于{}n a 中的第n b 项,则148161234()()lg b b b b lg b b b b =.11.已知1α,2R α∈,且满足等式12112222sin sin αα+=++,则12|10|παα--的最小值为 .12.如图,用35个单位正方形拼成一个矩形,点1P 、2P 、3P 、4P 以及四个标记为“#”的点在正方形的顶点处,设集合{1P Ω=,2P ,3P ,}4P ,点P ∈Ω,过P 作直线P l ,使得不在P l 上的“#”的点分布在P l 的两侧. 用1()P D l 和2()P D l 分别表示P l 一侧和另一侧的“#”的点到P l 的距离之和. 若过P 的直线P l 中有且仅有一条满足1()P D l 2()P D l =,则Ω中所有这样的P 为.二. 选择题本大题共有4题,每题有且只有一个正确. 考生应在答题纸的相应编号上,填上正确的答案,选对得5分,否则一律得零分.13.关于x 、y 的二元一次方程组50234x y x y +=⎧⎨+=⎩的系数行列式D =()A.0543 B.1024C. 1523D.605414.在数列{}n a 中,12nn a ⎛⎫=- ⎪⎝⎭,n N *∈,则n n lim a →∞()A. 等于12-B. 等于0C. 等于12D. 不存在15.已知a 、b 、c 为实常数,数列{}n x 的通项2n x an bn c =++,n N *∈,则“存在k N *∈,使得100k x +,200k x +,300k x +成等差数列”的一个必要条件是( )A. 0a ≥B. 0b ≤C. 0c =D. 20a b c -+=16.在平面直角坐标系xOy 中,已知椭圆221:1364x y C +=和222:19y C x +=,P 为1C 上的动点,Q 为2C 上的动点,设ω为OP OQ ⋅的最大值,记集合{(P Ω=,)|Q P 在1C 上,Q 在2C 上,且OP OQ ⋅}ω=,则Ω中元素的个数为( )A. 2个B. 4个C. 8个D. 无数个三. 解答题本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021上海高考数学考点笔记大全1.上海高考数学重难点:重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何。
难点:函数、数列、圆锥曲线。
2.上海高考数学考点:(1)集合与命题:集合的概念与运算、命题、充要条件。
(2)不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式、不等式的应用。
(3)函数:函数的定义、函数解析式与定义域、值域与最值、反函数、三大性质、函数的零点、函数图象、指数与指数函数、对数与对数函数、函数的应用。
(4)三角比与三角函数:有关概念、同角关系与诱导公式、和、差、倍、半公式、万能公式、辅助角公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用、反三角函数、最简三角方程。
(5)平面向量:有关概念与初等运算、线性运算、三点共线、坐标运算、数量积、三角形“四心”及其应用。
(6)数列:数列的有关概念、等差数列、等比数列、通项公式求法、数列求和、数列的应用、数学归纳法、数列的极限与运算、无穷等比数列。
⑺直线和圆的方程:方向向量、法向量、直线的方程、两直线的位置关系、线性规划、圆的方程、直线与圆的位置关系。
(8)圆锥曲线方程:椭圆的方程、双曲线的方程、抛物线的方程、直线与圆锥曲线的位置关系、轨迹问题、中点弦问题、圆锥曲线的应用、参数方程。
(9)立体几何与空间向量:空间直线、直线与平面、平面与平面、棱柱、棱锥、球与球面距离、几何体的三视图与直观图、几何体的表面积与体积、空间向量。
(10)排列、组合:排列、组合应用题、二项式定理及其应用。
(11)概率与统计:古典概型、系统抽样、分层抽样、互斥事件、对立事件、独立事件、平均数、中位数、众数、频率分布直方图。
(12)复数:复数的概念与运算、复数的平方根与立方根计算、实系数一元二次方程。
(13)矩阵与行列式初步:二元线性方程组、矩阵的基本运算、二阶行列式、三阶行列式、对角线法则、余子式与代数余子式。
(14)算法初步:流程图、算法语句、条件语句、循环语句。
第一章 集合和命题1. 集合及其表示法能够确切指定的一些对象组成的整体叫做集合,简称集;集合中的各个对象叫做这个集合的元素;集合的元素具有确定性、互异性和无序性;集合常用大写字母A B C 、、…表示,集合中的元素用小写字母a b c 、、…表示;如果a 是集合A 的元素,就 记作a A ∈,读作“a 属于A ”;如果a 不是集合A 的元素,就记作a A ∉,读作“a 不属于A ”;数的集合简称数集;全体自然数组成的集合,即自然数集,记作Ν,不包括零的自然数组成的集合,记作*Ν;全体整数组成的集合即整数集,记作Z ;全体有理数组成的集合即有理数集,记作Q ;全体实数组成的集合即实数集,记作R ;另外正整数集、负整数集、正有理数集、负有理数集、正实数集、负实数集分别表示为+-+-+-Z Z Q Q R R 、、、、、;点的集合简称点集,即以直角坐标平面内的点作为元素构成的集合; 含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集;规定空集不含元素,记作∅.集合的表示方法常用列举法和描述法;将集合中的元素一一列出来,并且写在大括号内,这种表示集合的方法 叫做列举法;在大括号内先写出这个集合的元素的一般形式,再划一条竖线,在竖线后面写上集合中元素所共同具有的特性,即{|A x x =满足性质}p ,这种表示集合的方法叫做描述法.2. 集合之间的关系对于两个集合A 和B ,如果集合A 中任何一个元素都属于集合B ,那么集合A 叫做集合B 的子集,记作A B ⊆或B A ⊇,读作“A 包含于B ”或“B 包含A ”;空集包含于任何一个集合,空集是任何集合的子集,是任何非空集合的真子集;所以若A B ⊆,不要遗漏A =∅的情况;对于一个含有n 个元素的集合P ,它的子集个数为2n ,真子集个数为21n -,非空子集个数为21n -,非空真子集的个数为22n -;用平面区域来表示集合之间关系的方法叫做集合的图示法,所用图叫做文氏图;对于两个集合A 和B ,如果A B ⊆且B A ⊆,那么叫做集合A 与集合B 相等,记作A B =,读作“集合A 等于 集合B ”,因此,如果两个集合所含的元素完全相等,那么这两个集合相等;对于两个集合A 和B ,如果A B ⊆,并且B 中至少有一个元素不属于A ,那么集合A 叫做集合B 的真子集,记作A ⊂≠B 或B ⊃≠A ,读作“A 真包含于B ”或“B 真包含A ”; 对于数集N Z Q R 、、、来说,有N ⊂≠Z ⊂≠Q ⊂≠R ;3. 集合的运算 一般地,由集合A 和集合B 的所有公共元素组成的集合叫做A 与B 的交集,记作A B ,读作“A 交B ”,即{AB x x A =∈且}x B ∈;由所有属于集合A 或者属于集合B 的元素组成的集合叫做集合A 、B 的并集,记作A B ,读作“A 并B ”,即{AB x x A =∈或}x B ∈;在研究集合与集合之间的关系时,这些集合往往是某个给定集合的子集,这个确定的集合叫做全集,常用符合U 表示;即全集含有我们所要研究的各个集合的全部元素;设U 为全集,A 是U 的子集,则由U 中所有不属于A 的元素组成的集合叫做集合A 在全集U 中的补集,记作U C A ,读作“A 补”,即{},U C A x x U x A =∈∉;德摩根定律:()U U U C AB C A C B =;()U U U C A B C A C B =;容斥原理:用||A 表示集合A 的元素个数,则||||||||A B A B A B =+-;||||||||||||||||A B C A B C A B B C CA ABC =++---+;4. 命题 可以判断真假的语句叫做命题,命题通常用陈述句表述,正确的命题叫做真命题,错误的命题叫做假命题;如果命题α成立可以推出命题β也成立,那么就说由α可以推出β,记作αβ⇒,读作“α推出β”,换言之,αβ⇒表示以α为条件、β为结论的命题是真命题;如果αβ⇒,并且βα⇒,那么记作αβ⇔,叫做α与β等价;推出关系满足传递性:αβ⇒,βγ⇒,那么αγ⇒;一个数学命题用条件α,结论β表示就是“如果α,那么β”,如果把结论和条件互相交换,就得到一个新命题“如果β,那么α”,这个命题叫做原命题的逆命题;一个命题的条件与结论分别是另一个命题的条件的否定与结论的否定,我们把这样两个命题叫做互否命题,如果其中一个叫原命题,那么另一个命题就叫做原命题的否命题;如果把α、β的否定分别记作α、β,那么命题 “如果α,那么β”的否命题就是“如果α,那么β”;如果把原命题“如果α,那么β”结论的否定作条件,把条件的否定作结论,那么就可得到一个新命题, 我们把它叫做原命题的逆否命题,即“如果β,那么α”;如果A 、B 是两个命题,A B ⇒,B A ⇒, 那么A 、B 叫做等价命题; 原命题与逆否命题是等价命题;不含逻辑联结词的命题叫做简单命题,由简单命题和逻辑联结词构成的命题叫做复合命题;复合命题有三类:p 或q ,p 且q ,非p ;一些常用结论的否定形式:5. 充要条件 一般地,用、分别表示两个命题,如果命题成立,可以推出也成立,即β,那么α叫做β的充分条件,β叫做α的必要条件;一般地,用α、β分别表示两个命题,如果既有αβ⇒,又有βα⇒,即αβ⇔,那么α既是β的充分条件,又是β的必要条件,这时我们就说,α是β的充分必要条件,简称充要条件;设具有性质p 的对象组成集合A ,具有性质q 的对象组成集合B ,则 ① 若A B ⊆,则p 是q 的充分条件; ② 若A ⊂≠B ,则p 是q 的充分非必要条件; ③ 若A B ⊇,则p 是q 的必要条件; ④ 若A ⊃≠B ,则p 是q 的必要非充分条件; ⑤ 若A B =,则,p q 互为充要条件; 等价关系:“p q ⇒”⇔“A B ⊆”⇔“AB A =”⇔“A B B =”⇔“U U C B C A ⊆”⇔“U A C B =∅”⇔“U C A B U =”(注意考虑A =∅的情况);第二章 不等式1. 不等式的基本性质性质1 如果,a b b c >>,那么a c >; 性质2 如果a b >,那么a c b c +>+;性质3 如果a b >,0c >,那么ac bc >;如果a b >,0c <,那么ac bc <; 性质4 如果,a b c d >>,那么a c b d +>+; 性质5 如果0,0a b c d >>>>,那么ac bd >;性质6 如果0a b >>,那么110a b <<; 性质7 如果0a b >>,那么n na b >(*)n ∈N ;性质8 如果0a b >>n na b >(*,1)n n ∈>N ;2. 不等式的解法(1)一元二次不等式 对于一个整式不等式,它只含有一个未知数,并且未知数的最高次数是二次,这样的不等式叫做一元二次不等式,它的一般形式是20ax bx c ++>或20ax bx c ++<(0a ≠);一般地,设一元二次不等式为20ax bx c ++>或20ax bx c ++<(0a >),当对应的一元二次方程20ax bx c ++=的根的判别式240b ac ∆=->时,先求出方程20ax bx c ++=的两个实数根12,x x (不妨设12x x <),于是不等式20ax bx c ++>的解集为1{|x x x <或2}x x >,不等式20ax bx c ++<的解集为12{|}x x x x <<;不等式的解集经常用区间来表示,设,a b 都为实数,并且a b <,我们规定:① 集合{|}x a x b ≤≤叫做闭区间,表示为[,]a b ; ② 集合{|}x a x b <<叫做开区间,表示为(,)a b ; ③ 集合{|}x a x b ≤<或{|}x a x b <≤叫做半开半闭区间,分别表示为[,)a b 或(,]a b ;④ 实数集R 表示为(,)-∞+∞,集合{|}x x a ≥、{|}x x a >、{|}x x b ≤和{|}x x b <分别用区间[,)a +∞、(,)a +∞、(,]b -∞和(,)b -∞表示;a 与b 也叫做区间的端点,“+∞”读作“正无穷大”,“-∞”读作“负无穷大”;前面讨论的是判别式0∆>的情形,当0∆<时,抛物线2y ax bx c =++(0)a >与x 轴没有交点,整个图像都在x 轴的上方,于是不等式20ax bx c ++>的解集为实数集R ,不等式20ax bx c ++<的解集为空集∅;当0∆=时,抛物线2y ax bx c =++(0)a >与x 轴两个交点重合,即122bx x a==-, 除了这一个点外,抛物线的其余部分都在x 轴的上方,于是不等式20ax bx c ++>的解集为(,)(,)22b ba a-∞--+∞,不等式20ax bx c ++<的解集为空集∅;(2)高次不等式高次不等式常用“数轴标根法”来解,其步骤是:① 等价变形后的不等式一边是零,一边是各因式的积(未知数系数一定是正数); ② 把各因式的根标在数轴上; ③ 从右上角起,用曲线穿根(奇次根穿透,偶次根不穿透),看图像写出解集; 如图:123()()()0x x x x x x ---≥(假设123x x x <<)的解为123[,][,)x x x x ∈+∞;(3)分式不等式型如()0()f x x ϕ>(或0≥)或()0()f x x ϕ<(或0≤)(其中()f x 、()x ϕ为整式且()0x ϕ≠) 的不等式称为分式不等式;解分式不等式的关键是转化为整式不等式;()0()()0()f x f x x x ϕϕ>⇔⋅>,()0()()0()f x f x x x ϕϕ<⇔⋅<; ()0()f x x ϕ≥(或0≤)()()0f x x ϕ⇔⋅≥(或0≤)且()0x ϕ≠; (4)含绝对值不等式 ||x 表示实数x 在数轴上所对应的点到原点的距离;所以,不等式||x a <(0)a >的解集为(,)a a -,类似地,不等式||x a >(0)a >的解集为(,)(,)a a -∞-+∞;解绝对值不等式的关键在于去掉绝对值,一般有如下方法:① 定义法;② 零点分段法;③ 平方法;④ 数形结合法;绝对值不等式的性质:||||||||||a b a b a b -≤±≤+ (5)无理不等式只含有一个未知数,并且未知数在根号中的不等式叫做无理不等式;解无理不等式,关键是转化为有理不等式;()0,()0,()()f x g x f x g x >⇔≥≥>;2()()0,()0,()[()]g x f x g x f x g x >⇔≥≥>或()0,()0f x g x ≥<;(6)指数对数不等式解指数对数不等式的关键是化成相同的底数,然后同时去掉底数; ① 当1a >时,()()()()f x g x aa f x g x >⇔>,log ()log ()()()0a a f x g x f x g x >⇔>>;② 当01a <<时,()()()()f x g x aa f x g x >⇔<,log ()log ()0()()a a f x g x f x g x >⇔<<3. 基本不等式基本不等式1 对任意实数a 和b ,有222a b ab +≥,当且仅当a b =时等号成立; 基本不等式2 对任意正数a 和b,有2a b+≥,当且仅当a b =时等号成立; 推论1 若,,a b c +∈R ,则3333a b c abc ++≥,当且仅当a b c ==时等号成立; 推论2 若,,a b c +∈R,则3a b c ++≥a b c ==时等号成立; 推论312n a a a n+++≥…*,,1i n a i n +∈∈≤≤N R ;均值不等式2112a b a b+≥≥+,,a b +∈R ;柯西不等式 22222()()()a b c d ac bd ++≥+;注意:一正二定三相等;和定积最大,积定和最小;4. 不等式的证明(1)比较法要证明a b >,只要证明0a b ->,同样,要证明a b <,只要证明0a b -<,这种证明不等式的方法叫做比较法; 用比较法证明不等式的一般步骤是:先作出要求证的不等式两边的差,通过对这个差的变形,确定其值是正的还是负的,从而证明不等式成立; (2)分析法从要求证的结论出发,经过适当的变形,分析出使这个结论成立的条件,把证明结论转化为判定这些条件是否成立的问题,如果能够判定这些条件都成立,那么就可以断定原结论成立,这种证明方法叫做分析法;(3)综合法从已知条件出发,利用各种已知的命题和运算性质作为依据,推导出要求证的结论,这种方法叫做综合法; (4)放缩法在证明过程中,根据不等式传递性,常采用舍去(或添加)一些项而使不等式的各项之和变小(或变大),或 把某些项换成较大(或较小)的数,或在分式中扩大(或缩小)分式的分子(或分母),从而达到证明的目的,这种证明不等式的方法叫做放缩法; (5)换元法根据证明需要进行一些等量代换,选择适当的辅助参数简化问题的一种方法; (6)判别式法根据证明需要,通过构造一元二次方程,利用关于某一变量的二次三项式有实根时的判别式的取值范围来证明不等式; (7)分解法按照一定的法则,把一个数(或式)分解为几个数(或式),使复杂的问题转化为简单易解的基本问题,然后各个击破,从而证明不等式的一种方法; (8)反证法 (9)数学归纳法5. 线性规划在线性规划问题中,,x y 所应满足的条件叫做线性约束条件,要求最值的函数叫做线性目标函数,把在线性约束条件下寻求线性目标函数的最大(小)值的问题叫做线性规划问题;建立线性规划模型的一般步骤如下:① 根据题意设未知量,,x y z 等;② 建立线性目标函数;③ 找出未知量满足的不等式,得未知量的线性约束条件;在线性规划问题中,满足线性约束条件的解(,)x y 叫做可行解,所有可行解构成的区域叫做可行域;它是二元一次不等式组的解集所表示的一个平面区域;在线性规划问题中,使目标函数达到最大(小)值的可行解叫做最优解;例 求满足下列约束条件的目标函数f x y =+的最小值:24230,0x y x y x y +≥⎧⎪+≥⎨⎪≥≥⎩⑴二元一次不等式所表示的平面区域的判断: 法一:取点定域法:由于直线0Ax By C ++=的同一侧的所有点的坐标代入Ax By C ++后所得的实数的符号相同.所以,在实际判断时,往往只需在直线某一侧任取一特殊点00(,)x y (如原点),由00Ax By C ++的正负即可判断出0Ax By C ++>(或0)<表示直线哪一侧的平面区域.即:直线定边界,分清虚实;选点定区域,常选原点.法二:根据0Ax By C ++>(或0)<,观察B 的符号与不等式开口的符号,若同号,0Ax By C ++>(或0)<表示直线上方的区域;若异号,则表示直线上方的区域⑵二元一次不等式组所表示的平面区域:不等式组表示的平面区域是各个不等式所表示的平面区域的公共部分. ⑶利用线性规划求目标函数z Ax By =+(,A B 为常数)的最值: 法一:角点法:如果目标函数z Ax By =+ (x y 、即为公共区域中点的横坐标和纵坐标)的最值存在,则这些最值都在该公共区域的边界角点处取得,将这些角点的坐标代入目标函数,得到一组对应z 值,最大的那个数为目标函数z 的最大值,最小的那个数为目标函数z 的最小值 法二:画——移——定——求: 第一步,在平面直角坐标系中画出可行域;第二步,作直线0:0l Ax By += ,平移直线0l (据可行域,将直线0l 平行移动)确定最优解;第三步,求出最优解(,)x y ;第四步,将最优解(,)x y 代入目标函数z Ax By =+即可求出最大值或最小值 .第二步中最优解的确定方法:利用z 的几何意义:A z y x B B =-+,zB为直线的纵截距. ①若0,B >则使目标函数z Ax By =+所表示直线的纵截距最大的角点处,z 取得最大值,使直线的纵截距最小的角点处,z 取得最小值;②若0,B <则使目标函数z Ax By =+所表示直线的纵截距最大的角点处,z 取得最小值,使直线的纵截距最小的角点处,z 取得最大值.⑷常见的目标函数的类型:①“截距”型:;z Ax By =+ ②“斜率”型:y z x =或;y bz x a-=-③“距离”型:22z x y =+或z =22()()z x a y b =-+-或z =在求该“三型”的目标函数的最值时,可结合线性规划与代数式的几何意义求解,从而使问题简单化.第三章 函数的基本性质1. 函数概念与运算 (1)函数概念在某个变化过程中有两个变量,x y ,如果对于x 在某个实数集合D 内的每一个确定的值,按照某个对应法则f ,y 都有唯一确定的实数值与它对应,那么y 就是x 的函数,记作()y f x =,x D ∈,x 叫做自变量,y 叫做因变量,x 的取值范围D 叫做函数的定义域,和x 的值相对应的y 的值叫做函数值,函数值的集合叫做函数的值域;求函数定义域时,主要考虑以下因素:① 分母不为零;② 偶次方根号内大于等于零;③ 真数大于零;④ 实际意义;求定义域时,遵循“括号内范围一致”原则;当我们要用数学方法解决实际问题时,首先要把问题中的有关变量及其关系用数学的形式表示出来,通常这个过程叫做建模; (2)函数的和与积一般地,已知两个函数1()()y f x x D =∈,2()()y g x x D =∈,设12D D D =,并且D ≠∅,那么当x D∈时,()y f x =与()y g x =都有意义,于是把函数()()y f x g x =+()x D ∈叫做函数()y f x =与()y g x =的和;类似于求两个函数的和,我们也可以求两个函数的积,同样考虑两函数的公共定义域后,可以定义两个函数的积;2. 函数的基本性质(1)奇偶性一般地,如果对于函数()y f x =的定义域D 内的任意实数x ,都有()()f x f x -=,那么就把函数()y f x = 叫做偶函数;如果函数()y f x =()x D ∈是偶函数,那么()y f x =的图像关于y 轴成轴对称图形,反过来,如果 一个函数的图像关于y 轴成轴对称图形,那么这个函数必是偶函数;如果对于函数()y f x =的定义域D 内的任意实数x ,都有()()f x f x -=-,那么就把函数()y f x =叫做 奇函数;如果函数()y f x =()x D ∈是奇函数,那么()y f x =的图像关于原点成中心对称图形,反过来,如果一个函数的图像关于原点成中心对称图形,那么这个函数必是奇函数; 由上可知,函数定义域D 关于原点对称是这个函数有奇偶性的必要非充分条件;奇偶性分类:① 奇函数;② 偶函数;③ 既是奇函数又是偶函数;④ 非奇非偶函数;奇偶性常用性质结论:① 奇函数()y f x =在0x =处有意义(0)0f ⇒=;② 奇函数关于原点对称;偶函数关于y 轴对称; ③ 对于多项式函数12()nn f x ax bxcx dx e -=+++++…;若()f x 是奇函数()f x ⇔偶次项的系数全为零; 若()f x 是偶函数()f x ⇔奇次项的系数全为零;④ ()y f x a =+为奇函数()()f x a f x a ⇔-+=-+; ()y f x a =+为偶函数()()f x a f x a ⇔-+=+; ⑤ ()y f x =为奇函数()()f x a f x a ⇔+=---; ()y f x =为偶函数()()f x a f x a ⇔+=--; ⑥ 任意一个定义域关于原点对称的函数都可以表示成一个奇函数和一个偶函数的和; 即:()()()()()22f x f x f x f x f x --+-=+; 复合函数奇偶性:① 对于(())f g x ,同奇则奇,有偶则偶;② 奇±奇=奇;偶±偶=偶;奇×奇=偶;奇÷奇=偶;偶×偶=偶;偶÷偶=偶;奇×偶=奇;奇÷偶=奇; (2)单调性一般地,对于给定区间I 上的函数()y f x =:如果对于属于这个区间I 的自变量的任意两个值12,x x ,当12x x <时,都有12()()f x f x <,那么就说函数()y f x =在这个区间上是单调增函数,简称增函数;如果对于属于这个区间I 的自变量的任意两个值12,x x ,当12x x <时,都有12()()f x f x >,那么就说函数()y f x =在这个区间上是单调减函数,简称减函数;如果函数()y f x =在某个区间I 上是增(减)函数,那么说函数()y f x =在区间I 上是单调函数,区间I 叫做函数()y f x =的单调区间;证明单调性步骤:① 在定义域上任取12x x <;② 作差12()()f x f x -;③ 变形判断; 单调性常用性质结论:① 在对称的两个区间上,奇函数单调性相同,偶函数单调性相反;② 互为反函数的两个函数有相同的单调性复合函数单调性:① 对于(())f g x ,同增异减;② 增+增=增;减+减=减;增-减=增;减-增=减; 注意:单调性是函数局部的性质,奇偶性是整体的性质; (3)最值一般地,设函数()y f x =在0x 处的函数值是0()f x ,如果对于定义域内任意x ,不等式0()()f x f x ≥都成立,那么0()f x 叫做函数()y f x =的最小值,记作min 0()y f x =;如果对于定义域内任意x ,不等式0()()f x f x ≤都 成立,那么0()f x 叫做函数()y f x =的最大值,记作max 0()y f x =; 求函数最值的方法:① 利用基本初等函数的值域:反比例函数、一次函数、二次函数、幂指对函数等; ② 配方法:主要用于二次函数求最值;③ 换元法:无理函数,复合函数等,包括三角换元,注意新变量的取值范围; ④ 数形结合法:利用函数图像求最值,或根据几何意义(斜率、距离等); ⑤ 单调性法:结合函数单调性求最值;⑥ 不等式法:利用常见的基本不等式,注意一正二定三相等; ⑦ 分离常数法:分式函数;⑧ 判别式法:定义域为R ,有二次项的分式方程,⑨ 转化法:利用某些式子的有界性进行转化求最值;或转化成求反函数的定义域; ⑩ 其他法:包括向量法、构造法、平方法、导数法等; (4)零点一般地,对于函数()y f x =()x D ∈,如果存在实数c ()c D ∈,当x c =时,()0f c =,那么就把x c =叫做 函数()y f x =()x D ∈的零点;实际上,函数()y f x =的零点就是方程()0f x =的解,也就是函数()y f x =的 图像与x 轴的交点的横坐标;通过每次把()y f x =的零点所在的小区间收缩一半的方法,使区间的两个端点逐步 逼近函数的零点,以求得零点的近似值,这种方法叫做二分法;零点定理:若()()0f m f n <,则方程()0f x =在区间(,)m n 内至少有一个实根; (5)周期性一般地,对于函数()f x ,如果存在一个常数T (0)T ≠,使得当x 取定义域D 内的任意值时,都有()()f x T f x +=成立,那么函数()f x 叫做周期函数,常数T 叫做函数()f x 的周期,对于一个周期函数()f x 来说,如果在所有的周期中存在一个最小正数,那么这个最小正数就叫做函数()f x 的最小正周期; 周期性的判断:① ()()f x a f x a +=-,2T a =;()()f x a f x b +=+,T a b =-;② ()()f x a f x +=-,1()()f x a f x +=±,1()()1()f x f x a f x -+=+,2T a =; ③ 1()1()f x a f x +=-或1()1()f x f x a =-+,3T a =;④ 1()()1()f x f x a f x -+=-+,1()()1()f x f x a f x ++=-,4T a =;⑤ ()()()()f x f x a f x f x a ++=+,2T a =;()()(2)()()(2)f x f x a f x a f x f x a f x a ++++=++,3T a =;1()()()()()()n f x f x a f x na f x f x a f x na ++++++=⋅++项……,(1)T n a =+;(6)对称性 ① 一个函数的对称性对于函数()y f x =,若()()f a x f a x +=-或()(2)f x f a x =-恒成立,则函数对称轴是x a =;若()()f a x f b x +=-恒成立,则函数对称轴是2a bx +=; 若()()0f a x f a x ++-=或()(2)0f x f a x +-=恒成立,则函数对称中心是(,0)a ;若()()2f a x f a x b ++-=,则函数的对称中心是(,)a b ;注意:括号内相减得常数,一般有周期性;括号内相加得常数,一般有对称性; ② 两个函数的对称性函数()y f x =与函数(2)y f a x =-的图像关于直线x a =对称; 函数()y f x a =+与函数()y f b x =-的图像关于直线2b ax -=对称; 函数()y f x =与函数2(2)b y f a x -=-的图像关于点(,)a b 对称;3. 函数的图像变换(1)平移变换① 左加右减 ()()a y f x y f x a =−−−−−→=+左移个单位;()()a y f x y f x a =−−−−−→=-右移个单位; ② 上加下减 ()()b y f x y f x b =−−−−−→=+上移个单位;()()b y f x y f x b =−−−−−→=-下移个单位; (2)伸缩变换① 1()()y f x y f x ωω=−−−−−−−−−−→=纵坐标不变,横坐标变为原来的倍(0)ω>; ② ()()A y f x y Af x =−−−−−−−−−−→=横坐标不变,纵坐标变为原来的倍(0)A >; (3)翻折变换① ()|()|y f x y f x =→=;函数()y f x =图像在x 轴上方的部分保持不变,将函数()y f x =图像在x 轴下方的部分对称翻折到x 轴上方;② ()(||)y f x y f x =→=;保留()y f x =图像在y 轴右边的部分,并将y 轴右边的部分沿y 轴对称翻折到y 轴左边,替代原有的y 轴左边图像; (4)对称变换函数()y f x =与函数()y f x =-的图像关于y 轴对称; 函数()y f x =与函数()y f x =-的图像关于x 轴对称;函数()y f x =与函数()y f x =--的图像关于原点对称; 函数()y f x =与函数(2)y f a x =-的图像关于直线x a =对称;函数()y f x a =+与函数()y f b x =-的图像关于直线2b ax -=对称; 函数()y f x =与函数2(2)b y f a x -=-的图像关于点(,)a b 对称;第四章 幂函数、指数函数和对数函数1. 幂函数一般地,函数ky x =(k 为常数,k ∈Q )叫做幂函数; 幂函数ky x =(k ∈Q )的性质:① 幂函数的图像最多只能同时出现在两个象限,且不经过第四象限;如果与坐标轴相交,则交点一定是原点; ② 所有幂函数在(0,)+∞上都有定义,并且图像都经过点(1,1);③ 若0k >,幂函数图像都经过点(0,0)和(1,1),在第一象限内递增;若0k <,幂函数图像只经过点(1,1),在第一象限内递减;注意:画幂函数图像时,先画第一象限的部分,再根据奇偶性完成整个图像;2. 指数函数一般地,函数xy a =(0a >且1)a ≠叫做指数函数,自变量x 叫做指数,a 叫做底数,函数的定义域是R ;指数运算法则:x y x y a a a+⋅=(0,,)a x y >∈R ; ()x y xy a a =(0,,)a x y >∈R ;()xxxa b a b ⋅=⋅(,0,)a b x >∈R ;一般地,指数函数xy a =在底数1a >及01a <<这两种情况下的图像如图所示:指数函数有下列性质:性质1 指数函数xy a =的函数值恒大于零,定义域为R ,值域(0,)+∞; 性质2 指数函数x y a =的图像经过点(0,1);性质3 函数xy a =(1)a >在R 上递增,函数xy a =(01)a <<在R 上递减;3. 对数及其运算一般地,如果a (0,1)a a >≠的b 次幂等于N ,即ba N =,那么b 叫做以a 为底N 的对数,记作log a N b =,其中a 叫做对数的底数,N 叫做真数;根据对数定义,可知:①零和负数没有对数,真数大于零;②1的对数为0,即log 10a =;③底的对数等于1,即log 1a a =;④对数恒等式:log a NaN =成立;通常将以10为底的对数叫做常用对数,常用对数10log N 简记作lg N ;以无理数 2.71828...e =为底的对数叫做自然对数,自然对数log e N 简记作ln N ;对数运算性质:如果0,1,0,0a a M N >≠>>,那么:log log log ()a a a M N MN +=;log log log a a aM M N N-=;log log na a M n M =; 对数换底公式:log log log ab a NN b=(其中0,1,0,1,0a a b b N >≠>≠>);常用恒等式:① log a NaN =;② log N a a N =;③ log log 1a b b a ⋅=;④ log log log log a b c a b c d d ⋅⋅=;⑤ log log m na a nb b m=; 4. 反函数一般地,对于函数()y f x =,设它的定义域为D ,值域为A ,如果对A 中任意一个值y ,在D 中总有唯一确定的x 值与它对应,且满足()y f x =,这样得到的x 关于y 的函数叫做()y f x =的反函数,记作1()x f y -=,在习惯上,自变量常用x 表示,而函数用y 表示,所以把它改写为1()y fx -=()x A ∈;反函数的判定:① 反函数存在的条件是原函数为一一对应函数;定义域上的单调函数必有反函数; ② 周期函数不存在反函数;定义域为非单元素的偶函数不存在反函数; 反函数的性质:① 原函数()y f x =和反函数1()y fx -=的图像关于直线y x =对称;若点(,)a b 在原函数()y f x =上,则点(,)b a 必在其反函数1()y fx -=上;② 函数()y f x =与1()y fx -=互为反函数;原函数()y f x =的定义域是它反函数1()y f x -=的值域;原函数()y f x =的值域是它反函数1()y f x -=的定义域;③ 原函数与反函数具有对应相同的单调性;奇函数的反函数也是奇函数; 求反函数步骤:① 用y 表示x ,即求出1()x fy -=;② ,x y 互换,即写出1()y f x -=;③ 确定反函数定义域;注意事项:若函数()y f ax b =+存在反函数,则其反函数为11[()]y f x b a-=-,而不是1()y f ax b -=+,函数1()y f ax b -=+是1[()]y f x b a =-的反函数;5. 对数函数一般地,对数函数log a y x =(0a >且1)a ≠就是指数函数x y a =(0a >且1)a ≠的反函数;因为xy a =的值域是(0,)+∞,所以,函数log a y x =的定义域是(0,)+∞;对数函数log a y x =(0a >且1)a ≠在1a >及01a <<两种情形下的图像如图所示:对数函数log a y x =(0a >且1)a ≠的性质:性质1 对数函数log a y x =的图像都在y 轴的右方,定义域(0,)+∞,值域为R ; 性质2 对数函数log a y x =的图像都经过点(1,0);性质3 对数函数log a y x =(1)a >,当1x >时,0y >;当01x <<时,0y <; 对数函数log a y x = (01)a <<,当1x >时,0y <;当01x <<时,0y >;性质4 对数函数log a y x =(1)a >在(0,)+∞上是增函数,log a y x = (01)a <<在(0,)+∞上是减函数;。